Probabilistic Context Free Grammars Lecture \#14

Computational Linguistics CMPSCI 591N, Spring 2006

Andrew McCallum

(including slides from Jason Eisner)

Ambiguity in Parsing

- Time flies like an arrow.
- Fruit flies like a banana.
- I saw the man with the telescope.

How to solve this combinatorial explosion of ambiguity?

1. First try parsing without any weird rules, throwing them in only if needed.
2. Better: every rule has a weight. A tree's weight is total weight of all its rules.
Pick the overall "lightest" parse of sentence.
3. Can we pick the weights automatically? We'll get to this later ...

CYK Parser

Input: A string of words, grammar in CNF
Output: yes/no
Data structure: $\mathrm{n} \times \mathrm{n}$ table rows labeled 0 to $n-1$, columns 1 to n cell (i, j) lists constituents spanning i, j

For each i from 1 to n
Add to ($\mathrm{i}-1, \mathrm{i}$) all Nonterminals that could produce the word at ($\mathrm{i}-1, \mathrm{i}$)

	me 1	2 lik	3	4 arr			
	$\begin{array}{\|ll} \hline \text { NP } & 3 \\ \text { Vst } & 3 \end{array}$						
1		$\begin{array}{ll}\text { NP } & 4 \\ \text { VP } & 4\end{array}$					$\begin{aligned} & 1 \mathrm{VP} \rightarrow \mathrm{~V} \mathrm{NP} \\ & 2 \mathrm{VP} \rightarrow \mathrm{VP} \mathrm{PP} \\ & 1 \mathrm{NP} \rightarrow \operatorname{Det} \mathrm{~N} \end{aligned}$
2			$\begin{array}{ll}\text { P } & 2 \\ \mathrm{~V} & 5\end{array}$				$\begin{aligned} & 1 \mathrm{NP} \rightarrow \operatorname{Det} \mathrm{~N} \\ & 2 \mathrm{NP} \rightarrow \mathrm{NP} \mathrm{PP} \end{aligned}$
3				Det 1			$3 N P \rightarrow N P N P$
4							$0 \mathrm{PP} \rightarrow \mathrm{P}$ NP

CYK Parser

For width from 2 to n
For start from 0 to n -width
Define end to be start+width
For mid from start+1 to end-1
For every constituent in (start, mid)
For every constituent in (mid,end)
For all ways of combining them (if any)
Add the resulting constituent to (start,end).

Follow backpointers ...


```
time 1 flies 2 like 3 an 4 arrow 5
```

NP	3	NP	10				
Vst	3	S	8				
0							NP

$1 \mathrm{~S} \rightarrow \mathrm{NP}$ VP
$6 \mathrm{~S} \rightarrow \mathrm{Vst} N P$
$2 \mathrm{~S} \rightarrow \mathrm{SPP}$
$1 \mathrm{VP} \rightarrow \mathrm{V}$ NP
$2 \mathrm{VP} \rightarrow \mathrm{VP} \mathrm{PP}$
$1 \mathrm{NP} \rightarrow \operatorname{Det} \mathrm{N}$
$2 \mathrm{NP} \rightarrow \mathrm{NP} \mathrm{PP}$
$3 \mathrm{NP} \rightarrow \mathrm{NPNP}$
$0 \mathrm{PP} \rightarrow \mathrm{PNP}$

$$
\begin{aligned}
& \overbrace{N P}^{S} \\
& 1 S \rightarrow N P V P \\
& 6 \mathrm{~S} \rightarrow \text { Vst NP } \\
& 2 S \rightarrow \text { SPP } \\
& 1 \mathrm{VP} \rightarrow \mathrm{VNP} \\
& 2 \text { VP } \rightarrow \text { VP PP } \\
& 1 \mathrm{NP} \rightarrow \text { Det } N \\
& 2 \mathrm{NP} \rightarrow \mathrm{NP} \text { PP } \\
& 3 \mathrm{NP} \rightarrow \mathrm{NP} \text { NP } \\
& 0 \text { PP } \rightarrow \text { P NP }
\end{aligned}
$$

Which entries do we need?

Which entries do we need?

Not worth keeping ...

time 1 flies 2 like 3 an 4 arrow 5

$1 S \rightarrow N P$ VP
$6 \mathrm{~S} \rightarrow$ Vst NP
$2 S \rightarrow S$ PP
$1 \mathrm{VP} \rightarrow \mathrm{VNP}$
$2 \mathrm{VP} \rightarrow \mathrm{VP}$ PP
$1 \mathrm{NP} \rightarrow \operatorname{Det} \mathrm{N}$
$2 N P \rightarrow N P$ PP
$3 \mathrm{NP} \rightarrow \mathrm{NP}$ NP
$0 \mathrm{PP} \rightarrow \mathrm{PNP}$

... since it just breeds worse options

Keep only best-in-class!

Keep only best-in-class!

 (and backpointers so you can recover parse)

Probabilistic Trees

- Instead of lightest weight tree, take highest probability tree
- Given any tree, your assignment generator would have some probability of producing it!
- Just like using n-grams to choose among strings ...
- What is the probability of this tree?

Probabilistic Trees

- Instead of lightest weight tree, take highest probability tree
- Given any tree, your assignment generator would have some probability of producing it!
- Just like using n-grams to choose among strings ...
- What is the probability of this tree?
- You rolled a lot of independent dice...

Chain rule: One word at a time

p (time flies like an arrow)
$=p$ (time)

* p (flies | time)
* p(like | time flies)
* p(an | time flies like)
* p(arrow | time flies like an)

Chain rule + backoff (to get trigram model)

p (time flies like an arrow)
$=p$ (time)

* p (flies | time)
* p(like | time flies)
* p(an | time flies like)
* p(arrow | time flies like an)

Chain rule - written differently

p (time flies like an arrow)
$=p$ (time)

* p (time flies | time)
* p(time flies like | time flies)
* p(time flies like an | time flies like)
* p(time flies like an arrow | time flies like an)

Proof: $p(x, y \mid x)=p(x \mid x) * p(y \mid x, x)=1 * p(y \mid x)$

Chain rule + backoff

p (time flies like an arrow)
$=p($ time $)$

* p(time flies I time)
* p(time flies like I time flies)
* p(time flies like an I time flies like)
* p(time flies like an arrow I time flies like an)

Proof: $p(x, y \mid x)=p(x \mid x)^{*} p(y \mid x, x)=1^{*} p(y \mid x)$

Chain rule: One node at a time

Chain rule + backoff

Simplified notation

Already have a CKY alg for weights ...

Just let w($x \rightarrow y z)=-\log \mathbf{p}(x \rightarrow y z \mid x)$ Then lightest tree has highest prob ${ }^{49}$

Need only best-in-class to get best parse

Why probabilities not weights?

- We just saw probabilities are really just a special case of weights ...
- ... but we can estimate them from training data by counting and smoothing! Use all of our lovely probability theory machinery!

Probabilistic Context Free Grammars

A PCFG G consists of the usual parts of a CFG

- A set of terminals, $\left\{w^{k}\right\}, k=1, \ldots, V$
- A set of nonterminals, $\left\{N^{i}\right\}, i=1, \ldots, n$
- A designated start symbol, N^{1}
- A set of rules, $\left\{N^{i} \rightarrow \zeta^{j}\right\}$, (where ζ^{j} is a sequence of terminals and nonterminals)
and
- A corresponding set of probabilities on rules such that:

$$
\forall i \quad \sum_{j} P\left(N^{i} \rightarrow \zeta^{j}\right)=1
$$

A simple PCFG (in CNF)

$\mathrm{S} \rightarrow \mathrm{NP} \mathrm{VP}$	1.0	$\mathrm{NP} \rightarrow$ NP PP	0.4
$\mathrm{PP} \rightarrow \mathrm{P} \mathrm{NP}$	1.0	$\mathrm{NP} \rightarrow$ astronomers	0.1
$\mathrm{VP} \rightarrow \mathrm{V} \mathrm{NP}$	0.7	$\mathrm{NP} \rightarrow$ ears	0.18
$\mathrm{VP} \rightarrow \mathrm{VP} P \mathrm{PP}$	0.3	$\mathrm{NP} \rightarrow$ saw	0.04
$\mathrm{P} \rightarrow$ with	1.0	$\mathrm{NP} \rightarrow$ stars	0.18
$\mathrm{~V} \rightarrow$ saw	1.0	$\mathrm{NP} \rightarrow$ telescopes	0.1

$$
\overbrace{\text { astronomers }}^{t_{2}:}
$$

The two parse trees' probabilities and the sentence probability

$$
\begin{aligned}
P\left(t_{1}\right)= & 1.0 \times 0.1 \times 0.7 \times 1.0 \times 0.4 \\
& \times 0.18 \times 1.0 \times 1.0 \times 0.18 \\
= & 0.0009072 \\
P\left(t_{2}\right)= & 1.0 \times 0.1 \times 0.3 \times 0.7 \times 1.0 \\
& \times 0.18 \times 1.0 \times 1.0 \times 0.18 \\
= & 0.0006804 \\
P\left(w_{15}\right)= & P\left(t_{1}\right)+P\left(t_{2}\right)=0.0015876
\end{aligned}
$$

Assumptions of PCFGs

1. Place invariance (like time invariance in HMM):

$$
\forall k \quad P\left(N_{k(k+c)}^{j} \rightarrow \zeta\right) \text { is the same }
$$

2. Context-free:

$$
P\left(N_{k l}^{j} \rightarrow \zeta \mid \text { words outside } w_{k} \ldots w_{l}\right)=P\left(N_{k l}^{j} \rightarrow \zeta\right)
$$

3. Ancestor-free:

$$
P\left(N_{k l}^{j} \rightarrow \zeta \mid \text { ancestor nodes of } N_{k l}^{j}\right)=P\left(N_{k l}^{j} \rightarrow \zeta\right)
$$

The sufficient statistics of a PCFG are thus simply counts of how often different local tree configurations occurred (= counts of which grammar rules were applied).

Some features of PCFGs

Reasons to use a PCFG, and some idea of their limitations:

- Partial solution for grammar ambiguity: a PCFG gives some idea of the plausibility of a sentence.
■ But, in the simple case, not a very good idea, as independence assumptions are two strong (e.g., not lexicalized).
- Gives a probabilistic language model for English.

■ In the simple case, a PCFG is a worse language model for English than a trigram model.

■ Better for grammar induction (Gold 1967 vs. Horning 1969)

■ Robustness. (Admit everything with low probability.)

Some features of PCFGs

- A PCFG encodes certain biases, e.g., that smaller trees are normally more probable.
- One can hope to combine the strengths of a PCFG and a trigram model.
We'll look at simple PCFGs first. They have certain inadequacies, but we'll see that most of the state-of-the-art probabilistic parsers are fundamentally PCFG models, just with various enrichments to the grammar

