Graphical Models

 ecture 5;:

Undirected Graphical Models, continued

Andrew McCallum
mccallum@cs.umass.edu

Thanks to Noah Smith and Carlos Guestrin for some slide materials.



What are
factor graphs?



What are the Factors?



What are the Factors?

(You can’t tell from the graph.)
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Factor Graphs
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How are undirected models
typically parameterized?



Markov Networks
(General Form)

o Let D. denote the set of variables (subset of X)
in the ith clique.

* Probability distribution is a Gibbs distribution:

P(X) = U(ZX)
U(X) — H@(DZ)
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Logarithmic Representation

* Markov network: %) - UX

Z 2o
o0 = flae)
z - Y v ot
xEVal(X)
e Logarithmic: bi(D;) = elossi(Do)
i (D 1
¢(DZ) — e wz(Dz) P(X) — Eezz log ¢; (D)
Z

Energy (lower energy = higher probability) = — Z%(Di)



Log-Linear Markov Networks

with features
: uo
. . E*a‘“o\ee.xesf\(\%:‘;ms
A feature is a function f : Val(D,) - R. et e n e
o
: 1
Log-linear model: p(x) = el (D
_ %e— >, i (Ds)
EIS > S 10 D1
I Z ueusmg
Features and weights can be reused @ 0
. W\O \Ne% 66\5.
for different factors. e ™
1e

— Typical: features designed by expert,
weights learned from data.

— (Note that reusing breaks parameter independence.)

Log of the probability is linear in the weights w.
— lgnoring Z, which is a constant for a given w.



Generalized Linear Model

e Score is defined as a linear function of X:

f(X) =w0+zwin’

Z Z=1(X) isa

random variable

* Probability distribution over binary value Y is
defined by:

P(Y =1) = sigmoid(f(X))
e Sample.



Independent Causes

 Many “additive” effects combine to score X
* P(Y=1)is defined as a function of X

sigmoid(score(X))

0.0 0.2 0.4 0.6 0.8 1.0
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score(X)

sigmoid(z) = g
ez




Markov Networks as a
Generalized Linear Model

* Sigmoid equates to binary output log-linear
model.

 More generally, multinomial logit:
take a linear score (Z in lecture 3),
exponentiate, and normalize (Z in Gibbs dist.)

— Don’t confuse the Zs.

* The generalized linear model we used for CPDs
Is a log-linear distribution.



What is a
Conditional Random Field?



Hidden Markov Models

HMMs are the standard sequence modeling tool in
genomics, music, speech, NLP, ...

Finite state model Graphical model
S S

t-1 t 1 transitions

observations

0] 0] 0]

t-1 t t+1

Generates:
161
State

sequence O O ‘ ‘ O ‘ O O P(§,5) OCHP(St lst—l)P(Ot |St)

Observation

sequence ;] 0, 03 04 Os5 O 0; Og



IE with Hidden Markov Models

Given a sequence of observations:

Yesterday Yoav Freund spoke this example sentence.

and a trained HMM: I person name
. location name

background

Find the most likely state sequence: (Viterbi)

c e @ O O O O

Bob Wisneski

Any words said to be generated by the designated “person name”
state extract as a person name:

Person name: Bob Wisneski



We want More than an Atomic View of Words

Would like richer representation of text:
many arbitrary, overlapping features of the words.

identity of word t-1 t 41
ends in “-ski”
is capitalized
is part of a noun phrase

is in a list of city names is “Jones”

is under node X in WordNet

!s !n bold font part of ends in

is indented noun phrase “_ski”

is in hyperlink anchor O o, 0.,

last person name was female
next two words are “and Associates”



Problems with Richer Representation
and a Joint Model

These arbitrary features are not independent.
— Multiple levels of granularity (chars, words, phrases)
— Multiple dependent modalities (words, formatting, layout)
— Past & future

Two choices:

Model the dependencies. Ignore the dependencies.
Each state would have its own This causes “over-counting” of
Bayes Net. But we are already evidence (ala naive Bayes).
starved for training data! Big problem when combining
evidence, as in Viterbi!
Stl St St+1 St-l St St+1
_ =




Conditional Sequence Models

« We prefer a model that is trained to maximize a
conditional probability rather than joint probability:
P(s]o) instead of P(s,0):

— Can examine features, but not responsible for generating them.
— Don’t have to explicitly model their dependencies.

— Don'’t “waste modeling effort” trying to generate what we are
given at test time anyway.



From HMMs to Conditional Random Fields

_ . [Lafferty, McCallum, Pereira 2001]
\) =S1,S2,...Sn 0=01,02,...0n

St-l St St+1

Joint 161

P(5.0) = | | PGs, 15 )P(o, 1s,)

Conditional

P(s lo) =

lol

HP(S ls,_)P(o, ls,)

P(0)~_

lol

HCI) (s,,s,_)®, (0,,s,)

Z(o)

where (I)O(t) = exp(z )"kfk (st ,ot)) (A super-special case of
k

Conditional Random Fields.)

Set parameters by maximum likelihood, using optimization method on SL.



(Linear Chain) Conditional Random Fields

[Lafferty, McCallum, Pereira 2001]

Undirected graphical model, trained to maximize
conditional probability of output (sequence) given input (sequence)

Finite state model Graphical model
PERSON ORG TITLE .. output seq
yt-l yt yt+1 yt+2 yt+3
FSM states
observations
X t-1 X t X t+1 X t+2 X t+3
said Jones a Microsoft VP .. input seq
1
p(y Ix) = Z—nq)(y,,yt_l,X,t) where D(y,,y, ,,X,t) =exp E)kak(yt,yt_l,x,t)
X t k

Wide-spread interest, positive experimental results in many applications.

Noun phrase, Named entity [HLT 03], [CONLL’03] Asian word segmentation [COLING’04], [ACL’04]
Protein structure prediction [ICML’04] IE from Research papers [HTL'04]
IE from Bioinformatics text [Bioinformatics ‘04],... Object classification in images [CVPR ‘04]



Table Extraction from Government Reports

Cash receipts from marketings of milk during 1995 at $19.9 billion dollars, was
slightly below 1994. Producer returns averaged $12.93 per hundredweight,

$0.19 per hundredweight below 1994. Marketings totaled 154 billion pounds,

1 percent above 1994. Marketings include whole milk sold to plants and dealers
as well as milk sold directly to consumers.

An estimated 1.56 billion pounds of milk were used on farms where produced,
8 percent less than 1994. Calves were fed 78 percent of this milk with the
remainder consumed in producer households.

Milk Cows and Production of Milk and Milkfat:
United States, 1993-95

Number R S e e e e e e e e e e e e e e e

Year : of : Per Milk Cow : Percentage : Total
:Milk Cows 1/:-———————-—"—-—"——-————— : of Fat in A1l ;--————————————————
: Milk : Milkfat : Milk Produced : Milk : Milkfat
1,000 Head --- Pounds --- Percent Million Pounds
1993 : 9,589 15,704 575 3.66 150,582 5,514.4
1994 : 9,500 16,175 592 3.66 153,664 5,623.7
1995 : 9,461 16,451 602 3.66 155,644 5,694.3

1/ Average number during year, excluding heifers not yet fresh.
2/ Excludes milk sucked by calves.




Table Extraction from Government Reports

100+ documents from www.fedstats.gov
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:er households.

Iction of Milk and Milkfat:
1993-95

n of Milk and Milkfat 2/
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[Pinto, McCallum, Wei, Croft, 2003 SIGIR]

Labels:
« Non-Table
 Table Title

 Table Header

 Table Data Row
 Table Section Data Row
 Table Footnote

.. (12in all)

Features:

« Percentage of digit chars

« Percentage of alpha chars

* Indented

« Contains 5+ consecutive spaces

* Whitespace in this line aligns with prev.

. éonjunctions of all previous features,
time offset: {0,0}, {-1,0}, {0,1}, {1,2}.



Table Extraction Experimental Results

[Pinto, McCallum, Wei, Croft, 2003 SIGIR]

Line labels, Table segments,
percent correct F1
HMM 65 % 64 %
Stateless
85 % -
MaxEnt

CRF 95 % 92 %




IE from Research Papers

Reinforcement Learning: A Survey

[McCallum et al ‘99]

Leslie Pack Kaelbling LPK@CS.BROW
Michael L. Littman MLITTMAN@CS.BROW

Computer Seience Department, Boz 191(), Brown University

Providence, RI 02912-1910 USA

Andrew W. Moore
Smith Hell 221, Carncgic Mellon Universily, 5000 Forbes Avenue
Pittsburgh, PA 15213 USA

AWM@cCs.Cw

Abstract

This paper surveys the ficld of reinforcement learning from a computer-science pe
spective. It is written to be accessible to rescarchers familiar with machine learning. Bo
the historical basis of the ficld and a broad sclection of current work are summarize
Reinforcement learning is the problem faced by an agent that learns behavior throu,
trial-and-crror intcractions with a dynamic environment. The work described here has
resemblance to work in psychology, but differs considerably in the details and in the u
of the word “rcinforcement.” The paper discusses central issues of reinforcement learnir
including trading off exploration and cxploitation, cstablishing the foundations of the fic
via Markov decision theory, learning from delayed reinforcement, constructing empiric
models to accelerate learning, making usc of generalization and hicrarchy, and coping wi
hidden state. It concludes with a survey of some implemented systems and an asscssme
of the practical utility of current methods for reinforcement learning.

1. Introduction

Rcinforcement learning dates back to the carly days of cybernetics and v
psychology, ncuroscience, and computer science. In the last five to ten years, it has att
rapidly increasing intercst in the machine learning and artificial intelligence commu
Its promisc is beguiling—a way of programming agents by reward and punishment w
nceding to specify how the task is to be achieved. But there are formidable computs:
obstacles to fulfilling the promise.

This paper surveys the historical basis of reinforcement learning and some of the ¢
work from a computer science perspective. We give a high-level overview of the ficld
taste of some specific approaches. It is, of course, impossible to mention all of the imp
work in the ficld; this should not be taken to be an exhaustive account.
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Searchl Help

!Eputhor :boyvan "search engines"

Title, author, institution and abstract are automatically extracted, and are often, but not always correct.
Number of hits found: 64

1. A Machine Learning Architecture for Optimizing Web Search Engines

Justin Boyan, Dayne Freitag, and Thorsten Joachims

Abstract: Indexing systers for the World Wide Web, such as Lycos and Alta Vista, play an essential role iny
useful and usable. These systems are based on Information Retrieval methods for indexing plain text docuraent
heuristics for adjusting their docurment rankings based on the special HTML structure of Web documents. In th
describe a wide range of such heuristicslincluding a novel one inspired by reinforcement leaming techniques for
rewards through a graphlwhich can be used to affect a search engine’s rankings. We then demonstrate a systel
corabine these heuristics automatically, based on feedback collected vnintmsively from users, resulting in muc]
rankings.

Postscript Referring Page Details BibTeX Entry Word Matches: boyan, search engines Score: 1

2. Value Function Based Production Scheduling

Jeff G. Schneider Justin A, Boyan Andrew W, Moore

Abstract: Production scheduling, the problem of sequentially configuring a factory to meet forecasted derands
problem throughout the manufacturing industry. The requirement of maintaining product inventories in the face «
derand and stochastic factory output makes standard scheduling models, such as job-shop, inadequate. Curre
algonthms, such as simulated annealing and constraint propagation, must employ ad-hoc methods such as freq
cope with uncertainty. In this paper, we describe a Markov Decision Process (MDP) formulation of production
captures stochasticity in both production and demands. The solution to this MDP is a value functon which can
generate optimal scheduling decisions online. A sirple exarple illustrates the theoretical superiority of this ap
replanning-based methods. We then describe an industrial application and two reinforcerment leaming methods
approximate value function on this domain. Cur results demonstrate that in both deterministic and noisy scenar
approxiration is an effective technique.

Postscript Referring Page Details BibTeX Entry Word Matches: boyan Score: 0.6094

3. Least-Squares Temporal Difference Learning

Justin A, Boyan

Abstract: Submitted to NIPS-98 TD() is a popular family of algorithwms for approximate policy evaluation in lar
works by incrementally updating the value function after each observed transition. It has two major draswbacks:
inefficient use of data, and it requires the user to manually tune a stepsize schedule for good performance. For
value function approximations and = 0, the Least-Squares TD (LSTD) algorithm of Bradtke and Barto [5] elimi
parameters and improves data efficiency. This paper extends Bradtke and Barto’s swork in three significant way
presents a simpler dexivation of the L3TD algorithm. Second, it generalizes from = 0 to arbitrary values of ; att
the resulting algorithm is shown to be a practical formulation of supenvised linear regression. Third, it presents



IE from Research Papers

Field-level F1
Hidden Markov Models (HMMs) 75.6
[Seymore, McCallum, Rosenfeld, 1999]
Support Vector Machines (SVMs) 89.7 .
[Han, Giles, et al, 2003] A error
" 40%
Conditional Random Fields (CRFs) 93.9 _

[Peng, McCallum, 2004]



When to use a
directed or undirected model?



Directed Undirected

Captures inter-causal * Captures “affinity”
reasoning, eg explainingaway ~ Symmetrical. Cyclical graphs

Parameters interpretable, * Param’s not so interpretable,

can be set by hand. usually learned from data
Usually easier parameter ¢ Trickier parameter
estimation estimation, but not too bad
Can easily generate data ¢ Can easily add factors &
from the model overlapping features tothe model
Rich existing work in * Less work in latent-variable

latent-variable models models, but there is some



Transforming Between
Directed and Undirected Models



Bayesian Markov

Network < Network




Bayesian Network to
Gibbs Distribution

* Each conditional probability distribution is a
factor. riviar:

e Also works when conditioning on some
evidence.

 Can we go from a Bayesian Network to an
undirected graph that’s an I-map?

Ask about example on the board






Intuition

In the Markov network, each factor must
correspond to a subset of a clique.

The “factors” in Bayesian networks are the
CPDs.
— Node + parents

Moralize the graph: add an edge between any
two nodes that share a child

Moralizing ensures that a node and its parents
form a clique.

— But some independencies in the Bayesian network
graph may be lost in the Markov network graph.



Bayesian Network Structure to
Markov Network Structure

?\ec'\@e
* Start with the Bayesian network skeleton of G.

* Moralize the graph: add an edge between any
two nodes that share a child.

* Result: moralized (undirected) graph is a
minimal I-map for G.

— If G was moral already, P-map.

You should know how to perform this conversion directed -> undirected.



moralize

Bayesian Markov

Network < Network




Markov Network to Bayesian Network

 Example: P given by a Markov network.

How do we build BN I-maps in general?



Building a Minimal I-Map

* Order variables arbitrarily,
so that X. precedes all its descendants.

e Forifrom1ton:
— Add X to the network

— Let Parents(X.) be the minimal subset S of {X,, ..., X. ;} such that
X L ({Xy, . X, J\S) | S

Lecture 2!



Markov Network to Bayesian Network

 Example: P given by a Markov network.

{A,B,C,D,E, F}



Markov Network to Bayesian Network

 Example: P given by a Markov network.

{A,B,C,D,E, F}



Markov Network to Bayesian Network

 Example: P given by a Markov network.

{A,B,C,D,E, F}



Markov Network to Bayesian Network

 Example: P given by a Markov network.

{A,B,C,D,E, F}



Markov Network to Bayesian Network

 Example: P given by a Markov network.

{A,B,C,D,E, F}



Markov Network to Bayesian Network

 Example: P given by a Markov network.

{A,B,C,D,E, F}



Markov Network to Bayesian Network

 Example: P given by a Markov network.

{A,B,C,D,E, F}



Markov Network to Bayesian Network

 Example: P given by a Markov network.

{A,B,C,D,E, F}



Markov Network to Bayesian Network

 Example: P given by a Markov network.

{A,B,C,D,E, F}



Markov Network to Bayesian Network

 Example: P given by a Markov network.

{A,B,C,D,E, F}



Markov Network to Bayesian Network

 Example: P given by a Markov network.

{A,B,C,D,E, F}



Markov Network to Bayesian Network

 Example: P given by a Markov network.

{A,B,C,D,E, F}

F

You should know how to perform this conversion undirected -> directed.



Chordal Graphs

* Undirected graph whose minimal cycles are
not longer than 3.

A A



Markov Network to Bayesian Network

* |f Gis a minimal I-map Bayesian network for

Markov network FH, then G has no S

immoralities.

— And is therefore chordal,
since any loop of length > 4 in a Bayesian network
graph must have immoralities.

 The Bayesian network we create cannot have
any immoralities!

SO



Markov Network to Bayesian Network

* Conversion from MN to BN requires
triangulation.

— May lose some independence information.
— May involve a lot of additional edges.

— Different orderings of chain rule may yield different
numbers of additional edges.

Do a few more examples on the board



moralize

Bayesian Markov

Network € Network
triangulate




One More Formalism

* Bayesian network/Markov network conversion
can lead to addition of edges and loss of
independence information.

e |s there a subset of distributions that can be
captured perfectly in both models?

— Yes! Undirected chordal graphs.



Theorem

e If H (a Markov network) is non-chordal, then
there is no Bayesian network G such that

(G) = I(H), i.e., no P-map.

* Why? Minimal I-map for G must be chordal.
If Gis an I-map for 7, it must include some
additional edges not in F{, but that eliminates

independence assumptions. So I(FH) can’t be
perfectly encoded.



Cligue Tree

Every maximal
cligue becomes a
vertex.

Connect vertices
with overlapping
variables

Tree structure?

then “Clique Tree”



Cligue Tree

For each edge,
intersection of r.v.s
separates the rest

in H.

sep,(A, D | B, C)

sep,(B, E | C, D)

sep,(C, F | D, E)



Cligue Tree

* Does a clique tree exist?

— Yes, if the undirected graph JH is chordal!
— Construction: inductive proof (K&F 4.5.3)

— We will return to this later.

Work out example of
non-chordal graph that doesn’t provide a clique tree



Cligue Tree

* Does a clique tree exist?
— Yes, if the undirected graph JH is chordal!

e Result: If undirected graph F is chordal, then
there is a Bayesian network structure G that is
a P-map for H.

— Need: Markov network to clique tree (above),
clique tree to Bayesian network.



Chordal Markov Network
to Bayesian Network

Transform chordal graph into clique tree.

Arbitrarily pick root node, and topologically
order cliques from there.

Build minimal I-map (lecture 4).
— Cligue tree makes independence tests easy.

Can then show that G and H have the same
set of edges.

G is moral, so they are P-maps for each other.



Formalisms

helpful for
approximate
inference

essentially factor graph
equivalent
moralize skeleton /
Bayesian > Markov
Network < Network
triangulate .
extra variables per
: factor
pick root, add triangulate
directions ne
factor ,
nothing o
per pairwise
clique tree clique Markov

Network

helpful for exact inference



