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Abstract

Hierarchical reinforcement learning (HRL) is a general framework for scaling reinforcement learn-
ing (RL) to problems with large state and action spaces by using the task (or action) structure to
restrict the space of policies. Prior work in HRL including HAMs, options, MAXQ, and PHAMs
has been limited to the discrete-time discounted reward semi-Markov decision process (SMDP)
model. The average reward optimality criterion has been recognized to be more appropriate for a
wide class of continuing tasks than the discounted framework. Although average reward RL has
been studied for decades, prior work has been largely limited to flat policy representations.

In this paper, we develop a framework for HRL based on the average reward optimality cri-
terion. We investigate two formulations of HRL based on the average reward SMDP model, both
for discrete-time and continuous-time. These formulations correspond to two notions of optimality
that have been previously explored in HRL: hierarchical optimality and recursive optimality. We
present algorithms that learn to find hierarchically and recursively optimal average reward policies
under discrete-time and continuous-time average reward SMDP models.

We use two automated guided vehicle (AGV) scheduling tasks as experimental testbeds to
study the empirical performance of the proposed algorithms. The first problem is a relatively simple
AGV scheduling task, in which the hierarchically and recursively optimal policies are different.
We compare the proposed algorithms with three other HRL methods, including a hierarchically
optimal discounted reward algorithm and a recursively optimal discounted reward algorithm on
this problem. The second problem is a larger AGV scheduling task. We model this problem using
both discrete-time and continuous-time models. We use a hierarchical task decomposition in which
the hierarchically and recursively optimal policies are the same for this problem. We compare the
performance of the proposed algorithms with a hierarchically optimal discounted reward algorithm
and a recursively optimal discounted reward algorithm, as well as a non-hierarchical average reward
algorithm. The results show that the proposed hierarchical average reward algorithms converge to
the same performance as their discounted reward counterparts.

Keywords: semi-Markov decision processes, hierarchical reinforcement learning, average reward
reinforcement learning, hierarchical and recursive optimality
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1. Introduction

Sequential decision making under uncertainty is a fundamental problem in artificial intelligence
(AI). Many sequential decision making problems can be modeled using the Markov decision process
(MDP) formalism. A MDP (Howard, 1960; Puterman, 1994) models a system that we are interested
in controlling as being in some state at each time step. As a result of actions, the system moves
through some sequence of states and receives a sequence of rewards. The goal is to select actions
to maximize (minimize) some measure of long-term reward (cost), such as the expected discounted
sum of rewards (costs), or the expected average reward (cost).

Reinforcement learning (RL) is a machine learning framework for solving sequential decision-
making problems. Despite its successes in a number of different domains, including backgammon
(Tesauro, 1994), job-shop scheduling (Zhang and Dietterich, 1995), dynamic channel allocation
(Singh and Bertsekas, 1996), elevator scheduling (Crites and Barto, 1998), and helicopter flight
control (Ng et al., 2004), current RL methods do not scale well to high dimensional domains—they
can be slow to converge and require many training samples to be practical for many real-world
problems. This issue is known as the curse of dimensionality: the exponential growth of the number
of parameters to be learned with the size of any compact encoding of system state (Bellman, 1957).
Recent attempts to combat the curse of dimensionality have turned to principled ways of exploiting
abstraction in RL. This leads naturally to hierarchical control architectures and associated learning
algorithms.

Hierarchical reinforcement learning (HRL) is a general framework for scaling RL to problems
with large state spaces by using the task (or action) structure to restrict the space of policies. Hi-
erarchical decision making represents policies over fully or partially specified temporally extended
actions. Policies over temporally extended actions cannot be simply treated as single-step actions
over a coarser time scale, and therefore cannot be represented in the MDP framework since actions
take variable durations of time. Semi-Markov decision process (SMDP) (Howard, 1971; Puterman,
1994) is a well-known statistical framework for modeling temporally extended actions. Action du-
ration in a SMDP can depend on the transition that is made. The state of the system may change
continually between actions, unlike MDPs where state changes are only due to actions. Therefore,
SMDPs have become the main mathematical model underlying HRL methods.

Prior work in HRL including hierarchies of abstract machines (HAMs) (Parr, 1998), options
(Sutton et al., 1999; Precup, 2000), MAXQ (Dietterich, 2000), and programmable HAMs (PHAMs)
(Andre and Russell, 2001; Andre, 2003) has been limited to the discrete-time discounted reward
SMDP model. In these methods, policies are learned that maximize the long-term discounted sum
of rewards. On the other hand, the average reward optimality criterion has been shown to be more
appropriate for a wide class of continuing tasks than the well-studied discounted framework. A
primary goal of continuing tasks, including manufacturing, scheduling, queuing, and inventory con-
trol, is to find a gain-optimal policy that maximizes (minimizes) the long-run average reward (cost)
over time. Although average reward RL has been studied using both the discrete-time MDP model
(Schwartz, 1993; Mahadevan, 1996; Tadepalli and Ok, 1996a,b, 1998; Marbach, 1998; Van-Roy,
1998) as well as the continuous-time SMDP model (Mahadevan et al., 1997b; Wang and Mahade-
van, 1999), prior work has been limited to flat policy representations. In addition to being an appro-
priate optimality criterion for continuing tasks, average reward optimality allows for more efficient
state abstraction in HRL than discounted reward optimality, as will be discussed in Section 5.
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In this paper, we extend previous work on HRL to the average reward setting, and investigate
two formulations of HRL based on average reward SMDPs. These two formulations correspond
to two notions of optimality in HRL: hierarchical optimality and recursive optimality (Dietterich,
2000). We extend the MAXQ hierarchical RL method (Dietterich, 2000) and introduce a HRL
framework for simultaneous learning of policies at multiple levels of a task hierarchy. We then use
this HRL framework to derive discrete-time and continuous-time algorithms that learn to find hier-
archically and recursively optimal average reward policies. In these algorithms, we assume that the
overall task (the root of the hierarchy) is continuing. Hierarchically optimal average reward RL
(HAR) algorithms find a hierarchical policy within the space of policies defined by the hierarchical
decomposition that maximizes the global gain. Recursively optimal average reward RL (RAR)
algorithms treat non-primitive subtasks as continuing average reward problems, where the goal at
each subtask is to maximize its gain given the policies of its children. We investigate the conditions
under which the policy learned by RAR algorithm at each subtask is independent of the context in
which it is executed and therefore can be reused by other hierarchies. We use two automated guided
vehicle (AGV) scheduling tasks as experimental testbeds to study the empirical performance of the
proposed algorithms. The first problem is a relatively simple AGV scheduling task, in which the
hierarchically and recursively optimal policies are different. We compare the proposed algorithms
with three other HRL methods, including a hierarchically optimal discounted reward algorithm and a
recursively optimal discounted reward algorithm on this problem. The second problem is a relatively
larger AGV scheduling task. We model this problem using both discrete-time and continuous-time
models. We use a hierarchical task decomposition where the hierarchically and recursively optimal
policies are the same. We compare the performance of the proposed algorithms with a hierarchi-
cally optimal discounted reward algorithm and a recursively optimal discounted reward algorithm,
as well as a non-hierarchical average reward algorithm. The results show that the proposed hier-
archical average reward algorithms converge to the same performance as their discounted reward
counterparts.

The rest of this paper is organized as follows. Section 2 provides a brief overview of HRL. In
Section 3, we concisely describe discrete-time SMDPs, and discuss average reward optimality in
this model. Section 4 describes the HRL framework, which is used to develop the algorithms of this
paper. In Section 5, we extend the previous work on HRL to the average reward setting, and study
two formulations of HRL based on the average reward SMDP model. In Section 5.1, we present
discrete-time and continuous-time hierarchically optimal average reward RL (HAR) algorithms. In
Section 5.2, we investigate different methods to formulate subtasks in a recursively optimal hierar-
chical average reward RL setting, and present discrete-time and continuous-time recursively optimal
average reward RL (RAR) algorithms. We demonstrate the type of optimality achieved by HAR and
RAR algorithms as well as their empirical performance and convergence speed compared to other
algorithms using two AGV scheduling problems in Section 6. Section 7 summarizes the paper and
discusses some directions for future work. For convenience, a table of the symbols used in this
paper is given in Appendix A.

2. An Overview of Hierarchical Reinforcement Learning

Hierarchical reinforcement learning (HRL) is a class of learning algorithms that share a common
approach to scaling up reinforcement learning (RL). The key principle underlying HRL is to de-
velop learning algorithms that do not need to learn policies from scratch, but instead reuse existing
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policies for simpler subtasks. Subtasks form the basis of hierarchical specifications of action se-
quences because they can include other subtasks in their definitions. It is similar to the familiar
idea of subroutines from programming languages. A subroutine can call other subroutines as well
as execute primitive commands. A subtask as an open-loop control policy is inappropriate for most
interesting control purposes, especially the control of stochastic systems. HRL methods generalize
the subtask idea to closed-loop policies or, more precisely, closed-loop partial policies because they
are generally defined for a subset of the state space. The partial policies must also have well-defined
termination conditions. The partial policies with well-defined termination conditions are sometimes
called temporally extended actions. Work in HRL has followed three trends: focusing on subsets of
the state space in a divide and conquer approach (state space decomposition), grouping sequences
or sets of actions together (temporal abstraction), and ignoring differences between states based on
the context (state abstraction). Much of the work in HRL falls into several of these categories. Barto
and Mahadevan (2003) provide a more detailed introduction to HRL.

Mahadevan and Connell (1992) were among the first to systematically investigate the use of task
structure to accelerate RL. In their work, the robot was given a pre-specified task decomposition,
and learned a set of local policies instead of an entire global policy. Singh (1992) investigated
reinforcement learning using abstract actions of different temporal granularity using a hierarchy of
models with variable temporal resolution. Singh applied the mixture of experts framework as a
special-purpose task selection architecture to switch between abstract actions. Kaelbling (1993a,b)
investigated using subgoals to learn sub-policies. Dayan and Hinton (1993) describe Feudal RL,
a hierarchical technique which uses both temporal abstraction and state abstraction to recursively
partition the state space and the time scale from one level to the next.

One key limitation of all the above methods is that decisions in HRL are no longer made at
synchronous time steps, as is traditionally assumed in RL. Instead, agents make decisions intermit-
tently, where each epoch can be of variable length, such as when a distinguishing state is reached
(e.g., an intersection in a robot navigation task), or a subtask is completed (e.g., the elevator arrives
on the first floor). Fortunately, a well-known statistical model is available to treat variable length
actions: the semi-Markov decision process (SMDP) model (Howard, 1971; Puterman, 1994). In a
SMDP, state-transition dynamics is specified not only by the state where an action was taken, but
also by parameters specifying the length of time since the action was taken. Early work on the
SMDP model extended algorithms such as Q-learning to continuous-time (Bradtke and Duff, 1995;
Mahadevan et al., 1997b). The early work on SMDP was then expanded to include hierarchical
task models over fully or partially specified lower level subtasks, which led to developing powerful
HRL models such as hierarchies of abstract machines (HAMs) (Parr, 1998), options (Sutton et al.,
1999; Precup, 2000), MAXQ (Dietterich, 2000), and programmable HAMs (PHAMs) (Andre and
Russell, 2001; Andre, 2003).

In the options framework policies are defined over not just primitive actions, but over fully
specified lower-level policies. In the HAMs formulation, hierarchical learning could be achieved
even when the policies for lower-level subtasks were only partially specified. The MAXQ model
is one of the first methods to combine temporal abstraction with state abstraction. It provides a
more comprehensive framework for hierarchical learning where instead of policies for subtasks,
the learner is given pseudo-reward functions. Unlike options and HAMs, MAXQ does not rely
directly on reducing the entire problem to a single SMDP. Instead, a hierarchy of SMDPs is created
whose solutions can be learned simultaneously. The key feature of MAXQ is the decomposed
representation of the value function. The MAXQ method views each subtask as a separate SMDP,
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and thus represents the value of a state within that SMDP as composed of the reward for taking an
action at that state (which might be composed of many rewards along a trajectory through a subtask)
and the expected reward for completing the subtask. To isolate the subtask from the calling context,
MAXQ uses the notion of a pseudo-reward. At the terminal states of a subtask, the agent is rewarded
according to the pseudo-reward, which is set a priori by the designer, and does not depend on what
happens after leaving the current subtask. Each subtask can then be treated in isolation from the
rest of the problem with the caveat that the solutions learned are only recursively optimal. Each
action in the recursively optimal policy is optimal with respect to the subtask containing the action,
all descendant subtasks, and the pseudo-reward chosen by the designer of the system. Another
important contribution of MAXQ is the idea that state abstraction can be done separately on the
different components of the value function, which allows one to perform dynamic abstraction. We
describe the MAXQ framework and related concepts such as recursive optimality and value function
decomposition in Section 4. In the PHAM model, Andre and Russell extended HAMs and presented
an agent-design language for RL. Andre and Russell (2002) also addressed the issue of safe state
abstraction in their model. Their method yields state abstraction while maintaining hierarchical
optimality.

3. Discrete-time Semi-Markov Decision Processes

Semi-Markov decision processes (SMDPs) (Howard, 1971; Puterman, 1994) extend the Markov
decision process (MDP) (Howard, 1971; Puterman, 1994) model by allowing actions that can take
multiple time steps to complete. Note that SMDPs do not theoretically provide additional expres-
sive power but they do provide a convenient formalism for temporal abstraction. The duration of
an action can depend on the transition that is made.1 The state of the system may change contin-
ually between actions unlike MDPs where state changes are only due to actions. Thus, SMDPs
have become the preferred language for modeling temporally extended actions (Mahadevan et al.,
1997a) and, as a result, the main mathematical model underlying hierarchical reinforcement learn-
ing (HRL).

A SMDP is defined as a five tuple 〈S ,A ,P ,R ,I 〉. All components are defined as in a MDP
except the transition probability function P and the reward function R . S is the set of states of
the world, A is the set of possible actions from which the agent may choose on at each decision
epoch, and I : S → [0,1] is the initial state distribution. The transition probability function P
now takes the duration of the actions into account. The transition probability function P : S ×
N×S ×A → [0,1] is a multi-step transition probability function (N is the set of natural numbers),
where P(s′,N|s,a) denotes the probability that action a will cause the system to transition from
state s to state s′ in N time steps. This transition is at decision epochs only. Basically, the SMDP
model represents snapshots of the system at decision points, whereas the so-called natural process
describes the evolution of the system over all times. If we marginalize P(s′,N|s,a) over N, we will
obtain F(s′|s,a) the transition probability for the embedded MDP. The term F(s′|s,a) denotes the
probability that the system occupies state s′ at the next decision epoch, given that the decision maker
chooses action a in state s at the current decision epoch. The key difference in the reward function
for SMDPs is that the rewards can accumulate over the entire duration of an action. As a result, the
reward in a SMDP for taking an action in a state depends on the evolution of the system during the
execution of the action. Formally, the reward in a SMDP is modeled as a function R : S×A→R (R

1. Continuous-time SMDPs typically allow arbitrary continuous action durations.
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is the set of real numbers), with r(s,a) representing the expected total reward between two decision
epochs, given that the system occupies state s at the first decision epoch and the agent chooses action
a. This expected reward contains all necessary information about the reward to analyze the SMDP
model. For each transition in a SMDP, the expected number of time steps until the next decision
epoch is defined as

y(s,a) = E[N|s,a] = ∑
N∈N

N ∑
s′∈S

P(s′,N|s,a).

The notion of policy and the various forms of optimality are the same for SMDPs as for MDPs.
In infinite-horizon SMDPs, the goal is to find a policy that maximizes either the expected discounted
reward or the average expected reward. We discuss the average reward optimality criterion for the
SMDP model in the next section.

3.1 Average Reward Semi-Markov Decision Processes

The theory of infinite-horizon SMDPs with the average reward optimality criterion is more complex
than that for discounted models (Howard, 1971; Puterman, 1994). The aim of average reward SMDP
algorithms is to compute policies that yield the highest average reward or gain. The average reward
or gain of a policy µ at state s, gµ(s), can be defined as the ratio of the expected total reward and the
expected total number of time steps of following policy µ starting at state s

gµ(s) = liminf
n→∞

E
[

∑n−1
t=0 r(st ,µ(st))|s0 = s,µ

]

E
[

∑n−1
t=0 Nt |s0 = s,µ

] .

In this equation, Nt is the total number of time steps until the next decision epoch, when agent takes
action µ(st) in state st .

A key observation that greatly simplifies the design of average reward algorithms is that for
unichain SMDPs,2 the gain of any policy is state independent, that is

gµ(s) = gµ = liminf
n→∞

E
[

∑n−1
t=0 r(st ,µ(st))|µ

]

E
[

∑n−1
t=0 Nt |µ

] , ∀s ∈ S . (1)

To simplify exposition, we consider only unichain SMDPs in this paper. When the state space of a
SMDP, S , is finite or countable, Equation 1 can be written as

gµ =
F̄µrµ

F̄µyµ
, (2)

where Fµ and F̄µ
= limn→∞

1
n ∑n−1

t=0 (Fµ)t are the transition probability matrix and the limiting matrix
of the embedded Markov chain for policy µ, respectively,3 and rµ and yµ are vectors with elements
r(s,µ(s)) and y(s,µ(s)), for all s ∈ S . Under the unichain assumption, F̄ has equal rows, and there-
fore the right hand side of Equation 2 is a vector with elements all equal to gµ.

2. In unichain SMDPs, the underlying Markov chain for every stationary policy has a single recurrent class, and a
(possibly empty) set of transient states.

3. The limiting matrix F̄ satisfies the equality F̄F = F̄ .
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In the average reward SMDP model, a policy µ is measured using a different value function,
namely the average-adjusted sum of rewards earned following that policy4

Hµ(s) = lim
n→∞

E

{

n−1

∑
t=0

[r(st ,µ(st))−gµy(st ,µ(st))] |s0 = s,µ

}

.

The term Hµ is usually referred to as the average-adjusted value function. Furthermore, the
average-adjusted value function satisfies the Bellman equation

Hµ(s) = r(s,µ(s))−gµy(s,µ(s))+ ∑
s′∈S ,N∈N

P(s′,N|s,µ(s))Hµ(s′).

Similarly, the average-adjusted action-value function for a policy µ, Lµ, is defined, and it satisfies
the Bellman equation

Lµ(s,a) = r(s,a)−gµy(s,a)+ ∑
s′∈S ,N∈N

P(s′,N|s,a)Lµ(s′,µ(s′)).

4. A Framework for Hierarchical Reinforcement Learning

In this section, we describe a general hierarchical reinforcement learning (HRL) framework for si-
multaneous learning of policies at multiple levels of a hierarchy. Our treatment builds upon existing
methods, including HAMs (Parr, 1998), options (Sutton et al., 1999; Precup, 2000), MAXQ (Di-
etterich, 2000), and PHAMs (Andre and Russell, 2002; Andre, 2003), and, in particular, uses the
MAXQ value function decomposition. We extend the MAXQ framework by including the three-
part value function decomposition (Andre and Russell, 2002) to guarantee hierarchical optimality,
as well as reward shaping (Ng et al., 1999) to reduce the burden of exploration. Rather than redun-
dantly explain MAXQ and then our hierarchical framework, we will present our model and note
throughout this section where the key pieces were inspired by or are directly related to MAXQ.
In the next section, we will extend this framework to the average reward model and present our
hierarchical average reward reinforcement learning algorithms.

4.1 Motivating Example

In the HRL framework, the designer of the system imposes a hierarchy on the problem to incorporate
domain knowledge and thereby reduces the size of the space that must be searched to find a good
policy. The designer recursively decomposes the overall task into a collection of subtasks that are
important for solving the problem.

Let us illustrate the main ideas using a simple search task shown in Figure 1. Consider the do-
main of an office-type environment (with rooms and connecting corridors), where a robot is assigned
the task of picking up trash from trash cans (T 1 and T 2) over an extended area and accumulating it
into one centralized trash bin (Dump). For simplicity, we assume that the robot can observe its true
location in the environment. The main subtasks in this problem are root (the whole trash-collection
task), collect trash at T 1 and T 2, navigate to T 1, T 2, and Dump. Each of these subtasks is defined
by a set of termination states. After defining subtasks, we must indicate, for each subtask, which

4. This limit assumes that all policies are aperiodic. For periodic policies, it changes to the Cesaro limit H µ(s) =
limn→∞

1
n ∑n−1

k=0 E
{

∑k
t=0 [r(st ,µ(st))−gµy(st ,µ(st))] |s0 = s,µ

}

(Puterman, 1994).
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other subtasks or primitive actions it should employ to reach its goal. For example, navigate to T 1,
T 2, and Dump use three primitive actions find wall, align with wall, and follow wall. Collect trash
at T 1 uses two subtasks, navigate to T 1 and Dump, plus two primitive actions Put and Pick, and
so on. Similar to MAXQ, all of this information can be summarized by a directed acyclic graph
called task graph. The task graph for the trash-collection problem is shown in Figure 1. This hi-
erarchical model is able to support state abstraction (while the agent is moving toward the Dump,
the status of trash cans T 1 and T 2 is irrelevant and cannot affect this navigation process. Therefore,
the variables defining the status of trash cans T 1 and T 2 can be removed from the state space of
the navigate to Dump subtask), and subtask sharing (if the system could learn how to solve the
navigate to Dump subtask once, then the solution could be shared by both collect trash at T 1 and
T 2 subtasks.)

Collect Trash at T1 Collect Trash at T2

Navigate to T1 Pick PutNavigate to Dump Navigate to T2

Root

Find Wall Align with Wall Follow Wall

Room3

Corridor

A

Dump

T2

T1

Room1

Room2

A : Agent

Dump: Location for depositing all trash
T2: Location of another trash can
T1: Location of one trash can

Figure 1: A robot trash-collection task and its associated task graph.

Like HAMs (Parr, 1998), options (Sutton et al., 1999; Precup, 2000), MAXQ (Dietterich, 2000),
and PHAMs (Andre and Russell, 2001; Andre, 2003), this framework also relies on the theory of
SMDPs. While SMDP theory provides the theoretical underpinnings of temporal abstraction by
modeling actions that take varying amounts of time, the SMDP model provides little in the way
of concrete representational guidance, which is critical from a computational point of view. In
particular, the SMDP model does not specify how tasks can be broken up into subtasks, how to
decompose value functions etc. We examine these issues next.

As in MAXQ, a task hierarchy such as the one illustrated above can be modeled by decompos-
ing the overall task MDP M , into a finite set of subtasks {M0,M1, . . . ,Mm−1},5 where M0 is the root
task. Solving M0 solves the entire MDP M .

Definition 1: Each non-primitive subtask Mi (Mi is not a primitive action) consists of five compo-
nents 〈Si, Ii,Ti,Ai,Ri〉:

5. m is the total number of subtasks in the hierarchy.
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• Si is the state space for subtask Mi. It is described by those state variables that are relevant to
subtask Mi. The range of a state variable describing Si might be a subset of its range in S (the
state space of MDP M ).

• Ii ⊆ Si is the initiation set for subtask Mi. Subtask Mi can be initiated only in states belonging
to Ii.

• Ti ⊆ Si is the set of terminal states for subtask Mi. Subtask Mi terminates when it reaches
a state in Ti. A policy for subtask Mi can only be executed if the current state s belongs to
(Si−Ti).

• Ai is the set of actions that can be performed to achieve subtask Mi. These actions can be
either primitive actions from A (the set of primitive actions for MDP M ), or they can be other
subtasks. Technically, Ai is a function of states, since it may differ from one state to another.
However, we will suppress this dependence in our notation.

• Ri is the reward structure inside subtask Mi and could be different from the reward function
of MDP M . Here, we use the idea of reward shaping (Ng et al., 1999) and define a more
general reward structure than MAXQ’s. Reward shaping is a method for guiding an agent
toward a solution without constraining the search space. Besides the reward of the overall
task MDP M , each subtask Mi can use additional rewards to guide its local learning. Addi-
tional rewards are only used inside each subtask and do not propagate to upper levels in the
hierarchy. If the reward structure inside a subtask is different from the reward function of the
overall task, we need to define two types of value functions for each subtask, internal value
function and external value function. Internal value function is defined based on both the
local reward structure of the subtask and the reward of the overall task, and only is used in
learning the subtask. On the other hand, external value function is defined only based on the
reward function of the overall task and is propagated to the higher levels in the hierarchy to
be used in learning the global policy. This reward structure for each subtask in our framework
is more general than the one in MAXQ, and of course, includes MAXQ’s pseudo-reward.6

�

Each primitive action a is a primitive subtask in this decomposition, such that a is always executable
and it terminates immediately after execution. From now on in this paper, we use subtask to refer to
non-primitive subtasks.

4.2 Policy Execution

If we have a policy for each subtask in a hierarchy, we can define a hierarchical policy for the
model.

Definition 2: A hierarchical policy µ is a set of policies, one policy for each subtask in the hierar-
chy: µ = {µ0, . . . ,µm−1}. �

6. The MAXQ pseudo-reward function is defined only for transitions to terminal states, and is zero for non-terminal
states.
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The hierarchical policy is executed using a stack discipline, similar to ordinary programming
languages. Each subtask policy takes a state and returns the name of a primitive action to execute or
the name of a subtask to invoke. When a subtask is invoked, its name is pushed onto the Task-Stack
and its policy is executed until it enters one of its terminal states. When a subtask terminates, its
name is popped off the Task-Stack. If any subtask on the Task-Stack terminates, then all subtasks
below it are immediately aborted, and control returns to the subtask that had invoked the terminated
subtask. Hence, at any time, the root task is located at the bottom and the subtask which is currently
being executed is located at the top of the Task-Stack.

Under a hierarchical policy µ, we define a multi-step transition probability Pµ
i : Si×N× Si →

[0,1] for each subtask Mi in the hierarchy, where Pµ
i (s′,N|s) denotes the probability that hierarchical

policy µ will cause the system to transition from state s to state s′ in N primitive steps at subtask Mi.
We also define a multi-step abstract transition probability F µ

i : Si×N×Si→ [0,1] for each subtask
Mi under the hierarchical policy µ. The term Fµ

i (s′,N|s) denotes the N-step abstract transition
probability from state s to state s′ under hierarchical policy µ at subtask Mi, where N is the number
of actions taken by subtask Mi, not the number of primitive actions taken in this transition. In this
paper, we use the multi-step abstract transition probability F µ

i to model state transition at the subtask
level, and the multi-step transition probability Pµ

i to model state transition at the level of primitive
actions. For N = 1, Fµ

i (s′,1|s) is the transition probability for the embedded MDP at subtask Mi.
We can write Fµ

i (s′,1|s) as Fµ
i (s′|s), and it can also be obtained by marginalizing Pµ

i (s′,N|s) over N
as described in Section 3.

4.3 Local versus Global Optimality

Using a hierarchy reduces the size of the space that must be searched to find a good policy. However,
a hierarchy constrains the space of possible policies so that it may not be possible to represent the
optimal policy or its value function, and hence make it impossible to learn the optimal policy. If we
cannot learn the optimal policy, the next best target would be to learn the best policy that is consis-
tent with the given hierarchy. Two notions of optimality have been explored in the previous work on
hierarchical reinforcement learning, hierarchical optimality and recursive optimality (Dietterich,
2000).

Definition 3: A hierarchically optimal policy for MDP M is a hierarchical policy which has the
best performance among all policies consistent with the given hierarchy. In other words, hierarchi-
cal optimality is a global optimum consistent with the given hierarchy. In this form of optimality,
the policy for each individual subtask is not necessarily locally optimal, but the policy for the entire
hierarchy is optimal. The HAMQ HRL algorithm (Parr, 1998) and the SMDP Q-learning algorithm
for a fixed set of options (Sutton et al., 1999; Precup, 2000) both converge to a hierarchically opti-
mal policy. �

Definition 4: Recursive optimality is a weaker but more flexible form of optimality which only
guarantees that the policy of each subtask is optimal given the policies of its children. It is an im-
portant and flexible form of optimality because it permits each subtask to learn a locally optimal
policy while ignoring the behavior of its ancestors in the hierarchy. This increases the opportunity
for subtask sharing and state abstraction. The MAXQ-Q HRL algorithm (Dietterich, 2000) con-
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verges to a recursively optimal policy. �

4.4 Value Function Definitions

For recursive optimality, the goal is to find a hierarchical policy µ = {µ0, . . . ,µm−1} such that for
each subtask Mi in the hierarchy, the expected cumulative reward of executing policy µi and the
policies of all descendants of Mi is maximized. In this case, the value function to be learned for
subtask Mi under hierarchical policy µ must contain only the reward received during the execution
of subtask Mi. We call this the projected value function after Dietterich (2000), and define it as
follows:

Definition 5: The projected value function of a hierarchical policy µ on subtask Mi, denoted V̂ µ(i,s),
is the expected cumulative reward of executing policy µi and the policies of all descendants of Mi

starting in state s ∈ Si until Mi terminates. �

The expected cumulative reward outside a subtask is not a part of its projected value function. It
makes the projected value function of a subtask dependent only on the subtask and its descendants.

On the other hand, for hierarchical optimality, the goal is to find a hierarchical policy that max-
imizes the expected cumulative reward. In this case, the value function to be learned for subtask
Mi under hierarchical policy µ must contain the reward received during the execution of subtask Mi,
and the reward after subtask Mi terminates. We call this the hierarchical value function, following
Dietterich (2000). The hierarchical value function of a subtask includes the expected reward outside
the subtask and therefore depends on the subtask and all its ancestors up to the root of the hierar-
chy. In the case of hierarchical optimality, we need to consider the contents of the Task-Stack as an
additional part of the state space of the problem, since a subtask might be shared by multiple parents.

Definition 6: Ω is the space of possible values of the Task-Stack for hierarchy H . �

Let us define joint state space X = Ω× S for the hierarchy H as the cross product of the set
of the Task-Stack values Ω and the state space S . We also define a transition probability func-
tion of the Markov chain that results from flattening the hierarchy using the hierarchical policy µ,
mµ : X ×X → [0,1], where mµ(x′|x) denotes the probability that the hierarchical policy µ will cause
the system to transition from state x = (ω,s) to state x′ = (ω′,s′) at the level of primitive actions.
We will use this transition probability function in Section 5.1 to define global gain for a hierarchi-
cal policy. Finally, we define the hierarchical value function using the joint state space X as follows:

Definition 7: A hierarchical value function for subtask Mi in state x = (ω,s) under hierarchical
policy µ, denoted V µ(i,x), is the expected cumulative reward of following the hierarchical policy µ
starting in state s ∈ Si and Task-Stack ω. �

The current subtask Mi is a part of the Task-Stack ω and as a result is a part of the state x. So we
can exclude it from the hierarchical value function notation and write V µ(i,x) as V µ(x). However
for clarity, we use V µ(i,x) in the rest of this paper.
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Theorem 1: Under a hierarchical policy µ, each subtask Mi can be modeled by a SMDP consisting
of components (Si,Ai,P

µ
i , R̄i), where R̄i(s,a) = V̂ µ(a,s) for all a ∈ Ai. �

This theorem is similar to Theorem 1 in Dietterich (2000). Using this theorem, we can define
a recursive optimal policy for MDP M with hierarchical decomposition {M0,M1, . . . ,Mm−1} as a
hierarchical policy µ = {µ0, . . . ,µm−1} such that for each subtask Mi, the corresponding policy µi is
optimal for the SMDP defined by the tuple (Si,Ai,P

µ
i , R̄i).

4.5 Value Function Decomposition

A value function decomposition splits the value of a state or a state-action pair into multiple ad-
ditive components. Modularity in the hierarchical structure of a task allows us to carry out this
decomposition along subtask boundaries. In this section, we first describe the two-part or MAXQ
decomposition proposed by Dietterich (2000), and then the three-part decomposition proposed by
Andre and Russell (2002). We use both decompositions in our hierarchical average reward frame-
work depending on the type of optimality (hierarchical or recursive) that we are interested in.

The two-part value function decomposition is at the center of the MAXQ method. The purpose
of this decomposition is to decompose the projected value function of the root task, V̂ µ(0,s), in
terms of the projected value functions of all the subtasks in the hierarchy. The projected value of
subtask Mi at state s under hierarchical policy µ can be written as

V̂ µ(i,s) = E

[

∞

∑
k=0

γkr(sk,ak)|s0 = s,µ

]

. (3)

Now, let us suppose that the first action chosen by µi is invoked and executed for a number of
primitive steps N and terminates in state s′ according to Pµ

i (s′,N|s). We can rewrite Equation 3 as

V̂ µ(i,s) = E

[

N−1

∑
k=0

γkr(sk,ak)+
∞

∑
k=N

γkr(sk,ak)|s0 = s,µ

]

. (4)

The first summation on the right-hand side of Equation 4 is the discounted sum of rewards for
executing subtask µi(s) starting in state s until it terminates. In other words, it is V̂ µ(µi(s),s), the
projected value function of the child task µi(s). The second term on the right-hand side of the
equation is the projected value of state s′ for the current task Mi, V̂ µ(i,s′), discounted by γN , where
s′ is the current state when subroutine µi(s) terminates and N is the number of transition steps from
state s to state s′. We can therefore write Equation 4 in the form of a Bellman equation:

V̂ µ(i,s) = V̂ µ(µi(s),s)+ ∑
N,s′∈Si

Pµ
i (s′,N|s)γNV̂ µ(i,s′). (5)

Equation 5 can be restated for the projected action-value function as follows:

Q̂µ(i,s,a) = V̂ µ(a,s)+ ∑
N,s′∈Si

Pµ
i (s′,N|s,a)γNQ̂µ(i,s′,µi(s

′)).

The right-most term in this equation is the expected discounted cumulative reward of completing
subtask Mi after executing action a in state s. Dietterich called this term completion function and
denoted it by

Cµ(i,s,a) = ∑
N,s′∈Si

Pµ
i (s′,N|s,a)γNQ̂µ(i,s′,µi(s

′)). (6)
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With this definition, we can express the projected action-value function recursively as

Q̂µ(i,s,a) = V̂ µ(a,s)+Cµ(i,s,a), (7)

and we can rewrite the definition for projected value function as

V̂ µ(i,s) =

{

Q̂µ(i,s,µi(s)) if Mi is a non-primitive subtask,
r(s, i) if Mi is a primitive action.

(8)

Equations 6 to 8 are referred to as two-part value function decomposition equations for a hi-
erarchy under a hierarchical policy µ. These equations recursively decompose the projected value
function for the root into the projected value functions for the individual subtasks, M1, . . . ,Mm−1,
and the individual completion functions Cµ( j,s,a), j = 1, . . . ,m−1. The fundamental quantities that
must be stored to represent this value function decomposition are the C values for all non-primitive
subtasks and the V values for all primitive actions.7 The two-part value function decomposition is
summarized graphically in Figure 2. As mentioned in Section 4.4, since the expected reward after
execution of subtask Mi is not a component of the projected action-value function, the two-part
value function decomposition allows only for recursive optimality.

V(i,s)

V(a,s)

Part 1
Part 2

C(i,s,a)

s ’

Execution of Subtask   i

s s
I T

s

Execution of Action   a

Figure 2: This figure shows the two-part decomposition for V̂ (i,s), the projected value function of
subtask Mi for the shaded state s. Each circle is a state of the SMDP visited by the agent.
Subtask Mi is initiated at state sI and terminates at state sT . The projected value function
V̂ (i,s) is broken into two parts: Part 1) the projected value function of subtask Ma for
state s, and Part 2) the completion function, the expected discounted cumulative reward
of completing subtask Mi after executing action a in state s.

Andre and Russell (2002) proposed a three-part value function decomposition to achieve hi-
erarchical optimality. They added a third component for the expected sum of rewards outside the
current subtask to the two-part value function decomposition. This decomposition decomposes the
hierarchical value function of each subtask into three parts. As shown in Figure 3, these three parts

7. The projected value function and value function are the same for a primitive action.
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correspond to executing the current action (which might itself be a subtask), completing the rest
of the current subtask (so far is similar to the MAXQ decomposition), and all actions outside the
current subtask.

x=(   ,s)ω

V(a,s)

Part 1
Part 2

C(i,s,a)

Part 3

Execution of Subtask   i

I T
xx x ’

V(i,x)

Execution of Action   a

Figure 3: This figure shows the three-part decomposition for V (i,x), the hierarchical value function
of subtask Mi for the shaded state x = (ω,s). Each circle is a state of the SMDP visited by
the agent. Subtask Mi is initiated at state xI and terminates at state xT . The hierarchical
value function V (i,x) is broken into three parts: Part 1) the projected value function of
subtask Ma for state s, Part 2) the completion function, the expected discounted cumula-
tive reward of completing subtask Mi after executing action a in state s, and Part 3) the
sum of all rewards after termination of subtask Mi.

5. Hierarchical Average Reward Reinforcement Learning

As described in Section 1, the average reward formulation is more appropriate for a wide class
of continuing tasks including manufacturing, scheduling, queuing, and inventory control than the
more well-studied discounted framework. Moreover, average reward optimality allows for more
efficient state abstraction in HRL than the discounted reward formulation. Consider the case that a
set of state variables Ya is irrelevant for the result distribution of action (subtask) Ma, when Ma is
executed under subtask Mi. It means that for all policies executed by Ma and its descendants, and
for all pairs of states s1 and s2 in Si (the state space of subtask Mi) that differ only in their values for
the state variables in Ya, we have

Pµ
i (s′,N|s1,a) = Pµ

i (s′,N|s2,a) , ∀s′ ∈ Si , ∀N ∈ N.

Dietterich (2000) first defined this condition and called it result distribution irrelevance. If this
condition is satisfied for subtask Ma, then the completion function values of its parent task Mi

can be represented compactly, that is, all states s ∈ Si that differ only in their values for the state
variables in Ya have the same completion function, and therefore their completion function values
can be represented only by one quantity Cµ(i,s,a), defined by Equation 6.
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The definition of result distribution irrelevance can be weakened to eliminate N, the number of
steps. All that is needed is that for all pairs of states s1 and s2 in Si that differ only in the irrelevant
state variables, Fµ

i (s′|s1,a) = Fµ
i (s′|s2,a) for all s′ ∈ Si. Although the result distribution irrelevance

condition would rarely be satisfied, we often find cases where the weakened result distribution
irrelevance condition is true.

Under this revised definition, the compact representation of a completion function still holds
in the undiscounted case, but not in the discounted formulation. Consider, for example, the collect
trash at T1 subtask in the robot trash-collection problem described in Section 4.1. No matter what
location the robot has in state s, it will be at the Dump location when the collect trash at T1 subtask
terminates. Hence, the starting location is irrelevant to the resulting location of the robot, and
Fµ

Root(s
′|s1,collect trash at T 1) = Fµ

Root(s
′|s2,collect trash at T 1) for all states s1 and s2 in SRoot that

differ only in the robot’s location. However, if we were using discounted reward optimality, the
robot’s location would not be irrelevant, because the probability that the collect trash at T1 subtask
will terminate in N steps would depend on the location of the robot, which could differ in states
s1 and s2. Different values of N will produce different amounts of discounting in Equation 6, and
hence we cannot ignore the robot location when representing the completion function for the collect
trash at T1 subtask. When we use undiscounted optimality, such as average reward, we can use the
weakened result distribution irrelevance and still represent the completion function for the collect
trash at T1 subtask with only one quantity.

In this section, we extend previous work on hierarchical reinforcement learning (HRL) to the
average reward framework, and investigate two formulations of HRL based on the average reward
SMDP model. These two formulations correspond to two notions of optimality in HRL: hierar-
chical optimality and recursive optimality described in Section 4.3. We present discrete-time and
continuous-time algorithms to find hierarchically and recursively optimal average reward policies.
In these algorithms, we assume that the overall task (the root of the hierarchy) is continuing. In the
hierarchically optimal average reward RL (HAR) algorithms, the aim is to find a hierarchical
policy within the space of policies defined by the hierarchical decomposition that maximizes the
global gain (Ghavamzadeh and Mahadevan, 2002). In the recursively optimal average reward
RL (RAR) algorithms, we treat subtasks as continuing average reward problems, where the goal at
each subtask is to maximize its gain given the policies of its children (Ghavamzadeh and Mahade-
van, 2001). We investigate the conditions under which the policy learned by the RAR algorithm at
each subtask is independent of the context in which it is executed and therefore can be reused by
other hierarchies. In Section 6, we use two automated guided vehicle (AGV) scheduling tasks as
experimental testbeds to study the empirical performance of the proposed algorithms. We model the
second AGV task using both discrete-time and continuous-time models. We compare the perfor-
mance of our proposed algorithms with other HRL methods and a non-hierarchical average reward
RL algorithm in this problem.

5.1 Hierarchically Optimal Average Reward RL Algorithm

Given the basic concepts of the average reward SMDP model described in Section 3.1, the funda-
mental principles of HRL, and the HRL framework in Section 4, we now describe a hierarchically
optimal average reward RL formulation. Since we are interested in hierarchical optimality, we in-
clude the contents of the Task-Stack as a part of the state space of the problem. In this section, we
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consider HRL problems for which the following assumptions hold.

Assumption 1 (Continuing Root Task): The root of the hierarchy is a continuing task, that is, the
root task continues without termination. �

Assumption 2: For every hierarchical policy µ, the Markov chain that results from flattening the hi-
erarchy using the hierarchical policy µ, represented by the transition probability matrix mµ (defined
in Section 4.4), has a single recurrent class and a (possibly empty) set of transient states. �

If Assumptions 1 and 2 hold, the gain8

gµ =

(

lim
n→∞

1
n

n−1

∑
t=0

(mµ)t

)

rµ = mµrµ (9)

is well defined for every hierarchical policy µ and does not depend on the initial state. In Equation
9, mµ is the limiting matrix of the Markov chain that results from flattening the hierarchy using
the hierarchical policy µ, and satisfies the equality mµmµ = mµ, and rµ is a vector with elements
r(x,µ(x)), for all x ∈ X . We call gµ the global gain under the hierarchical policy µ. The global gain,
gµ, is the gain of the Markov chain that results from flattening the hierarchy using the hierarchical
policy µ.

Here, we are interested in finding a hierarchical policy µ∗ that maximizes the global gain

gµ∗ ≥ gµ
, for all µ. (10)

We refer to a hierarchical policy µ∗ which satisfies Equation 10 as a hierarchically optimal average
reward policy, and to gµ∗ as the hierarchically optimal average reward or the hierarchically optimal
gain.

We replace the value and the action-value functions in the HRL framework of Section 4 with
the average-adjusted value and the average-adjusted action-value functions described in Section 3.1.
The hierarchical average-adjusted value function for hierarchical policy µ and subtask Mi, denoted
Hµ(i,x), is the average-adjusted sum of rewards earned by following hierarchical policy µ starting
in state x = (ω,s) until Mi terminates, plus the expected average-adjusted reward outside subtask Mi

Hµ(i,x) = lim
N→∞

E

{

N−1

∑
k=0

[rµ(xk,ak)−gµyµ(xk,ak)] |x0 = x,µ

}

. (11)

Here, the rewards are adjusted with gµ, the global gain under the hierarchical policy µ.
Now, let us suppose that the first action chosen by µi is executed for a number of primitive steps

N1 and terminates in state x1 = (ω,s1) according to multi-step transition probability Pµ
i (x1,N1|x,µi(x)),

and then subtask Mi itself executes for N2 steps at the level of subtask Mi (N2 is the number of
actions taken by subtask Mi, not the number of primitive actions) and terminates in state x2 = (ω,s2)
according to multi-step abstract transition probability F µ

i (x2,N2|x1). We can rewrite Equation 11 in
the form of a Bellman equation as

8. Under the unichain assumption, mµ has equal rows. Therefore, the right hand side of Equation 9 is a vector with
elements all equal to gµ.
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Hµ(i,x) = rµ
i (x,µi(x))−gµyµ

i (x,µi(x))+

(12)

∑
N1,s1∈Si

Pµ
i (x1,N1|x,µi(x))

[

Ĥµ(i,x1)+ ∑
N2,s2∈Si

Fµ
i (x2,N2|x1)H

µ(Parent(i),(ω↗ i,s2))

]

,

where Ĥµ(i, .) is the projected average-adjusted value function of the hierarchical policy µ and sub-
task Mi, yµ

i (x,µi(x)) is the expected number of time steps until the next decision epoch of subtask
Mi after taking action µi(x) in state x and following the hierarchical policy µ afterward, and ω↗ i
is the content of the Task-Stack after popping subtask Mi off. Notice that Ĥ does not contain the
average-adjusted rewards outside the current subtask and should be distinguished from the hier-
archical average-adjusted value function H, which includes the sum of average-adjusted rewards
outside the current subtask.

Since rµ
i (x,µi(x)) is the expected reward between two decision epochs of subtask Mi, given that

the system occupies state x at the first decision epoch, and the agent chooses action µi(x), we have

rµ
i (x,µi(x)) = V̂ µ(µi(x),(µi(x)↘ ω,s)) = Ĥµ(µi(x),(µi(x)↘ ω,s))+gµyµ

i (x,µi(x)),

where µi(x)↘ ω is the content of the Task-Stack after pushing subtask µi(x) onto it. By replacing
rµ

i (x,µi(x)) from the above expression, Equation 12 can be written as

Hµ(i,x) = Ĥµ(µi(x),(µi(x)↘ ω,s))+

(13)

∑
N1,s1∈Si

Pµ
i (x1,N1|x,µi(x))

[

Ĥµ(i,x1)+ ∑
N2,s2∈Si

Fµ
i (x2,N2|x1)H

µ(Parent(i),(ω↗ i,s2))

]

.

We can restate Equation 13 for hierarchical average-adjusted action-value function as

Lµ(i,x,a) = Ĥµ(a,(a↘ ω,s))+ ∑
N1,s1∈Si

Pµ
i (x1,N1|x,a)

(14)
[

Ĥµ(i,x1)+ ∑
N2,s2∈Si

Fµ
i (x2,N2|x1)L

µ(Parent(i),(ω↗ i,s2),µparent(i)(ω↗ i,s2))

]

.

From Equation 14, we can rewrite the hierarchical average-adjusted action-value function L recur-
sively as

Lµ(i,x,a) = Ĥµ(a,(a↘ ω,s))+Cµ(i,x,a)+CEµ(i,x,a), (15)

where
Cµ(i,x,a) = ∑

N1,s1∈Si

Pµ
i (x1,N1|x,a)Ĥµ(i,x1), (16)

and
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CEµ(i,x,a) = ∑
N1,s1∈Si

Pµ
i (x1,N1|x,a)

(17)
[

∑
N2,s2∈Si

Fµ
i (x2,N2|x1)L

µ(Parent(i),(ω↗ i,s2),µparent(i)(ω↗ i,s2))

]

.

The term Cµ(i,x,a) is the expected average-adjusted reward of completing subtask Mi after execut-
ing action a in state x = (ω,s). We call this term completion function after Dietterich (2000). The
term CEµ(i,x,a) is the expected average-adjusted reward received after subtask Mi terminates. We
call this term external completion function after Andre and Russell (2002).

We can rewrite the definition of Ĥ as

Ĥµ(i,x) =

{

L̂µ(i,x,µi(x)) if Mi is a non-primitive subtask,
r(s, i)−gµ if Mi is a primitive action,

(18)

where L̂µ is the projected average-adjusted action-value function and can be written as

L̂µ(i,x,a) = Ĥµ(a,(a↘ ω,s))+Cµ(i,x,a). (19)

Equations 15 to 19 are the decomposition equations under a hierarchical policy µ. These equa-
tions recursively decompose the hierarchical average-adjusted value function for root, H µ(0,x), into
the projected average-adjusted value functions Ĥµ for the individual subtasks, M1, . . . ,Mm−1, in the
hierarchy, the individual completion functions Cµ(i,x,a), i = 1, . . . ,m− 1, and the individual ex-
ternal completion functions CEµ(i,x,a), i = 1, . . . ,m− 1. The fundamental quantities that must be
stored to represent the hierarchical average-adjusted value function decomposition are the C and
the CE values for all non-primitive subtasks, the Ĥ values for all primitive actions, and the global
gain g. The decomposition equations can be used to obtain update equations for Ĥ, C, and CE in
this hierarchically optimal average reward model. Pseudo-code for the discrete-time hierarchically
optimal average reward RL (HAR) algorithm is shown in Algorithm 1. In this algorithm, primitive
subtasks update their projected average-adjusted value functions Ĥ (Line 5), while non-primitive
subtasks update both their completion functions C (Line 17), and external completion functions CE
(Lines 20 and 22). We store only one global gain g and update it after each non-random primitive
action (Line 7). In the update formula on Line 17, the projected average-adjusted value function
Ĥ(a∗,(a∗↘ ω,s′)) is the average-adjusted reward of executing action a∗ in state (a∗↘ ω,s′) and
is recursively calculated by subtask Ma∗ and its descendants using Equations 18 and 19. Notice
that the hierarchical average-adjusted action-value function L on Lines 15, 19, and 20 is recursively
evaluated using Equation 15.

This algorithm can be easily extended to continuous-time by changing the update formulas for
Ĥ and g on Lines 5 and 7 as

Ĥt+1(i,x)←[1−αt(i)]Ĥt(i,x)+αt(i) [k(s, i)+ r(s, i)τ(s, i)−gtτ(s, i)] ,

gt+1 =
rt+1

tt+1
=

rt + k(s, i)+ r(s, i)τ(s, i)
tt + τ(s, i)

,

where τ(s, i) is the time elapsing between state s and the next state, k(s, i) is the fixed reward of
taking action Mi in state s, and r(s, i) is the reward rate for the time between state s and the next
state.
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Algorithm 1 : Discrete-time hierarchically optimal average reward RL (HAR) algorithm.
1: Function HAR(Task Mi, State x = (ω,s))
2: let Seq = {} be the sequence of states visited while executing subtask Mi

3: if Mi is a primitive action then
4: execute action Mi in state x = (ω,s), observe state x′ = (ω,s′) and reward r(s, i)
5: Ĥt+1(i,x)← [1−αt(i)]Ĥt(i,x)+αt(i)[r(s, i)−gt ]
6: if Mi and all its ancestors are non-random actions then
7: update the global gain gt+1 = rt+1

nt+1
= rt+r(s,i)

nt+1
8: end if
9: push state x1 = (ω↗ i,s) into the beginning of Seq

10: else
11: while Mi has not terminated do
12: choose action (subtask) Ma according to the current exploration policy µi(x)
13: let ChildSeq = HAR(Ma, (a↘ ω,s)), where ChildSeq is the sequence of states visited

while executing subtask Ma

14: observe result state x′ = (ω,s′)
15: let a∗ = argmaxa′∈Ai(s′) Lt(i,x′,a′)
16: for each x = (ω,s) in ChildSeq from the beginning do
17: Ct+1(i,x,a)← [1−αt(i)]Ct(i,x,a)+αt(i)

[

Ĥt(a∗,(a∗↘ ω,s′))+Ct(i,x′,a∗)
]

18: if s′ ∈ Ti (s′ belongs to the set of terminal states of subtask Mi) then
19: a′′ = argmaxa′∈AParent(i)

Lt(Parent(i),(ω↗ i,s′),a′)

20: CEt+1(i,x,a)← [1−αt(i)]CEt(i,x,a)+αt(i)Lt(Parent(i),(ω↗ i,s′),a′′)
21: else
22: CEt+1(i,x,a)← [1−αt(i)]CEt(i,x,a)+αt(i)CEt(i,x′,a∗)
23: end if
24: replace state x = (ω,s) with (ω↗ i,s) in the ChildSeq
25: end for
26: append ChildSeq onto the front of Seq
27: x = x′

28: end while
29: end if
30: return Seq
31: end HAR

5.2 Recursively Optimal Average Reward RL

In the previous section, we introduced discrete-time and continuous-time hierarchically optimal
average reward RL (HAR) algorithms. In HAR algorithms, we define only a global gain for the
entire hierarchy to guarantee hierarchical optimality for the overall task. HAR algorithms find a
hierarchical policy that has the highest global gain among all policies consistent with the given
hierarchy. However, there may exist subtasks where their policies must be locally suboptimal so
that the overall policy becomes optimal. Recursive optimality is a kind of local optimality in which
the policy at each node is optimal given the policies of its children (see Section 4.3). Thus, the goal
at root is to maximize its gain given the policies for its descendants. The reason seeking recursive
optimality rather than hierarchical optimality is that recursive optimality makes it possible to solve
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each subtask without reference to the context in which it is executed, and therefore the learned
subtask can be reused by other hierarchies. This leaves open the question of what local optimality
criterion should be used for each subtask in a recursively optimal average reward RL setting.

One approach pursued by Seri and Tadepalli (2002) is to optimize subtasks using their expected
total average-adjusted reward with respect to the global gain. Seri and Tadepalli introduced a model-
based algorithm called hierarchical H-Learning (HH-Learning). For every subtask, this algorithm
learns the action model and maximizes the expected total average-adjusted reward with respect to
the global gain at each state. In this method, the projected average-adjusted value functions with
respect to the global gain satisfy the following equations:

Ĥµ(i,s) =























r(s, i)−gµ if Mi is a primitive action,

0 if s ∈ Ti (s is a terminal state of subtask Mi),

maxa∈Ai(s)[Ĥ
µ(a,s)+∑N,s′∈Si

Pµ
i (s′,N|s,a)Ĥµ(i,s′)] otherwise.

(20)

The first term of the last part of Equation 20, Ĥµ(a,s), denotes the expected total average-adjusted
reward during the execution of subtask Ma (the projected average adjusted value function of subtask
Ma), and the second term denotes the expected total average-adjusted reward from then on until the
completion of subtask Mi (the completion function of subtask Mi after execution of subtask Ma).
Since the expected average-adjusted reward after execution of subtask Mi is not a component of the
average-adjusted value function of subtask Mi, this approach does not necessarily allow for hierar-
chical optimality, as we will show in the experiments of Section 6. Moreover, the policy learned
for each subtask using this approach is not context free, since each subtask maximizes its average-
adjusted reward with respect to the global gain. However, Seri and Tadepalli (2002) showed that
this method finds the hierarchically optimal average reward policy when the result distribution in-
variance condition holds.

Definition 8 (Result Distribution Invariance Condition): For all subtasks Mi and states s in the
hierarchy, the distribution of states reached after the execution of any subtask Ma (Ma is one of Mi’s
children) is independent of the policy µa of subtask Ma and the policies of Ma’s descendants, that
is, Pµ

i (s′|s,a) = Pi(s′|s,a). �

In other words, states reached after the execution of a subtask cannot be changed by altering the
policies of the subtask and its descendants. Note that the result distribution invariance condition
does not hold for every problem, and therefore HH-Learning is neither hierarchically nor recursively
optimal in general.

Another approach is to formulate subtasks as continuing average reward problems, where the
goal at each subtask is to maximize its gain given the policies of its children (Ghavamzadeh and
Mahadevan, 2001). We describe this approach in detail in Sections 5.2.1 and 5.2.2. In Section
5.2.3, we use this method to find recursively optimal average reward policies, and present discrete-
time and continuous-time recursively optimal average reward RL (RAR) algorithms. Finally, in
Section 5.2.4, we investigate the conditions under which the policy learned by RAR algorithm at
each subtask is independent of the context in which it is executed and therefore can be reused by
other hierarchies.
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5.2.1 ROOT TASK FORMULATION

In our recursively optimal average reward RL approach, we consider those problems for which As-
sumption 1 (Continuing Root Task) and the following assumption hold.

Assumption 3 (Root Task Recurrence): There exists a state s∗0 ∈ S0 such that, for every hierarchi-
cal policy µ and for every state s ∈ S0, we have9

|S0|

∑
N=1

Fµ
0 (s∗0,N|s) > 0,

where Fµ
0 is the multi-step abstract transition probability function of root under the hierarchical pol-

icy µ described in Section 4.2, and |S0| is the number of states in the state space of root. �

Assumption 3 is equivalent to assuming that the underlying Markov chain at root for every
hierarchical policy µ has a single recurrent class, and state s∗0 is a recurrent state. If Assumptions
1 and 3 hold, the gain at the root task under the hierarchical policy µ, gµ

0, is well defined for every
hierarchical policy µ and does not depend on the initial state. When the state space at root is finite
or countable, the gain at root can be written as10

gµ
0 =

F̄µ
0rµ

0

F̄µ
0yµ

0

,

where rµ
0 and yµ

0 are vectors with elements rµ
0(s,µ0(s)) and yµ

0(s,µ0(s)), for all s ∈ S0. rµ
0(s,µ0(s))

and yµ
0(s,µ0(s)) are the expected total reward and the expected number of time steps between

two decision epochs at root, given that the system occupies state s at the first decision epoch
and the agent chooses its actions according to the hierarchical policy µ. The terms F µ

0 and F̄µ
0 =

limn→∞
1
n ∑n−1

t=0 (Fµ
0)

t are the transition probability matrix and the limiting matrix of the embedded
Markov chain at root for hierarchical policy µ, respectively. The transition probability F µ

0 is ob-
tained by marginalizing the multi-step transition probability Pµ

0 . The term Fµ
0 (s′|s,µ0(s)) denotes

the probability that the SMDP at root occupies state s′ at the next decision epoch, given that the
agent chooses action µ0(s) in state s at the current decision epoch and follows the hierarchical pol-
icy µ.

5.2.2 SUBTASK FORMULATION

In Section 5.2.1, we described the average reward formulation for the root task of a hierarchical
decomposition. In this section, we illustrate how we formulate all other subtasks in a hierarchy as
average reward problems. From now on in this section, we use subtask to refer to non-primitive
subtasks in a hierarchy except root.

In HRL methods, we typically assume that every time a subtask Mi is executed, it starts at one
of its initial states (∈ Ii) and terminates at one of its terminal states (∈ Ti) after a finite number of
time steps. Therefore, we can make the following assumption for every subtask Mi in the hierarchy.

9. Notice that the root task is represented as subtask M0 in the HRL framework described in Section 4. Thus, we use
index 0 to represent components of the root task.

10. When the underlying Markov chain at root for every hierarchical policy µ has a single recurrent class, F̄µ
0 has equal

rows, and the right hand side of the equation is a vector with elements all equal to gµ
0.
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Under this assumption, each subtask can be considered an episodic problem and each instantiation
of a subtask can be considered an episode.

Assumption 4 (Subtask Termination): There exists a dummy state s∗i such that, for every action
a ∈ Ai and every terminal state s ∈ Ti, we have

ri(s,a) = 0 and Pi(s
∗
i ,1|s,a) = 1

and for all hierarchical stationary policies µ and non-terminal states s ∈ (Si−Ti), we have

Fµ
i (s∗i ,1|s) = 0

and finally for all states s ∈ Si, we have

Fµ
i (s∗i , |Si||s) > 0

where Fµ
i is the multi-step abstract transition probability function of subtask Mi under the hierarchi-

cal policy µ described in Section 4.2, and |Si| is the number of states in the state space of subtask
Mi. �

Although subtasks are episodic problems, when the overall task (root of the hierarchy) is con-
tinuing as we assumed in this section (Assumption 1), they are executed an infinite number of times,
and therefore can be modeled as continuing problems using the model described in Figure 4. In this
model, each subtask Mi terminates at one of its terminal states s ∈ Ti. All terminal states transit with
probability 1 and reward 0 to a dummy state s∗i . Finally, the dummy state s∗i transits with reward
zero to one of the initial states (∈ Ii) of subtask Mi upon the next instantiation of Mi. These are
dummy transitions and do not add any time-step to the cycle of subtask Mi and therefore are not
taken into consideration when the average reward of subtask Mi is calculated. It is important for the
validity of the model to fix the value of dummy states to zero.

*s

Terminal States
n

. . .
1

.

.

.
.
.
.

1

n

Set of
Ti Initial States I i

Set of

r = 0 , I = In

r = 0 , I = I1

I    +           +  I    =  1

i

r = 0 , F = 1

r = 0 , F = 1

Figure 4: This figure shows how each subtask in a hierarchical decomposition of a continuing prob-
lem can be modeled as a continuing task.
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Under this model, for every hierarchical policy µ, we define a new SMDP for each subtask Mi

in the hierarchy with the following multi-step transition probabilities and rewards:

Pµ
Ii
(s′,N|s,µi(s)) =















Pµ
i (s′,N|s,µi(s)) s,s′ 6= s∗i , ∀N ∈ N,

Ii(s′) s = s∗i , N = 1,
1 s′ = s∗i , s ∈ Ti , N = 1,
0 otherwise.

(21)

rµ
Ii
(s,µi(s)) =

{

rµ
i (s,µi(s)) s ∈ (Si−Ti),

0 s = s∗i or s ∈ Ti.

where Ii(s) is the probability that subtask Mi starts at state s ∈ Ii. The SMDP defined by Equation
21 has an embedded MDP with the following transition probability function:

Fµ
Ii
(s′|s,µi(s)) =















Fµ
i (s′|s,µi(s)) s,s′ 6= s∗i ,

Ii(s′) s = s∗i ,
1 s′ = s∗i , s ∈ Ti,
0 s′ = s∗i , s ∈ (Si−Ti).

(22)

Lemma 1: Let Assumption 4 (Subtask Termination) hold. Then, for every F µ
Ii

and every state

s ∈ Si, we have ∑|Si|
N=1 Fµ

Ii
(s∗i ,N|s) > 0.11

�

Lemma 1 is equivalent to assuming that for every subtask Mi in the hierarchy, the underlying
Markov chain for every hierarchical policy µ has a single recurrent class and state s∗i is its recurrent
state. Under this model, the gain of subtask Mi under the hierarchical policy µ, gµ

i , is well defined
for every hierarchical policy µ and does not depend on the initial state. When the state space of
subtask Mi is finite or countable, the gain of subtask Mi can be written as12

gµ
i =

F̄µ
Ii

rµ
Ii

F̄µ
Ii

yµ
Ii

,

where rµ
Ii

and yµ
Ii

are vectors with elements rµ
Ii
(s,µi(s)) and yµ

Ii
(s,µi(s)), for all s ∈ Si. rµ

Ii
(s,µi(s))

and yµ
Ii
(s,µi(s)) are the expected total reward and the expected number of time steps between two

decision epochs of the SMDP defined by Equation 21 at subtask Mi, given that the system occupies
state s at the first decision epoch and the agent chooses its actions according to hierarchical policy µ.
The term F̄µ

Ii
= limn→∞

1
n ∑n−1

t=0 (Fµ
Ii
)t is the limiting matrix of the Markov chain defined by Equation

22 at subtask Mi.

5.2.3 A RECURSIVELY OPTIMAL AVERAGE REWARD RL ALGORITHM

In this section, we present discrete-time and continuous-time recursively optimal average reward
RL (RAR) algorithms using the formulation described in Sections 5.2.1 and 5.2.2. We consider

11. This lemma is a restatement of Lemma 5 on page 34 of Peter Marbach’s thesis (Marbach, 1998).
12. When the underlying Markov chain for every hierarchical policy µ at subtask Mi has a single recurrent class, F̄µ

Ii
has

equal rows, and thus the right hand side of the equation is a vector with elements all equal to gµ
i .
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problems for which Assumptions 1, 3, and 4 (Continuing Root-Task, Root-Task Recurrence, and
Subtask Termination) hold, root is modeled as an average reward problem as described in Section
5.2.1, and every other non-primitive subtask in the hierarchy is modeled as an average reward prob-
lem using the model described in Section 5.2.2. Under these assumptions, the average reward for
every non-primitive subtask in the hierarchy including root is well defined for every hierarchical
policy and does not vary with initial state. Since we are interested in finding a recursively optimal
average reward policy, we do not need to include the contents of the Task-Stack as a part of the state
space of the problem. We also replace the projected value and action-value functions in the hierar-
chical model of Section 4 with the projected average-adjusted value and projected average-adjusted
action-value functions described in Section 3.1.

We show how the overall projected average-adjusted value function Ĥµ(0,s) is decomposed
into a collection of projected average-adjusted value functions of individual subtasks Ĥµ(i,s), i =
1, . . . ,m−1, in RAR algorithm. The projected average-adjusted value function of hierarchical pol-
icy µ at subtask Mi is the average-adjusted (with respect to the local gain gµ

i ) sum of rewards earned
by following policy µi and the policies of all descendants of subtask Mi starting in state s until Mi

terminates. Now, let us suppose that the first action chosen by µi is executed for a number of primi-
tive steps N and terminates in state s′ according to multi-step transition probability Pµ

i (s′,N|s,µi(s)).
We can write the projected average-adjusted value function in the form of a Bellman equation as

Ĥµ(i,s) = rµ
i (s,µi(s))−gµ

i yµ
i (s,µi(s))+ ∑

N,s′∈Si

Pµ
i (s′,N|s,µi(s))Ĥ

µ(i,s′). (23)

Since rµ
i (s,µi(s)) is the expected total reward between two decision epochs of subtask Mi, given

that the system occupies state s at the first decision epoch, the agent chooses action µi(s), and the
number of time steps until the next decision epoch is defined by yµ

i (s,µi(s)), we have

rµ
i (s,µi(s)) =















V̂ µ(µi(s),s) = Ĥµ(µi(s),s)+gµ
µi(s)

yµ
i (s,µi(s))

if Mµi(s) is a non-primitive subtask,
V̂ µ(µi(s),s)

if Mµi(s) is a primitive action.

By replacing rµ
i (s,µi(s)) from the above expression, and the fact that yµ

i (s,µi(s)) equals 1 when
Mµi(s) is a primitive action, Equation 23 can be written as

Ĥµ(i,s) =







































Ĥµ(µi(s),s)− (gµ
i −gµ

µi(s)
)yµ

i (s,µi(s))+∑N,s′∈Si
Pµ

i (s′,N|s,µi(s))Ĥµ(i,s′)

if Mµi(s) is a non-primitive subtask,

V̂ µ(µi(s),s)−gµ
i +∑s′∈Si

Pµ
i (s′|s,µi(s))Ĥµ(i,s′)

if Mµi(s) is a primitive action.

(24)

We can restate Equations 24 for the projected action-value function as follows:
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L̂µ(i,s,a) =







































Ĥµ(a,s)− (gµ
i −gµ

a)y
µ
i (s,a)+∑N,s′∈Si

Pµ
i (s′,N|s,a)L̂µ(i,s′,µi(s′))

if Ma is a non-primitive subtask,

V̂ µ(a,s)−gµ
i +∑s′∈Si

Pµ
i (s′|s,a)L̂µ(i,s′,µi(s′))

if Ma is a primitive action.

(25)

By defining

Cµ(i,s,a) =







































−(gµ
i −gµ

a)y
µ
i (s,a)+∑N,s′∈Si

Pµ
i (s′,N|s,a)L̂µ(i,s′,µi(s′))

if Ma is a non-primitive subtask,

−gµ
i +∑s′∈Si

Pµ
i (s′|s,a)L̂µ(i,s′,µi(s′))

if Ma is a primitive action,

(26)

we can express the average-adjusted action-value function L̂µ recursively as

L̂µ(i,s,a) =

{

Ĥµ(a,s)+Cµ(i,s,a) if Ma is a non-primitive subtask,
V̂ µ(a,s)+Cµ(i,s,a) if Ma is a primitive action,

(27)

where
Ĥµ(i,s) = L̂µ(i,s,µi(s)). (28)

We call Cµ(i,s,a) defined by Equation 26 completion function.
Equations 24 to 28 are the decomposition equations for the projected average-adjusted value

and projected average-adjusted action-value functions. They can be used to obtain update formulas
for Ĥ and C in this recursively optimal average reward model. Pseudo-code for the discrete-time
recursively optimal average reward RL (RAR) algorithm is shown in Algorithm 2. In this algorithm,
a gain is defined for every non-primitive subtask in the hierarchy and this gain is updated every time
a subtask is non-randomly chosen. Primitive subtasks store their projected value functions, and
update them using the equation on Line 5. Non-primitive subtasks store their completion functions
and gains, and update them using equations on Lines 17, 19, and 23. The projected average-adjusted
action-value function L̂ on Lines 12, 17, and 19 is recursively calculated using Equations 26 to 28.

This algorithm can be easily extended to continuous-time (Ghavamzadeh and Mahadevan, 2001).
In continuous-time RAR algorithm, in addition to visited state and reward, we need to insert the ex-
ecution time of primitive actions τ into the sequence Seq. Therefore, N = N + 1 on Line 15 of the
algorithm is changed to T = T + τ. We also need to change the update formulas for V̂ , C, and gi on
Lines 5, 17, 19, and 23 as

V̂t+1(i,s)←[1−αt(i)]Ĥt(i,s)+αt(i) [k(s, i)+ r(s, i)τ(s, i)] ,

Ct+1(i,s,a)← [1−αt(i)]Ct(i,s,a)+αt(i)[L̂t(i,s
′
,a∗)−gt(i)T ],

Ct+1(i,s,a)← [1−αt(i)]Ct(i,s,a)+αt(i)[L̂t(i,s
′
,a∗)− (gt(i)−gt(a))T ],
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Algorithm 2 : Discrete-time recursively optimal average reward RL (RAR) algorithm.
1: Function RAR(Task Mi, State s)
2: let Seq ={}be the sequence of (state visited, reward) while executing subtask Mi

3: if Mi is a primitive action then
4: execute action Mi in state s, observe state s′ and reward r(s, i)
5: V̂t+1(i,s)← [1−αt(i)]V̂t(i,s)+αt(i)r(s, i)
6: push (state s, reward r(s, i)) into the beginning of Seq
7: else
8: while Mi has not terminated do
9: choose action (subtask) Ma according to the current exploration policy µi(s)

10: let ChildSeq = RAR(Ma, s), where ChildSeq is the sequence of (state visited, reward) while
executing subtask Ma

11: observe result state s′

12: let a∗ = argmaxa′∈Ai(s′) L̂t(i,s′,a′)
13: let N = 0; ρ = 0;
14: for each (s, r) in ChildSeq from the beginning do
15: N = N +1; ρ = ρ+ r;
16: if a is a primitive action then
17: Ct+1(i,s,a)← [1−αt(i)]Ct(i,s,a)+αt(i)[L̂t(i,s′,a∗)−gt(i)N]
18: else
19: Ct+1(i,s,a)← [1−αt(i)]Ct(i,s,a)+αt(i)[L̂t(i,s′,a∗)− (gt(i)−gt(a))N]
20: end if
21: end for
22: if a and all its ancestors are non-random actions then
23: update the gain of subtask Mi gt+1(i) = rt+1(i)

nt+1(i)
= rt(i)+ρ

nt(i)+N
24: end if
25: append ChildSeq onto the front of Seq
26: s = s′

27: end while
28: end if
29: return Seq
30: end RAR

gt+1(i) =
rt+1(i)
tt+1(i)

=
rt(i)+ρ
tt(i)+T

,

where τ(s, i) is the time elapsing between state s and the next state, k(s, i) is the fixed reward of
taking action Mi in state s, and r(s, i) is the reward rate for the time between state s and the next
state.

5.2.4 ANALYSIS OF THE RAR ALGORITHM

In this section, we study the optimality achieved by RAR algorithm. As described earlier, the
expected average-adjusted sum of rewards after execution of subtask Mi is not a component of the
average-adjusted value function of subtask Mi in RAR algorithm. Therefore, the algorithm fails to
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find a hierarchically optimal average reward policy in general, as was discussed in Seri and Tadepalli
(2002) and will be demonstrated in the experiments of Section 6.

To achieve recursive optimality, the policy learned for each subtask must be context free, that
is, each subtask should maximize its local gain given the policies of its descendants. In RAR al-
gorithm, although each subtask maximizes its local gain given the policies of its descendants, the
policy learned for each subtask is not necessarily context free, and as a result, the algorithm does not
find a recursively optimal average reward policy in general. The reason is, the local gain gi for each
subtask Mi does not depend only on the policies of its descendants. The local gain gi is the gain of
the SMDP defined by Equation 21 and therefore depends on the initial state distribution Ii(s). The
initial state distribution Ii(s), the probability of being in state s at the next instantiation of subtask
Mi, depends not only on the policies of subtask Mi and all its descendants, but also on the policies of
its ancestors. It makes the local gain gi learned by RAR algorithm context dependent. However, the
algorithm finds a recursively optimal average reward policy when the initial distribution invariance
(IDI) condition holds. Under the IDI condition, the policy learned by RAR algorithm at each subtask
is independent of the context in which it is executed and therefore can be reused by other hierarchies.

Definition 9 (Initial Distribution Invariance Condition): The initial state distribution for each
non-primitive subtask in the hierarchy is independent of the policies of its ancestors. �

In other words, the initial state distribution for each non-primitive subtask cannot be changed by
altering the policies of its ancestors. One special case that satisfies the IDI condition is when each
non-primitive subtask in the hierarchy has only one initiation state, |Ii|= 1, i = 1, . . . ,m−1, and Mi

is a non-primitive subtask.

6. Experimental Results

The goal of this section is to show the type of optimality achieved by the hierarchically optimal
average reward RL (HAR) and the recursively optimal average reward RL (RAR) algorithms pro-
posed in Sections 5.1 and 5.2, as well as their performance and speed compared to other algorithms.
We describe two sets of experiments. In Section 6.1, we apply five HRL algorithms to a simple
discrete-time automated guided vehicle (AGV) scheduling problem. Since we use a hierarchical
task decomposition in which the hierarchically and recursively optimal policies are different for
this problem, our experimental results clearly demonstrate the difference between the optimality
achieved by these algorithms. Then, we turn to a relatively large AGV scheduling task in Section
6.2. We model this AGV scheduling task as discrete time and continuous-time problems. In the
discrete-time model, we compare the performance of HAR and RAR algorithms with a hierarchi-
cally optimal discounted reward algorithm and a recursively optimal discounted reward algorithm,
as well as a non-hierarchical (flat) average reward algorithm. In the continuous-time model, we
compare the performance of HAR and RAR algorithms with a recursively optimal discounted re-
ward algorithm. We do not use pseudo-reward or reward shaping in the experiments of this section.
The first problem is simple and can be solved easily without reward shaping. There are rewards
associated with the terminal states of the subtasks in the original MDP of the second problem.
Therefore, the agent can find out about the desirability of the terminal states upon completing the
subtasks, without using pseudo-reward or reward shaping.
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6.1 A Simple AGV Scheduling Problem

In this section, we apply the discrete-time hierarchically optimal average reward RL (HAR) al-
gorithm described in Section 5.1, the discrete-time recursively optimal average reward RL (RAR)
algorithm described in Section 5.2, and HH-Learning, the algorithm proposed by Seri and Tadepalli
(2002), to a small AGV scheduling task. We also test MAXQ-Q, the recursively optimal discounted
reward HRL algorithm proposed by Dietterich (2000), and a hierarchically optimal discounted re-
ward RL algorithm (HDR) on this task. The HDR algorithm is an extension of MAXQ-Q using the
three-part value function decomposition (Andre and Russell, 2002) described in Section 4.5.

A simple AGV domain is depicted in Figure 5. In this domain there are two machines M1 and
M2 that produce parts to be delivered to the corresponding destination stations G1 and G2. Since
machines and destination stations are in two different rooms, the AGV has to pass one of the two
doors D1 and D2 every time it goes from one room to another. Part 1 is more important than part
2, therefore the AGV gets a reward of 20 when part 1 is delivered to destination G1 and a reward
of 1 when part 2 is delivered to destination G2. The AGV receives a reward of -1 for all other
actions. Note that within subtasks “Go to Machine” and “Go to Door”, the agent must choose
which machine to go to, and which door to pass through, respectively. This task is deterministic
and the state variables are AGV’s location and status (empty, carry part 1, carry part 2), which is a
total of 26×3 = 78 states. In all experiments, we use the task graph shown in Figure 5 and set the
discount factor to 0.9 for the discounted reward algorithms. We tried several discounting factors and
γ = 0.9 yielded the best performance. Using this task graph, hierarchically and recursively optimal
policies are different. Since delivering part 1 has more reward than part 2, the hierarchically optimal
policy is one in which the AGV always serves machine M1. In the recursively optimal policy, the
AGV switches from serving machine M1 to serving machine M2 and vice versa. In this policy, the
AGV goes to machine M1, picks up a part of type 1, goes to goal G1 via door D1, drops the part
there, then passes through door D2, goes to machine M2, picks up a part of type 2, goes to goal G2
via door D2 and then switches again to machine M1 and so on so forth.

G2M1

M2

D2

D1

G1

Go to Machine Go to Door

Root

Go to Goal

North West South EastNorth NorthWest South SouthEast

M1: Machine 1 M2: Machine 2 D1: Door 1 D2: Door 2 G1: Goal 1 G2: Goal 2

Figure 5: A simple AGV scheduling task and its associated task graph. Note that within subtasks
“Go to Machine” and “Go to Door”, the AGV must choose which machine to go to, and
which door to pass through, respectively.
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Among the algorithms we applied to this task, the hierarchically optimal average reward RL
(HAR) and the hierarchically optimal discounted reward RL (HDR) algorithms find the hierarchi-
cally optimal policy, where the other algorithms only learn the recursively optimal policy. Figure
6 demonstrates the throughput of the system for the above algorithms. The hierarchically opti-
mal algorithms learn more slowly than the recursively optimal algorithms due to more parameters
to be learned. Since this problem is deterministic, the HH-Learning algorithm, which is the only
model-based RL algorithm used in this experiment, learns the model of the environment quickly,
and therefore converges much faster than the other algorithms. In this figure, the throughput
of the system is the number of parts deposited at destination stations weighted by their rewards
(part1× 20 + part2× 1) in 250 time steps. Each experiment was conducted twenty times and the
results were averaged.
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Figure 6: This figure shows that HDR and HAR algorithms (the two top curves) learn the hierarchi-
cally optimal policy while RAR, MAXQ-Q, and HH-Learning (the three bottom curves)
only find the recursively optimal policy for the small AGV scheduling task.

6.2 AGV Scheduling Problem (Discrete and Continuous Time Models)

In this section, we describe two sets of experiments on the AGV scheduling problem shown in Figure
7. M1 to M3 are workstations in this environment. Parts of type i have to be carried to the drop-off
station at workstation i (Di), and the assembled parts brought back from pick-up stations of work-
stations (Pi’s) to the warehouse. The AGV travel is unidirectional as the arrows show. The AGV
receives a reward of 20 when it picks up a part at the warehouse, delivers a part to a drop-off station,
picks up an assembled part from a pick-up station, or delivers an assembled part to the warehouse. It
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also gets a reward of -5 when it attempts to execute Put1–Put3, Pick1–Pick3, Load1–Load3, Unload,
and Idle actions illegally. There is a reward of -1 for all other actions. We model this AGV schedul-
ing task using both discrete-time and continuous-time models. In the discrete-time model, we show
the performance of four HRL algorithms: hierarchically optimal average reward RL (HAR), re-
cursively optimal average reward RL (RAR), hierarchically optimal discounted reward RL (HDR),
and recursively optimal discounted reward RL (MAXQ-Q), as well as a non-hierarchical average
reward algorithm. In the continuous-time model, we compare the performance of HAR and RAR
algorithms with the continuous-time MAXQ-Q algorithm (Ghavamzadeh and Mahadevan, 2001).
We use the task graph shown in Figure 8 in both experiments. Using this task graph, hierarchical and
recursive optimal policies are the same, and therefore hierarchical and recursive optimal algorithms
should converge to the same performance.

P1

P2

P3

D1

D2

D3
Load

Unload

Assemblies

Parts

M1M3

M2

MachineM:

D:

P:

Drop off Buffer

Pick up Buffer

Warehouse

Figure 7: An AGV scheduling task. An AGV agent (not shown) carries raw materials and finished
parts between machines (M1–M3) and warehouse.

The state of the environment consists of the number of parts in the pick-up and drop-off sta-
tions of each machine and whether the warehouse contains parts of each of the three types. In
addition, the agent keeps track of its own location and status as a part of its state space. Thus, in
the flat case, the state space consists of 33 locations, 6 buffers of size 2, 7 possible states of the
AGV (carrying part1–part3, carrying assembly1–assembly3, empty), and 2 values for each part in
the warehouse, that is, 33× 36× 7× 23 = 1,347,192 states. Since there are 14 primitive actions
(Left, Forward, Right, Put1–Put3, Pick1–Pick3, Load1–Load3, Unload, Idle) in this problem, the
total number of parameters that must be learned (the size of the action-value function table) in the
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NavPut i : Navigation to Dropoff Station i

: Navigation to Pickup Station iNavPick i

DM i : Deliver Material to Station i

DA    : Deliver Assembly from Station i i

NavLoad : Navigation to Loading Deck

NavUnload : Navigation to Unload Deck

Root

DA2DA1

Nav

Forward RightLeft

. . . . . .

NavLoad

DM1 DM2

. . .UnloadNavUnload. . .Load NavPut Put NavPick Pick

Idle

11 1 2 2

Figure 8: Task graph for the AGV scheduling task.

flat case is 1,347,192×14 = 18,860,688. State abstraction helps in reducing the state space con-
siderably. Only the relevant state variables are used while storing the value functions in each node
of the task graph. For example, for the 8 Navigation subtasks, only the location state variable is
relevant and each of these subtasks can be learned with only 33 values. Tables 1 and 2 show the
relevant state variables and the number of relevant states for non-primitive and primitive subtasks in
the AGV scheduling problem, respectively. These tables also contain the number of parameters that
must be stored by these subtasks, that is, completion function values, C, and external completion
function values, CE, for non-primitive subtasks, and V values for primitive actions. The number
of parameters that must be stored by a subtask is its number of relevant states times its number of
children. Using Tables 1 and 2, the total number of parameters that must be learned in hierarchi-
cally and recursively optimal algorithms for this problem are equal to 10,809,150 and 10,834,890,
respectively.13 Both these numbers are smaller than the number of parameters that must be learned
in the flat case. This state abstraction gives us a compact way of representing the value functions
and speeds up the hierarchical algorithms.

The discrete-time experimental results were generated with the following model parameters.
The inter-arrival time for parts at the warehouse is distributed according to a Poisson distribution.14

The percentage of Part1, Part2, and Part3 in the part-arrival process are 40, 35, and 25 respectively.
The time required for assembling the various parts are Gamma random variables.15 Since this
is a discrete-time model for the AGV problem, we round the time x generated by these Gamma
distributions to the nearest integer less than or equal to x. Table 3 shows the parameters of the

13. Note that in both recursively and hierarchically optimal algorithms, only one completion function needs to be defined
at the Root of the hierarchy.

14. A random variable x = 0,1,2, . . . is said to be a Poisson random variable with parameter λ > 0, if Pr(x = n) = e−λ λn

n! .
The mean and variance of the Poisson random variable x are both equal to λ.

15. A random variable x≥ 0 is said to have a Gamma distribution with parameters (κ,λ), κ,λ > 0, if its density function

is given by f (x) =
λe−λx(λx)κ−1

Γ(κ)
. The mean and variance of the Gamma random variable x are κ

λ and κ
λ2 respectively.
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Subtask Relevant States Num. of Relevant States Num. of C (CE) Values
Root entire state space 33×36×7×23 = 1,347,192 1,347,192×7 = 9,430,344
DMi AGV location, 33×7×3×2 = 1,386 1,386×4 = 5,544

AGV status,
status of input buffer i,

whether part i exists
in the warehouse

DAi AGV location, 33×7×3 = 693 693×4 = 2,772
AGV status,

status of output buffer i
Nav AGV location 33 33×3 = 99

Table 1: This table shows the relevant state variables, the number of relevant states, and the number
of completion (external completion) function values C (CE) for non-primitive subtasks in
the AGV scheduling problem.

Subtask Relevant States Num. of Relevant States =
Num. of V Values

Left , Forward , Right AGV location 33
Puti , Picki AGV location, 33×7×3 = 693

AGV status,
status of input/output buffer i

Loadi AGV location, 33×7×2 = 462
AGV status,

whether part i exists
in the warehouse

Unload AGV location, 33×7 = 231
AGV status

Idle entire state space 33×36×7×23 = 1,347,192

Table 2: This table shows the relevant state variables and the number of relevant states (which is
equal to the number of V values) for primitive actions in the AGV scheduling problem.

discrete-time model. In these experiments, we used discount factors 0.9 and 0.95 for the discounted
reward algorithms. Using the discount factor of 0.95 yielded a better performance.

Parameter Distribution Mean (steps) Var (steps)
Assembly Time for Part1 Gamma (κ = 180,λ = 3) 60 20
Assembly Time for Part2 Gamma (κ = 250,λ = 2.5) 100 40
Assembly Time for Part3 Gamma (κ = 288,λ = 2.4) 120 50

Inter-Arrival Time for Parts Poisson (λ = 80) 80 80

Table 3: Parameters of the Discrete-Time Model

The continuous-time experimental results were generated with the following model parameters.
The time required for execution of each primitive action is uniformly distributed. The inter-arrival
time for parts at the warehouse is distributed according to a Poisson distribution. The percentage of
Part1, Part2, and Part3 in the part-arrival process are 40, 35, and 25, respectively. The time required
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for assembling the various parts are Gamma random variables. Table 4 contains the parameters of
the continuous-time model.

Parameter Distribution Mean (sec) Var (sec)
Assembly Time for Part1 Gamma (κ = 180,λ = 3) 60 20
Assembly Time for Part2 Gamma (κ = 250,λ = 2.5) 100 40
Assembly Time for Part3 Gamma (κ = 288,λ = 2.4) 120 50

Inter-Arrival Time for Parts Poisson (λ = 80) 80 80
Execution Time for Primitive Actions Uniform (6 < t < 14) 10 5.33

Table 4: Parameters of the Continuous-Time Model

Figure 9 compares the performance of the discrete-time hierarchically (HAR) and recursively
(RAR) optimal average reward algorithms with the performance of the discrete-time discounted re-
ward hierarchically (HDR) and recursively (MAXQ-Q) optimal algorithms on the AGV scheduling
problem. All these algorithms eventually converge to the same system performance. The hier-
archically optimal algorithms learn slower than the recursively optimal algorithms due to more
parameters to be learned. This figure also shows the performance of relative value iteration (RVI)
Q-learning (Abounadi et al., 2001), a non-hierarchical average reward RL algorithm. As shown in
this figure, RVI Q-learning does not converge to the optimal throughput after 105 time steps. Figure
10 shows the performance of RVI Q-learning for 3×106 time steps. The RVI Q-learning algorithm
converges to the optimal performance after over 2× 106 time steps, where the hierarchical algo-
rithms converge to this performance in less than 105 time steps as shown in Figure 9. The difference
in convergence speed between flat and hierarchical algorithms becomes more significant as we in-
crease the number of states. All the graphs in these figures are averaged over twenty runs, except
the RVI Q-learning graph, which is averaged over thirty runs.

With the inter-arrival time and assembly-time parameters used in this experiment, there are time
steps in which there is no part left in the warehouse. This is when the AGV must learn to take the
idle action and wait until new parts appear in the warehouse. At first, the AGV does not serve the
machines properly, and therefore parts are accumulated in the warehouse. As the AGV learns to
serve the machines, the system performance goes up until the parts accumulated in the warehouse
at the first learning steps are all processed. Then, the system performance goes down and eventually
converges to its optimal value. This is why in Figures 9 and 10, the performance of the algorithms
reaches a peak before it converges to its optimal value.

Figure 11 compares the performance of the continuous-time hierarchically (HAR) and recur-
sively (RAR) optimal average reward algorithms with the performance of continuous-time MAXQ-
Q, a continuous-time recursively optimal discounted reward RL algorithm, first presented by
Ghavamzadeh and Mahadevan (2001), on the AGV scheduling problem. All the algorithms con-
verge to the same system performance. The discounted reward algorithm, continuous-time MAXQ-
Q, learns faster than both the average reward algorithms, HAR and RAR. Moreover, the hierar-
chically optimal average reward algorithm (HAR) learns more slowly than the recursively optimal
average reward algorithm (RAR) due to more parameters to be learned. All the graphs in this figure
are averaged over fifty runs.
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Figure 9: This figure compares the performance of the discrete-time hierarchically (HAR) and re-
cursively (RAR) optimal average reward algorithms with the performance of the hier-
archically (HDR) and recursively (MAXQ-Q) optimal discounted reward algorithms on
the AGV scheduling problem. It also demonstrates the faster convergence of the hierar-
chical algorithms comparing to RVI Q-learning, a non-hierarchical average reward RL
algorithm.

7. Conclusions and Future Work

Hierarchical reinforcement learning (HRL) is a general framework for scaling reinforcement learn-
ing (RL) to problems with large state spaces by using task (or action) structure to restrict the space
of policies. Prior work in HRL, including hierarchies of abstract machines (HAMs) (Parr, 1998),
options (Sutton et al., 1999; Precup, 2000), MAXQ (Dietterich, 2000), and programmable HAMs
(PHAMs) (Andre and Russell, 2001; Andre, 2003), has been limited to the discrete-time discounted
reward semi-Markov decision process (SMDP) model. These methods aim to find policies that max-
imize the long-term discounted sum of rewards. On the other hand, the average reward optimality
criterion has been shown to be more appropriate for a wide class of continuing tasks than the more
well-studied discounted formulation. A primary goal of continuing tasks, including manufacturing,
scheduling, queuing, and inventory control, is to find policies that yield the highest expected payoff
per step. Moreover, average reward optimality allows for more efficient state abstraction in HRL
than the discounted reward optimality, as discussed in Section 5. Although average reward RL has
been studied using both the discrete-time MDP model (Schwartz, 1993; Mahadevan, 1996; Tade-
palli and Ok, 1996a,b, 1998; Marbach, 1998; Van-Roy, 1998) as well as the continuous-time SMDP
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Figure 10: This figure shows the performance of RVI Q-learning, a non-hierarchical average reward
algorithm, on the AGV scheduling problem. The RVI Q-learning algorithm converges to
the optimal performance after over 2×106 time steps, where the hierarchical algorithms
converge to this performance in less than 105 time steps as shown in Figure 9.

model (Mahadevan et al., 1997b; Wang and Mahadevan, 1999), prior work has been limited to flat
policy representations.

In this paper, we extended previous work on HRL to the average reward setting, and presented
new discrete-time and continuous-time hierarchically optimal average reward RL (HAR) and re-
cursively optimal average reward RL (RAR) algorithms. These algorithms are based on the average
reward SMDP model, and correspond to two notions of optimality in HRL: hierarchical optimality
and recursive optimality (Dietterich, 2000). The HAR algorithm searches the space of policies de-
fined by the hierarchical decomposition to find a hierarchical policy with maximum global gain (the
gain of the Markov chain that results from flattening the hierarchy using a hierarchical policy). In
the recursively optimal average reward RL setting, the formulation of learning algorithms directly
depends on the local optimality criterion used for each subtask in the hierarchy. The RAR algorithm
treats non-primitive subtasks as continuing average reward problems and solve them by maximizing
their local gain given the policies of their children. We demonstrated that the policy learned for each
subtask by the RAR algorithm is not necessarily context free, and as a result the algorithms do not
find a recursively optimal average reward policy in general. However, we showed that the RAR
algorithm finds a recursively optimal average reward policy when the initial distribution invariance
condition holds. We used two automated guided vehicle (AGV) scheduling tasks as experimental
testbeds to study the empirical performance of the proposed algorithms. The first problem is a rel-
atively simple AGV scheduling task, in which the hierarchically and recursively optimal policies
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Figure 11: This figure compares the performance of the continuous-time hierarchically (HAR)
and recursively (RAR) optimal average reward algorithms with the performance of
continuous-time MAXQ-Q, a continuous-time recursively optimal discounted reward
RL algorithm, on the AGV scheduling problem.

are different. We compared the proposed algorithms with three other HRL methods, including a
hierarchically optimal discounted reward algorithm and a recursively optimal discounted reward al-
gorithm on this problem. The results demonstrate the difference between the optimalities achieved
by these algorithms. The second problem is a relatively larger AGV scheduling task. We modeled
this problem using both discrete-time and continuous-time models. We used a hierarchical task
decomposition with which the hierarchically and recursively optimal policies are the same for this
problem. We compared the performance of the proposed algorithms with a hierarchically optimal
discounted reward algorithm and a recursively optimal discounted reward algorithm, as well as a flat
average reward algorithm in this problem. The results showed that the proposed hierarchical average
reward algorithms converge to the same performance as their discounted reward counterparts.

There are a number of directions for future work. An immediate question that arises is prov-
ing the asymptotic convergence of the algorithms to hierarchically and recursively optimal policies.
These results should provide some theoretical validity to the proposed algorithms, in addition to
their empirical efficiency demonstrated in this paper. Studying other local optimality criteria for
subtasks in a hierarchy is an interesting problem that needs to be addressed. It helps to develop
more efficient recursively optimal average reward RL algorithms. It is also clear that our hierarchi-
cal average reward framework can be applied to many other manufacturing and robotics problems
besides the AGV task.
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Appendix A. Index of Symbols

Here we present a list of the symbols used in this paper to provide a handy reference.

Notation Definition
R set of real numbers
N set of natural numbers
E expected value
M a MDP model
S set of states of a SMDP
A set of actions of a SMDP
P multi-step transition probability function of a SMDP
R reward function of a SMDP

r(s,a) reward of taking action a in state s
I initial state distribution of a SMDP
µ a policy

µ(a|s) probability that policy µ selects action a in state s
µ∗ optimal policy
γ discount factor
α learning rate parameter

V µ hierarchical value function of hierarchical policy µ
V̂ µ projected value function of hierarchical policy µ
V ∗ optimal value function
Qµ hierarchical action-value function of hierarchical policy µ
Q̂µ projected action-value function of hierarchical policy µ
Q∗ optimal action-value function
gµ average reward or gain of policy µ
gµ global gain under hierarchical policy µ
gµ

i local gain of subtask Mi under hierarchical policy µ
g∗ optimal gain or gain of optimal policy
Hµ average-adjusted value function of policy µ
Hµ hierarchical average-adjusted value function of hierarchical policy µ
Ĥµ projected average-adjusted value function of hierarchical policy µ
H∗ optimal average-adjusted value function

2665



GHAVAMZADEH AND MAHADEVAN

Notation Definition
Lµ average-adjusted action-value function of policy µ
Lµ hierarchical average-adjusted action-value function of hierarchical policy µ
L̂µ projected average-adjusted action-value function of hierarchical policy µ
L∗ optimal average-adjusted action-value function

P(s′,N|s,a) probability that action a will cause the system to transition from
state s to state s′ in N time steps

F(s′|s,a) probability that a SMDP occupies state s′ at the next decision epoch
given that the agent takes action a in state s at the current decision epoch

Fµ transition probability matrix of the embedded Markov chain of a SMDP
for policy µ

F̄µ limiting matrix of the embedded Markov chain of a SMDP for policy µ
y(s,a) expected number of transition steps until the next decision epoch in a SMDP

H a hierarchy
Mi subtask Mi in a hierarchy
Si set of states for subtask Mi in a hierarchy
|Si| cardinality of set of states Si

Ai set of actions for subtask Mi in a hierarchy
Ri reward function for subtask Mi in a hierarchy
Ii initiation set for subtask Mi in a hierarchy
Ti termination set for subtask Mi in a hierarchy
µi a policy for subtask Mi in a hierarchy
µ a hierarchical policy

Pµ
i multi-step transition probability function of subtask Mi

Pµ
i (s′,N|s) probability that action µi(s) causes transition from state s to

state s′ in N primitive steps under hierarchical policy µ
Fµ

i multi-step abstract transition probability function of subtask Mi

Fµ
i (s′,N|s) probability of transition from state s to state s′ in N abstract actions

taken by subtask Mi under hierarchical policy µ
Fµ

i (s′,1|s) transition probability of the embedded Markov chain at subtask Mi under
hierarchical policy µ (same as Fµ

i (s′|s))
mµ transition probability function of the Markov chain that results from

flattening the hierarchy using the hierarchical policy µ
mµ(s′|s) probability that hierarchical policy µ will cause the system to transition

from state s to state s′ at the level of primitive actions
mµ transition probability matrix of the Markov chain that results from

flattening the hierarchy using the hierarchical policy µ
mµ limiting matrix of the Markov chain that results from flattening the

hierarchy using the hierarchical policy µ
Ω set of possible values for Task-Stack in a hierarchy

X = Ω×S joint state space of Task-Stack values and states in a hierarchy
x = (ω,s) joint state value x formed by Task-Stack value ω and state value s in a

hierarchy
ω↗ i popping subtask Mi off Task-Stack with content ω in a hierarchy
i↘ ω pushing subtask Mi onto Task-Stack with content ω in a hierarchy

Cµ completion function of hierarchical policy µ
CEµ external completion function of hierarchical policy µ
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