
Contributions
We have preliminary results indicating the behavior of the bivariate causal 
inference algorithm using ANMs has highly variable accuracy.  The causal 
direction inferred with ANMs is highly sensitive to the regression and scoring 
methods used, whether residuals are obtained using data recycling, and the 
method of data preprocessing.

6. Real data and contributions

5. Experiments

4.  Background on Tukey's ladder of powers
We compare performance of bivariate 
ANMs using gaussian process 
regression, random forest regression 
and least squares regression as a 
baseline. Experiments using real data

We applied variations of bivariate ANM to the Cause-Effect Pairs benchmark 
dataset [2].  This is the same dataset used to obtain results in [1].  We used a 
subset of the CEP dataset including pairs with less than 2000 data points.

Most of these pairs are taken from sources where we can be fairly confident in 
the given ground truth, e.g. weather measurements.  However, the dataset 
violates assumptions required for bivariate ANM.  Some pairs have known 
confounding factors, or are taken from time series autocorrelated variables 
with feedback relationships.  Thus, dataset applicability is a threat to validity 
affecting all results shown. 
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Alternative Approaches to Discovering Causality with Additive Noise Models

3.  Bivariate causal inference algorithm1.  Motivation 2.  Background on additive noise models
Bivariate causality is a branch of causality focused on inferring the causal 
direction between a pair of variables based on observational data.

• Hilbert-Schmidt Independence Criterion (HSIC) statistic
• HSIC p-value

Scoring Methods: 
• Approximation of shannon entropy

 Bivariate ANM algorithm for inferring directionality between two variables 

1. Construct a regression model in 
both causal directions.

2. Calculate residuals of both 
regression functions.

These causal models assume some 
causal relationship exists between 
two variables X and Y as in (a) and 
(b), and there are no (d) feedback 
relationships or (e), (f) confounding 
variables Z.

Bivariate additive noise models extend structural equation models which 
model effects as a function of their causes and latent noise variables.

ANMs model one variable as a function of the other and test for 
independence between that variable and the residuals of the regression 
function.

The contour lines of P(Y|X) change 
as X varies, but the contour lines of 
P(X|Y) are considerably more 
variable.  This distribution satisfies 
an ANM X → Y.  

By assuming a priori that the 
distribution only satisfies an ANM in 
one direction, models in both 
directions can be directly compared.

Two models are constructed, one in each causal direction, and the 
independence scores are directly compared for causal inference.

3, 4.  Select the model with the 
least measured independence 
between the independent variable 
and residuals.

• HSIC statistic with fixed kernel
• Gaussian, or sum of variance of independent variable and residuals

Given only observational data from 
the distribution P(X,Y), we wish to 
determine the direction of the causal 
edge between X and Y.

We compare performance of bivariate ANMs using data recycling, or the 
same data for both training and testing, and using 10-fold cross-validation.

We used Tukey's Ladder of Powers to preprocess data before regression

In many pairs of the CEP dataset, data is 
highly concentrated in one are and 
sparse elsewhere.  

Interpolation or downsampling data 
will introduce additional noise and may 
bias results.  Instead, we apply Tukey's 
ladder of powers to transform each pair 
dataset.

For a simple linear function Y = f(X) + ε
Tukey's transformation applies a power 

λ to a variable as Y = f(Xλ)  + ε.  We set 
λ ! [-3, 3] and when λ = 0, we define 

Xλ = log(X). 

We consider two different 
transformation selection schemes.  The 
first minimizes the mean squared error 
of the regression model, and the 
second applies Tukey's transformation 
to both X and Y to reduce the skew for 
each variable.

λ

For a given regression method and 
scoring function: 

Reproduced from [1]. 

Reproduced from [1]. 

The accuracy of existing bivariate additive noise models is reported at 
65-85% [1].  Many possible variations in the basic method have not 
been explored.  We present results for bivariate ANM using alternate 
regression methods, using k-fold cross-validation to obtain residuals, and 
using data preprocessing to improve approximation of the regression 
function.

Reproduced from [1]. 
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