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Abstract. This paper is concerned with one of the basic problems in abstract in-
terpretation, namely, for a given abstraction and a given set of concrete transform-
ers (that express the concrete semantics of a program), how does one create the
associated abstract transformers? We develop a new methodology for addressing
this problem, based on a syntactically restricted language for expressing concrete
transformers. We use this methodology to produce best abstract transformers for
abstractions of many important data structures.

1 Introduction

Abstraction and abstract interpretation [1] are key tools for automatically verifying both
hardware and software systems. This paper is concerned with one of the basic problems
in abstract interpretation, namely, for a given abstraction and a given set of concrete
transformers (that express the concrete semantics of a program), how does one create
the associated abstract transformers? We develop a new methodology for addressing
this problem, based on a syntactically restricted language for expressing concrete trans-
formers. Of particular interest is that—by employing previous results from dynamic
algorithms and dynamic descriptive complexity [2]—our methods allow precise reach-
ability information to be maintained for abstractions of data structures. We use this
methodology to produce best abstract transformers for abstractions of many important
data structures.
Shape Analysis, Canonical Abstraction, and Dynamic Descriptive Complexity.While
our approach is quite general, the main application is to shape analysis (i.e., analysis of
linked data structures) and to analyses based on canonical abstraction—the family of
abstractions introduced by Sagiv, Reps, and Wilhelm [3] for analyzing programs that
use dynamic data structures, including allocation and deallocation of memory cells and
destructive updates of pointer-valued fields. In this approach, data structures are mod-
eled using (3-valued) logical structures. Each element of the universe of the structure
represents either a single memory cell, or, if the element is asummary element, it rep-
resents a set of memory cells.

The analysis simulates the program step-by-step, updating the structures appropri-
ately, mimicking (i.e., approximating soundly) the semantics of program statements.
When a fixpoint is reached, the resulting set of structures is a finite summary of relevant
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properties of the data structures built by the program. Note that any resulting properties
of the set of structures are thus proven to hold: they necessarily hold on all runs of the
program. This analysis framework has been implemented in the TVLA system. (The
acronym stands forThree-ValuedLogicAnalyzer.)

A key technical difficulty concerns the summary elements. They are needed so that
the unbounded-size set of unbounded-size concrete data structures that can arise are
always abstracted to a finite set of finite-size logical structures, which guarantees that
the analysis always reaches a fixpoint. The problem caused by summary nodes is that
some relations between cells in memory can be true for some elements represented
by a summary node and false for others. Hence a truth value of “1

2 ” is introduced,
and the framework is based on3-valued logic [3]. As the analysis propagates3-valued
structures, however, there is a tendency for logical values of1

2 , i.e., “don’t know”, to
increase, which limits the quality of information that the analysis can provide.

A good way to combat this problem is to maintain extra, auxiliary relations in the
logical structures [3, 4]. The same approach is used in dynamic descriptive complexity,
although the motivation is completely different:

– In dynamic descriptive complexity, we work with objects that undergo a series of
inserts, deletes, changes, and queries; with each query, the goal is to return the
answer with respect to the current object. The fundamental issue in dynamic de-
scriptive complexity is one ofefficiency: “What auxiliary information should be
maintained to answer the queryquickly?” The goal of maintaining extra informa-
tion is to avoid recomputing each answer from scratch.

– In static analysis based on3-valued logic, the issue is not so much to save com-
putation time, but instead to preserve high-quality information, i.e., definite truth
values—“0”s and “1”s, rather than “1

2 ”s—whenever possible.
A second key technical difficulty concerns reachability information, which is needed

to express connectivity and separation properties of data structures. There has been ex-
tensive work in dynamic descriptive complexity on how to efficiently maintain reach-
ability information. For example, Dong and Su showed that for acyclic graphs reacha-
bility may be maintained by first-order formulas [5]. Of particular interest to us is the
result of Hesse that reachability for (not-necessarily acyclic) functional graphs can be
maintained by quantifier-free formulas [6].
Our New Methodology. As explained above, TVLA maintains abstract (3-valued)
structures,A, that represent sets of concrete (2-valued) structures,γ(A). We say that
an abstract structure,A, is feasibleiff γ(A) 6= ∅. Let β be the abstraction operator on
individual concrete structures, i.e.,β(C) is the abstract representation ofC, soβ andγ
are (approximate) inverse operations (adjoined functions).

For each program statement,st, TVLA has an update formulaτst so that on any
concrete structure,C, τst(C) is the concrete structure produced by executing statement
st. Furthermore, the update formula is alwayssafeon abstract structures, meaning that
τst(γ(A)) ⊆ γ(τst(A)).

Given an abstraction, the gold standard of abstract transformers is called thebest
transformer [1], and satisfies the property,btst(A) =

{
β(τst(C))

∣∣ C ∈ γ(A)
}

.
However, becauseγ(A) may be infinite, the equation above does not provide analgorithm
for computing the best transformer.

TVLA employs heuristics to efficiently compute a safe transformer that is not nec-
essarily the best transformer. In this paper, we introduce a syntactic condition called
monadic uniform with the following property (see also Thm. 11):



Main Theorem: If the update formulas for a data structure are monadic uniform and
we have an algorithm that given an abstract structure,A, decides whetherA is feasible,
then we can automatically compute the best transformers for the operations on the data
structure.

We then show that our main theorem applies to many important situations:
– We use and modify known results from dynamic descriptive complexity to create

monadic-uniform update formulas for many important classes of data structures,
including linked lists, cyclic linked lists, doubly-linked lists, cyclic doubly-linked
lists, trees, shared trees, directed graphs with no undirected cycles, and also some
of the above data structures when arbitrary unary relations and an ordering relation
are included.

– We also present efficient feasibility algorithms for most of the above. Thus, for
these data structures we can implement best abstract transformers automatically.
Our vision is to build specialized shape analyses for many of the available programs

and observed properties. This paper is an important step in this direction because it
shows that it is possible to build — in a systematic manner — specialized shape analyses
with good theoretical properties for many important data structures.
Predicate Abstraction.Our results are not limited to the TVLA context; in particular,
they provide a way to improve the predicate-abstraction method given by Rakamaric
et al. [7]. Their linked-list abstraction uses the relationbetween(x, y, z) to capture
whether there is a path fromx to z throughy. Rakamaric et al. give a complete decision
procedure for checking feasibility of a given abstract state, but left open the question
of how to handle transformers in the most-precise way. Our methodology solves this
problem: we can use the quantifier-free update formulas given by Hesse [6] to build
best transformers for this abstraction. For example, to compute the abstract transformer
for the addition/removal of an edge we would: (1) extend the vocabulary with a con-
stant capturing the current target of the edge; (2) replace each abstract state with the
set of states that provide all possible interpretations to the predicates involving the new
constant; (3) use the Rakamaric et al. decision procedure to remove the infeasible ab-
stract states; (4) for the remaining states, evaluate Hesse’s update formulas to get the
successor states.

2 Overview
Node reverse(Node x) {

[0] Node y = null;
[1] while (x != null) {
[2] Node t = x.next;
[3] x.next = y;
[4] y = x; x = t; }
[5] return y; }

Fig. 1. The running example.

This section is an informal overview of the method-
ology presented in the paper. We use a simple Java
procedure that reverses a singly-linked list specified
in Fig. 1 as a running example. We will run reverse
on a cyclic singly-linked list. We use a graphical rep-
resentation of logical structures to depict a store as
a graph.

Fig. 2(a) is an example of a singly linked list with a cycle. Memory cells are repre-
sented by the individuals of the structures (the nodes in the graph). Program variables
are represented by constants (the text inside the nodes). Pointer fields in a memory
cell are represented by binary relations (the edges of the graph, annotated with the
relation name). In this case, thenext field of the list nodes is represented by then
relation, which is a total function. We can add to the structure auxiliary relations de-
fined using FO(TC) (First Order Logic with Transitive Closure) formulas over the core



relations. For example, in Fig. 2(b) we use a unary relationrx,n (written below the
nodes) to indicate the existence of a path from the node pointed to byx (defined by
rx,n(v) def= n∗(x, v)). The unary relationcn states that the node is on a cycle ofnext

fields (defined bycn(v) def= n+(v, v)).
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Fig. 2. (a) A concrete structure that represents a singly-linked list with a loop, which is
pointed to byx and consists of 6 nodes. (b) The same singly-linked list, this time with
auxiliary information. (c) Abstraction of singly-linked lists with loops. (d) & (e) The
result of computing the best abstract transformer for the operationt=x.next on (c).
Note there is also always a concrete node,null , with a self-loop (forn) and no other
edges. We do not draw this to save space.

In abstract interpretation, we wish to represent a large (possibly infinite) set of stores
using a finite set of structures; here this is done by collapsing nodes together into “sum-
mary nodes” (drawn as double circles). We use three-valued logic with an additional1

2
truth value (for binary relations, this is depicted as a dotted edge) to capture the case
in which for some of the nodes represented by the summary node the value is true (1)
while for others the value is false (0).4 Fig. 2(c) shows an abstract structure in which
constants are untouched and all the nodes with the same values for unary relations are
collapsed together. This type of abstraction is calledcanonical abstractionand is guar-
anteed to result in structures of bounded size for a given vocabulary. The Embedding
Theorem of [3] guarantees that if evaluating formulas (using Kleene semantics) on the
abstract structure results in a definite value (i.e.,1 or 0), evaluating the formula on any
concrete structure it represents will yield the same value. Kleene semantics can be un-
derstood as considering12 to be{0, 1}, 0 to be{0}, and1 to be{1} and evaluating
pointwise, e.g.,1 ∧ 1

2 = 1
2 , but0 ∧ 1

2 = 0.
Transformers are given for each operation according to the program’s operational

semantics. Transformers are specified usingguarded commandswith formulas in
FO(TC) called update formulas. For example, for the operationt=x.next used in
line 2 of Fig. 1, we can use a guardx 6= null ∧ n(x, xn) to (a) ensure that there is no
null-dereference, and (b) bind the value of thenext field of x to a new (temporary)
constantxn. The update formulas are:t′ := xn, x′ := x, n′(v1, v2) := n(v1, v2),
c′n(v) = cn(v), r′x,n(v) := rx,n(v), r′t,n(v) := n∗(t′, v). The most precise abstract

4 For readers familiar with [3], we use tight embedding in this paper. Thus, each summary node
represents at least two nodes.



transformer would return a set of abstract structures that captures as tightly as possible
(for the abstraction in use) the result of applying the transformer on all the concrete
structures represented by the original abstract structure. This kind of abstract trans-
former is called the best abstract transformer [1] and can be theoretically computed by
finding all concrete structures represented by an abstract structure (a.k.a. concretiza-
tion), computing the transformer on each of them, and abstracting the results. However,
because the number of concrete structures represented by an abstract structure is un-
bounded (and potentially infinite), this is not an algorithm. Fig. 2(d) and Fig. 2(e) show
the result fort=x.next on the structure in Fig. 2(c). The structure in Fig. 2(d) rep-
resents the case in which the list before the cycle is of length 2, and the structure in
Fig. 2(e) represents the case it is of length 3 or more. Note that simply evaluating the
update formulas on the structure in Fig. 2(c) would not have given us this precise result.

We seek a way to compute the same result as the best transformer without resorting
to full concretization. One of the key principles of our methodology is to find apartial
concretization that 1) is computable, 2) returns a finite set of abstract structures that
represents the same concrete structures, and 3) for each of these structures the best
abstract transformer can be computed by simply evaluating the update formulas. We
call the operation of finding such a partial concretizationFocusafter a similar operation
in [3]. Focus replaces each structure with a set of structures, representing the same
concrete structures, in which the partitioning of the concrete nodes into summary nodes
is more fine-grained. This can be achieved by bifurcating summary nodes into two
groups: nodes for which an atomic formula holds, and nodes for which it does not hold.
We call such a formula afocus formula. For example, Fig. 3(a) and (b) show the result
of Focus for the focus formulan(x, v) on the structure in Fig. 2(c). The second and
third nodes in the lists of Fig. 3(a) and (b) are the result of bifurcating the second node
in Fig. 2(c) according to the focus formula. For the second node, the formula holds,
and for the third node the formula does not hold. As we can see, this process can result
in multiple structures; Fig. 3(a) corresponds to the case in which the original summary
node represents two concrete nodes and in Fig. 3(b) the case in which the summary
node represents three or more concrete nodes. We can see that in both cases, the second
node has been materialized out of the original summary node.

To automate the Focus operation, we propose an algorithm that can compute the
partial concretization for a set of focus formulas: the first phase does not understand the
intended meaning of the relations; the second phase applies a “feasibility check” sup-
plied by the developer of the abstraction. An algorithm for feasibility checking should
return true iff an abstract structure represents at least one concrete structure. Fig. 3(c)
and (d) show structures arising in the Focus process that are infeasible. Structure 3(c) is
infeasible because the second node must represent at least two nodes and the first node
must have a direct edge to both of them, which contradicts thatn is a function. Struc-
ture 3(d) is infeasible because the self-loop on the second node means that it must both
have a self-loop and not have a self-loop. In§5, we provide algorithms for checking
feasibility for several abstractions of commonly used data structures. Note that even if
we cannot check feasibility for some abstraction (or have only a sound approximation),
the resulting transformer is a sound approximation of the best transformer.

The problem with finding the right focus formulas and using Focus for the trans-
former given fort=x.next is that for the computation ofr′t,n we require that the
evaluation ofn∗(t′, v) return precise results — in particular; for any element in the cy-
cle, it should return1. However, this means that all the edges until the cycle must be1,
which means we need to consider all possible lengths for the segment of the list before



the cycle. This is not possible. To solve this problem, we need to somehow limit the up-
date formulas. This leads to our second principle,monadic-uniform update formulas.

The update formula forr′t,n can be rewritten asr′t,n(v) := rx,n(v) ∧ (cn(x) ∨
x 6= v). If x is on a cycle,t must be on the same cycle; thus, whatever was reachable
from x is now also reachable fromt. Otherwise, the only node that was reachable from
x and is not reachable fromt is x itself. Evaluating this updated transformer on the
structures in Fig. 3(a) and (b) results in the structures in Fig. 2(d) and Fig. 2(e). Thus,
focusing onn(x, v) was enough. This is not a coincidence. We show that if we limit the
update formulas to a certain syntactic class (which we call monadic-uniform), we can
automatically find the focus formulas needed for the Focus operation, and the result of
Focus is guaranteed to be bounded (a function of the size of the original structure).

The process of finding monadic-uniform update formulas is not trivial, especially
when trying to update reachability. Fortunately, we can use existing results from the
dynamic descriptive complexity [2, 6] and database [5] communities on maintaining
reachability when edges are added or removed. A key step in finding such monadic-
uniform update formulas is the addition of auxiliary relations, which together with the
other relations can be maintained by monadic-uniform update formulas. In§5, we pro-
vide monadic-uniform transformers for the abstractions used for many of the analyses
done successfully with TVLA.

Our methodology can be summarized as follows:
1. Find an abstraction that captures the properties you want to verify. Describe it

within the framework of parameterized shape analysis of [3].
2. Insure that all update formulas are monadic-uniform, adding extra auxiliary rela-

tions as needed.
3. Optionally, develop a feasibility check for abstract structures of this (possibly aug-

mented) vocabulary; or, settle for a sound approximation of the best transformer.
The paper presents the necessary algorithms for binding these ingredients together to
compute best abstract transformers.
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Fig. 3. Some of the structures arising in the process of Focus for the operation
t=x.next on the structure in Fig. 2(c).

3 Preliminaries

We represent stores as logical structures. This allows us to use logical formulas to define
the semantics of statements and abstractions of stores. To simplify the presentation, we
describe everything in the context of a specific vocabulary. It should be clear from
the description that the formulas are schematic and can be instantiated to the specific
program fields and variables.

See [8] for a formal definition of the syntax of FO(TC) formulas. We use the short-
hand(whenϕ1 ⇒ ψ1, . . . , whenϕk ⇒ ψk, default ⇒ ψ) for a sequential case split;
i.e., formally it is:. . .∨ (¬ϕ1 ∧ . . .∧¬ϕi−1 ∧ϕi ∧ψi)∨ . . .∨ (¬ϕ1 ∧ . . .∧¬ϕk ∧ψ)



A 2-valued logical structure is a tripleS = 〈US , RS , CS〉 of a universeUS of
individuals, a mapRS of relation symbols to truth-valued functions, and a mapCS of
constant symbols to individuals. See [8] for a formal definition.

3.1 Programming-Language Statements

Formulas are used to update the store in a standard way as follows:

Definition 1 (Store Updates)An update formulaof a relation r of arity k has the
form: r′(v1, . . . , vk) := ϕr(v1, . . . , vk), whereϕr(v1, . . . , vk) is a formula with free
variablesv1, v2, . . . vk. Anupdate formulaof a constantc has the form:
c′ := (whenϕ1 ⇒ s1, . . . , whenϕk ⇒ sk, default ⇒ sk+1), where theϕi are closed
formulas and thesi are constant symbols. This is a shorthand for the following formula
with one free variable:ϕc(v) def= (. . . , whenϕi ⇒ v = si, . . . , default ⇒ v = sk+1)
For the special case in which k=0 we simply writec′ := s1.

Every statementst in the programming language is associated withtransformer
τst, which consists of aguard formula, guardτst

, and a set of update formulas for each
relation and constant symbol in the vocabulary. If the guard formula has free variables,
the update formulas can refer to them as constants.

Given a 2-valued logical structure,S = 〈U,R,C〉, theexpansionof S for τ is the
set expandτ (S) of all the structuresS′ = 〈U,R, C ′〉 s.t.,C ′ is identical toC except it
gives an interpretation to all the free variables of guardτ . We sayS′ is expandedfor τ .

The application of the transformerτ on a structureS′ ∈ expandτ (S) is the 2-
valued structureτ(S′) def= 〈U,R′′, C ′′〉, where for every relation symbolr, R′′(r)(−→u ) =
[[ϕr(−→u )]]S

′
, and for every constant symbolc, let uc ∈ U be the unique element for

which S′, uc |= ϕc, we haveC ′′(c) = uc. Note thatC ′′ gives an interpretation only
to the original constants and not to the free variables of guardτ . Themeaningof the
transformerτ onS is the set[[τ ]](S) def= {τ(S′) | S′ ∈ expand(S) ∧ S′ |= guardτ}. ut

st guardst update formulas
x = null 1 x′ := null
x = t 1 x′ := t
x = t.sel t 6= null∧ x′ := tsel

sel(t, tsel)
x.sel = y x 6= null sel′(v1, v2) :=

(v1 = x ∧ v2 = y)∨
(v1 6= x ∧ sel(v1, v2))

x == y x = y

Table 1.Relation-update formulas that define
the semantics of statements that manipulate
pointers and pointer-valued fields.

The free variables in the guard
formula allow for the introduction of
nondeterminism. These free variables
are considered as additional constants
by the update formulas. The syntactic
form of the update formulas for con-
stants guarantees that for each constant
symbolc there is only oneuc for which
S′, uc |= ϕc. Thus, once the free vari-
ables have been assigned, the computa-
tion of the transformer is deterministic.

For simplicity, we do not support
operations that change the universe.
However, because we allow infinite
universes, we can easily model the allocation and deallocation of individuals using a
designated relation that holds only for allocated individuals (or, if the operational se-
mantics allows, by using a free list).

Table 1 lists the transformers that define the operational semantics of the five kinds
of Java-like statements. Herex, t, andy are constants that denote the target of pointer
variablesx , t , and y , respectively.sel is a binary relation that models the pointer



field sel . We do not specify update-formulas for relations and constants with un-
changed values. The guard formulas for statements that accesssel ensure that no
null-dereference has occurred. In case of a field traversal, the guard formula also se-
lects the target of the field using the free variabletsel. Note that program conditions are
simply modeled by guard formulas.
Integrity Constraints. We allow restriction of the potential stores that may arise in
the program by a finite set of closed formulas calledintegrity constraints and denoted
by Σ. We assume that the meaning of every transformerτ maintains the integrity
constraints, i.e., if S |= Σ, S′ ∈ [[τ ]]S a2-valued structure, thenS′ |= Σ.

In the case of pointer fields, we require that every field be a total function. Thus, in
particular, the pointer field(s) ofnull points tonull.
Auxiliary Information. The most interesting integrity constraints occur as a result of
extra relations whose values are derived from other relations. Formally, anauxiliary
relationr of arity k is defined via a defining formulaϕr with k free variables. This
results in the integrity constraint∀v1, . . . , vk : r(v1, . . . , vk) ⇐⇒ ϕr. Thus, every
statement must maintain this invariant. Auxiliary information allows us to reduce the
complexity of update formulas. Furthermore, it is often the information maintained by
auxiliary relations that enables us to compute best abstract transformers.

§2 introduced two types of auxiliary relations,rx,n for reachability from a program
variable, andcn for cyclicity. The interaction between them is used to define a monadic-
uniform update formula for traversal of an edge.

3.2 Monadic-Uniform Updates

In this section, we restrict the way the semantics of statements are allowed to be defined
to use only formulas of a certain syntactic class. The new stores can differ from the
original store in many values but the change should be uniform in the sense defined
below. We begin by defining atomic formulas that are essentially unary.

Definition 2 An atomic formula ismonadicif it is of the formr(c1, . . . , ci, v, ci+1, . . . , ck−1)
wherer is k-ary relation andc1, . . . , ck−1 are constant symbols. AnFO(TC) formula
ϕ is monadicif all of the atomic formulas appearing inϕ are monadic or ground. ut

The following formulas are monadic:r(v, c), v = c, r(v), ∀v.r(v, c). The following
formulas have variables in more than one position, and thus are not monadic:r(v, v),
r(v1, v2), v1 = v2. Note that althoughr(v, v) uses a single variable, it is not monadic.

Next, we define monadic update formulas, which are a restricted case of update
formulas in which a tuple is classified by monadic formulas, and for each class, the
value of an existing relation is copied.

Definition 3 (Monadic-Uniform Updates)Amonadic-uniform formulaϕ(v1, . . . , vk)
is syntactically equivalent to(. . . , whenϕi ⇒ ψi, . . . , default ⇒ ψl) where theϕi are
monadicFO(TC) formulas with free variablesv1, v2, . . . vk, and theψi are restricted
to either1, 0, or a literal with distinct variables.

A monadic-uniform transformeris a transformer in which all the update formulas
and the guard formula are monadic uniform. ut

All the transformers of Table 1 are constructed to be monadic-uniform transformers
(see§5). Monadic-uniform formulas disallow direct interaction between non-monadic
relations, e.g.,r(v1, v2) ∧ q(v1, v2) is not monadic-uniform.r(v, v) is not monadic-
uniform because it is equivalent tor(v1, v2) ∧ v1 = v2 and captures the interaction
betweenr and equality.



3.3 Canonical Abstraction

In this section, we use3-valued logic to conservatively represent sets of stores. For-
mally, we define a lattice of static information where lattice elements are sets of3-
valued structures. A 3-valued structure is similar to a 2-valued structure, exceptRS

maps to 3-valued truth functions, i.e., whose range is{0, 1, 1
2}. See [8] for a formal

definition. We say that the values0 and1 aredefinitevalues and that12 is anindefinite
value, and define a partial (information) order on truth values as followsl1 v l2 if
l1 = l2 or l2 = 1

2 . The symbolt denotes the least-upper-bound operation with respect
tov.

Definition 4 A tight embedding function is a surjective functionf : US → US′ such
that, for everyc ∈ C, CS′(c) = f(CS(c)) and for every relationr ∈ R of arity k,
RS′(r)(u′1, . . . , u

′
k) =

⊔
f(ui)=u′i,1≤i≤k RS(r)(u1, . . . , uk). We say thatS′ = f(S)

and thatS′ is a tight embeddingof S. 5

When the embedding function maps more than one node to some nodeu, we say
thatu is asummary node. Otherwise, we call the node aconcrete node. For summary
nodes,[[u = u]]S

′
= 1

2 . Note that ifCS′(c) = u andu is a summary node, only one of
the nodes mapped tou equalsc, not all of them.

Canonical embedding, denoted byβ, is the embedding obtained by using unary re-
lation symbols to distinguish between individuals, i.e., two concrete individualsu1, u2 ∈
US are mapped to the same individual if and only if they agree on the values of unary
relation symbols. For each constant,c, there is an implied unary relation,Pc, true just
of c. ut

According to theembedding theorem[3], every formula with a definite value in a
structure has the same value in all of the embedded concrete structures.

Canonical abstraction allows us to define the set of stores represented by a3-valued
structure.

Definition 5 For a 3-valued structure S,γ(S) denotes the set of2-valued structures
that S represents, i.e.,γ(S) = {S\ |= Σ | β(S\) = S}. We say that a structureS is
feasibleif γ(S) 6= ∅. ut

The complexity of checking feasibility of a structure comes from the need to satisfy
the integrity constraints and because of interactions between auxiliary relations and core
relations.

4 Methodology for Developing Computable Transformers

A shape-analysis problem is characterized by a triple of the class of allowed structures,
the initial abstraction, and the set of possible atomic operations.

The running example (see Fig. 1) is an instance of the following shape-analysis
problem: The class of allowed structures is (possibly cyclic) singly-linked lists. The
initial abstraction tracks: pointed to by a program variable (by representing program
variables as logical constants), thenext field (by maintaining a binary relationn),

5 From now on, whenever we refer to embedding, we mean tight embedding and use the term
tight embedding only for emphasis.



reachability from program variables (by unary relations of the formrx,n(v), which
indicate thatv is reachable from program variablex using thenext field), and cyclicity
(by a unary relationcn(v), which indicates thatv is part of a cycle).

The first step in developing computable best transformers for a shape-analysis prob-
lem is to find monadic-uniform transformers for all the operations required. A key step
in finding such update formulas is the introduction of additional auxiliary relations that,
together with the original relations, can be maintained in a monadic-uniform way.

The main difficulty in maintaining the relations used in the shape-analysis prob-
lem for the running example is the maintenance of reachability. Fortunately, we can
use (with a small modification to make it monadic-uniform) the DynQF update for-
mulas for transitive closure given by Hesse in [6]. We introduce three auxiliary binary
relations. The relationpn(v1, v2) maintains the reflexive transitive closure of then re-
lation (i.e., existence of a path betweenv1 andv2 using thenext field). The relation
cutn(v1, v2) holds for exactly one edge in each cycle (enforced using appropriate in-
tegrity constraints). The relationpcn(v1, v2) (called PathCut by Hesse) maintains the
reflexive transitive closure of the un-cut edges.Together, these relations allow us to cre-
ate monadic-uniform transformers for all the needed operations (see [6] and§5 for more
details).

Imperative programs lead to monadic-uniform transformers because they can only
change information directly pointed to by variables. The difficulty comes from relations
such as reachability in which a local update can cause widespread change. We take
advantage of the specific structure of the graphs in each case to build a monadic-uniform
transformer for them.

The final step in our methodology is to develop an algorithm for checking the fea-
sibility of an abstract structure of the chosen vocabulary. Here we need to take into
account the integrity constraints, including the set of allowed structures and the mean-
ing for all the auxiliary relations.

In §5, we show that, to check feasibility of an abstract structure that can arise in the
shape-analysis problem defined above, we can compute a candidate concrete structure
s.t. the abstract structure is feasible iff the concrete structure is consistent (i.e., satisfies
the integrity constraints) and itsβ is the original structure. The size of the candidate
structure is linear in the size of the original abstract structure. Thus, we can check its
feasibility in time polynomial in the size of the original abstract structure.

The rest of the section describes how to compute best transformers for a given
shape-analysis problem that has monadic-uniform transformers and a decidable feasibility-
checking problem. Proofs can be found in [8].

First, we define the concept of afocusedstructure for a monadic-uniform trans-
former. For such structures and transformers, the transformer preserves embedding (see
Lem. 7).

Definition 6 We say thatS is focusedfor a τ (denoted by focusedτ (S)) when (1)S
is expanded forτ , (2) all the monadic atomic formulas that appear in any update for-
mula ofτ or in guardτ , evaluate to definite truth values inS, and (3) all the constants
interpreted byCS are mapped to concrete nodes.

We defineβτ to be a canonical embedding function that honors all new constants
and monadic atomic formulas appearing in transformerτ . γτ is defined analogously to
γ but in relation toβτ . ut

The structures in Fig. 3(a) and (b) are focused fort = x.next if we mapxn to
any concrete node (only whenxn is mapped to the second node of the list will the guard



formula hold). For Fig. 2(c), when trying to interpretxn in a way that will satisfy the
guard formula, the only node worth considering is the second node of the list. There are
two reasons why such a structure is not focused. First, the second node is a summary
node, thus a constant cannot be mapped to it. Second,n(x, xn), which appears in the
guard formula, evaluates to12 . Note that the fact that the structures in Fig. 3(a) and
(b) are focused does not mean that all the update formulas evaluate to definite values
for all the nodes, e.g., then relation has several indefinite tuples in resulting structure
Fig. 2(e).

For structures that are focused for a transformerτ , we use the canonical embedding
functionβτ , and when referring to the feasibility of a focused structure, we mean non-
emptiness ofγτ .

Lemma 7 Let τ be a monadic-uniform transformer,S be a structure s.t. focusedτ (S)
holds,C be a concrete structure, andf be an embedding function s.t.f(C) = S. The
following properties hold: (1)f(τ(C)) = τ(S), (2) [[guardτ ]]C = [[guardτ ]]S , (3) for
every unary relationr and nodeu we have[[r(u)]]τ(C) = [[r(f(u))]]τ(S), and (4) for
every constantc, τ(S) mapsc to a concrete node.

When embedding is preserved, all unary relations are definite, and all the constants
are mapped to non-summary nodes,β will return the same value for both updated struc-
tures. Cor. 8 entails that a monadic-uniform transformer is actually the best transformer
for focused abstract structures.

Corollary 8 Let τ be a monadic-uniform transformer. If focusedτ (S) andf(C) = S
thenβ(τ(C)) = β(τ(S))

Cor. 8 suggests a way to compute the best abstract transformer: Given an abstract
structure, find a set of feasible focused structures that represent the same concrete struc-
tures. Def. 9 makes this notion formal.

Definition 9 focusτ is an operation that given a feasible structureS returns a finite set
of structuresFS s.t.

⋃
S′∈γ(S) expandτ (S′) =

⋃
F∈FS γτ (F ) and for everyF ∈ FS,

F is feasible and focusedτ (F ). ut
We now sketch the algorithm that computes focusτ . The algorithm systematically

replaces each12 value for monadic formulas by 0 or 1, duplicating structures as nec-
essary. There may be a large but bounded number of such structures. Each candidate
structure is checked for feasibility and discarded if infeasible.

Algorithm 10 Given τ, S, compute focusτ (S).

0. FS = FSorig = expandτ (S) // the current set of structures
MA = the monadic atomic formulas ofτ , including the new constants

1. for each A(v) from MA and F from FSdo {
2. for each nodeb ∈ UF s.t.[[A(b)]]F = 1

2 do { // b must be a summary node
3. Remove F from FS and replace byFu1u2 : uj ∈ {s, c}

s.t. b is split intob0, b1, [[A(bi)]]Fu1u2 = i, and,
bi is a summary node inFu1u2 iff uj = s. } }

4. for each structure F, new tuple created,t, and relation R s.t.[[R(t)]]F = 1
2 ,

add structuresFi : i ∈ {0, 1} s.t.[[R(t)]]Fi = i andβ(Fi) ∈FSorig

5. for each structure F, ifγt(F ) = ∅, remove F from FS
6. return (FS)



Focus can yield a double-exponential number of structures. The maximum number
of individuals in a single structure can be exponential in the number of predicates and
the number of possible structures is exponential in the number of nodes. From our ex-
perience with TVLA, the first blowup — the maximal number of individuals — rarely
happens in practice. However, in contrast to TVLA, the use of tight embedding sug-
gests that the second blowup may indeed occur in practice. We are working on ways to
remedy the situation, e.g., by moving to non-tight embedding (see [3]).

From the correctness of Alg. 10, our main theorem follows:

Theorem 11. If S is feasible then we can automatically compute the best transformer:
btτ (S) ≡ {

β(τ(S′))
∣∣ S′ ∈ focusτ (S) ∧ [[guardτ ]]S

′
= 1

}

Note that if there is no feasibility check, the methodology still guarantees that we
obtain a best transformer, but with respect to aγ that does not force the concrete struc-
tures to adhere to the integrity constraints. However, when using thisγ, the abstraction
is not likely to be strong enough to establish the properties that we desire.

5 Applications

Structures Vocabulary Feasibility
Acyclic SLL pn, n, PVar Direct
Acyclic SLL rx,n, n, PVar, Colors Direct
Cyclic SLL pn, pcn, n, PVar Direct
Cyclic SLL rx,n, rcx,n, n, PVar, Colors Direct
DLL pf , pb, cf,b, cb,f , PVar, Colors Direct/Open
Ordered SLLrx,n, rcx,n, n, dle, PVar,inOrdn,dle, inROrdn,dle Open
Trees p, l, r, PVar Direct
Trees p, l, r, PVar, Colors MSO
NUC p, l, r, sx,y, PVar Direct
NUC p, l, r, sx,y, PVar, Colors MSO
Shared Treesp, l, r, PVar Open
Table 2.Summary of the shape-analysis problems and their feasibility-check status.

This section describes several applications of the methodology described in§4 for
computing transformers for different shape-analysis problems. For each problem, we
specify the class of allowed structures, the relations we maintain, and, when known, an
algorithm for checking feasibility. Further details can be found in [8].

Table 2 summarizes the different shape-analysis problems described in this sec-
tion and the type of feasibility checks we have for them. For all of these problems,
we show monadic-uniform transformers for field manipulations. SLL/DLL stands for
Singly/Doubly Linked Lists, and NUC for No Undirected Cycles. PVar stands for Pro-
gram Variables. A description of each class of structures and the meaning of each re-
lation is given in the appropriate subsection below. Note that for every vocabulary we
require a new feasibility-checking algorithm.

Dong and Su [5] show how to update reachability in a general acyclic graph using
first-order logic. However, their formulas are not monadic-uniform and it is unclear
whether it is possible to make them monadic-uniform.



Relation Update Formula

x = y.next
guard n(y, yn) ∧ y 6= null ∧ (x = null ∨∨

z 6=x rz,n(x))
x′ yn

r′x,n(v) ry,n(v) ∧ y 6= v

x.next = null
guard n(x, xn) ∧ x 6= null ∧ (xn = null ∨∨

z(rz,n(xn) ∧ ¬rz,n(x)))
n′(v1, v2) (whenv1 = x ⇒ v2 = null, default⇒ n(v1, v2))
p′n(v1, v2) pn(v1, v2) ∧ ¬(pn(v1, x) ∧ pn(xn, v2))
r′z,n(v) rz,n(v) ∧ ¬(rz,n(x) ∧ rx,n(v) ∧ x 6= v)
x.next = y
guard x 6= null ∧ ¬ry,n(x) ∧ n(x, null)
n′(v1, v2) (whenv1 = x ⇒ v2 = y, default⇒ n(v1, v2))
p′n(v1, v2) pn(v1, v2) ∨ (pn(v1, x) ∧ pn(y, v2))
r′z,n(v) rz,n(v) ∨ (rz,n(x) ∧ ry,n(v))

Table 3.Monadic-uniform transformers for acyclic singly-linked lists.

Direct means there is a direct algorithm to check feasibility of an abstract structure.
MSO means we can reduce the feasibility check to a satisfiability check of an MSO for-
mula on trees. Open means we are still working on checking feasibility for this problem.
We believe that checking feasibility is decidable for all of these problems.
Singly-Linked Lists. The first class of allowed structures we examine is acyclic singly
linked lists. The vocabulary includes constants that represent program variables, a func-
tional binary relationn that represents the next field, a unary relationrx,n for each pro-
gram variablex that represents reachability fromx (a.k.a., unary reachability), and a
binary relationpn (path ofn) that represents reachability between any two elements.
The guard formulas are used to detect null dereferences or the formation of garbage
or cycles. Monadic-uniform update formulas can be easily written for all the needed
operations.

Table 3 lists the transformers for the field-manipulating operations. Update formulas
for unchanged relations are omitted. The update formulas for reachability follow the
ones described in [6]. For traversal of a field, we use the free variableyn of the guard
formula to capture the target of thenext field for y (xn is used similarly in the removal
of an edge).

To check feasibility of a focused abstract structure, we build a single candidate
concrete structure s.t. the original structure is feasible iff it is the result of applyingβ
on the candidate structure and the candidate structure satisfies the integrity constraints.

Algorithm 12 (Checking Feasibility)
Replace every summary node with two concrete nodes connected by an edge, all

incoming edges to the summary node go to the first concrete node, all outgoing edges
from the summary nodes start from the second node. Each edge in the abstract structure
is translated into a single edge in the concrete structure. We then simply computeβ on
this structure and return true if it equals the original structure and satisfies the integrity
constraints (i.e.,n is a total function).

Cyclicity. To handle cyclicity, we use the ideas from [6], which allow for quantifier-free
update of reachability in singly-linked lists. The update of [6] is based on the addition



of a binary relation, called PathCut, as an auxiliary relation. For every cycle, we call
the last edge added to the cycle (i.e., the edge that closed the cycle) acut edge. PathCut
indicates reachability overn minus the cut edges. When the cycle is broken, its cut edge
is readded to PathCut. The update formula suggested by [6] for removal of an edge is
not monadic-uniform. Fortunately, we can easily rewrite that formula to be monadic-
uniform.

To analyze programs that manipulate cyclic singly-linked lists, we use a vocab-
ulary similar to that of acyclic singly-linked lists. The additional relations needed to
allow updates to be monadic-uniform (and ease feasibility checking) are:cutn is a bi-
nary relation representing the cut edges,pcn is a binary relation representing PathCut,
rcx,n(v) is a unary relation indicatingv is reachable from program variablex using
pcn, andcn(v) is unary relation indicating thatv is on a cycle. The resulting abstraction
is similar in the distinctions it makes to that of [9]. Becausecutn is needed only to up-
date itself, and the feasibility check can recover the cut edges frompcn, we can remove
cutn and still compute the best transformer.

We use the DynQF updates by [6] as a basis for monadic-uniform update formulas.
Feasibility checking can be done using the same ideas as for acyclic lists with the

necessary changes to support the cut edges.
Trees.To analyze trees using monadic-uniform transformers, we use the following vo-
cabulary: constants represent program variables; two functional binary relationsl and
r represent theleft andright fields respectively; two new constantsxl andxr for
each program variablex indicate the target of its left and right fields, respectively; a
binary relationp represents reachability (existence of a path) between any two elements
(using any fields); unary relationrx,sel for each program variablex represents reacha-
bility from the sel field of x. The guard formulas verify that each operation maintains
treeness.

The key to updating reachability in this case is the observation that between every
two nodes there is at most one path. Thus, the paths that should be removed when
removing an edge fromx to xl are exactly the ones that would have been added if this
edge had been added.

We can either check feasibility by reduction to satisfiability of an MSO formula
(similar to theγ̂ of [10]) on trees or we can check it directly (with lower complexity)
by building a single candidate concrete structure in a way similar to singly-linked lists.
No Undirected Cycles.In [11], we introduced a class of structures whose underlying
undirected graphs are acyclic (a.k.a. No Undirected Cycles). There we show an abstrac-
tion for handling this class of structures and algorithms for computing best abstract
transformers for this abstraction. Structures with No Undirected Cycles are acyclic and
have the interesting property that each pair of program variables can meet only once
(i.e., there is a single shared node reachable from both variables s.t. none of the nodes
pointing to that node are reachable from both variables). Furthermore, between any two
nodes there is at most one path.

We now define an abstraction similar to [11] and apply our methodology. The vocab-
ulary used for trees in extended with the following constants: For each pair of distinct
program variablesx andy, we addsx,y, which is the unique node in whichx andy
meet and create sharing (ornull if no such node exists).These are used in the guard
formulas to detect formation of undirected cycles. We also maintain unary reachability
from these constants. We can write a monadic-uniform guard formula using transitive
closure that detects the formation of undirected cycles. We can check feasibility of such
structures using methods similar to the ones using for trees.



Shared Trees.Shared trees are graphs in which between any two nodes there is at most
one (possibly empty) path. A way to visualize shared trees is that from every node
looking down the graph you see a tree. Shared trees arise in applicative data structures
(e.g., see [12, 13]) and in operating systems and databases performing shadow paging
(e.g., see [14]).

We use the same vocabulary as in the case of trees. Updating reachability for this
class of structures is done in the same way as in trees, because between any two nodes
there is at most one path. Detecting when the shared-trees property has been violated is
done by a guard formula when adding an edge. Again, the formula is monadic-uniform
but not quantifier-free.

We are working on checking feasibility for shared trees in this vocabulary and be-
lieve it is decidable. Because shared trees have unbounded tree width, a direct transla-
tion into satisfiability of an MSO formula will not yield decidability.
Uninterpreted Unary Relations. Sets and boolean fields can be added to any of the
above shape-analysis problems by introducing uninterpreted unary relations (a.k.a. col-
ors). We allow addition and removal of an element from a set, query for existence of
an element in a set, and selection of an arbitrary element from a set. The additional up-
date formulas needed are trivial. Selection is done by using a guard formula with a free
variable. The difficulty in checking feasibility when adding colors to a vocabulary, in
contrast to the original feasibility-checking problem, comes from the fact that the col-
ors can make distinctions that the original abstraction could not. The binary relations
between the now-separate nodes need to be taken into account.

Checking feasibility for singly-linked lists can be done by first checking feasibility
ignoring the colors, and then reducing the feasibility for each segment of the list to
the Directed Chinese Postman Problem [15], which can be solved in polynomial time.
Checking feasibility for trees and structures with No Undirected Cycles, can be done
by reduction to MSO.
Other cases.The relations required for analyzing doubly linked lists and ordered lists
can also be maintained using monadic-uniform transformers.

We do not have a general feasibility check for any structure over the vocabulary
of doubly-linked lists. However, we do know how to check feasibility for all the struc-
tures arising in most programs that manipulate doubly-linked lists (e.g., all the example
programs of TVLA) because all such structures are only ever small perturbations of
well-formed doubly linked lists.

6 Related Work

Specialized Shape Analyzers.Developing specialized shape analysis for commonly
used data structures is an active line of research [16, 9, 11, 17]. We are encouraged by
the fact that we are able to express all of the above-cited work using our methodology.
Moreover, our methodology supports shared trees and the addition of arbitrary colors,
which are beyond the scope of existing methods. It should be noted that our current
algorithms are more costly. In particular, the ad-hoc algorithm in [11] runs in time es-
sentially linear in the output, which is hard to beat. In the future, we plan to reduce the
costs of creating the transformers by: (i) focusing only the necessary parts, (ii) develop-
ing more efficient focus algorithms, and (iii) using incrementality to reduce the cost of
feasibility checks.
The TVLA System. The results in this paper are inspired by the TVLA system. The
TVLA system does not require that update formulas be monadic-uniform. It also allows
arbitrary classes of graphs to be used. Also, [18] includes an algorithm for automatically



generating update formulae for auxiliary information, which is fully integrated into the
system. (§5.4.1 of [19] describes the application of that machinery for an abstraction
similar to the one described for cyclic singly-linked lists.) However, the TVLA system
does not guarantee that the transformers are the best. Moreover, the system can issue a
runtime exception in certain cases when an operation may lead to an infinite number of
structures. In this paper, we build specialized shape analyses that can handle many of
cases for which TVLA was used. For most of these cases, we can now compute the best
abstract transformer. In the future, it may be possible to combine methods like the ones
in [18] with our method. For example, there may be a way to generate monadic-uniform
update formulas in certain cases.

The focus operation in TVLA differs from the one in this paper in several key as-
pects including: (i) it requires the user to specify which formulas to focus on, and (ii) it
may yield an infinite number of structures. In contrast, in this paper we show that for
every monadic-uniform update, there is a computable set of focused structures that lead
to best transformers. Our results also shed light on the cases when the updates in TVLA
are precise.
Procedures and Libraries. In this paper, we focused on handling programs without
procedures and libraries. It is possible to handle procedures and libraries by tabula-
tion of input/output relations between abstract values (e.g., see [20, 21]). It may be also
possible to handle specific libraries by allowing monadic-uniform specifications of aux-
iliary relations that describe an abstraction of the effect on the client module.
Employing Theorem Provers and Decision Procedures.Theorem provers and deci-
sion procedures can be employed to prove properties of programs that manipulate the
heap (e.g., see [22–25, 7]). Moreover, they can be used to fully automate the process of
generating transformers (e.g., see [26–28, 10]).

Results from dynamic descriptive complexity and the methodology of this paper
improve the aforementioned results in various ways. For instance, in contrast to the
method of Lahiri and Qadeer [24], which requires user intervention, our method handles
programs that manipulate cyclic lists in a totally automatic way.

In essence, the introduction of transformers that use only monadic-uniform update
formulas can be seen as a way to replace a characterization ofmutationsof data struc-
tures with a characterization in terms ofinvariants. That is, two-vocabulary structures
(which describe the state before and after the transition) are a natural way to express mu-
tations, whereas standard one-vocabulary structures express invariants. In some cases,
the switch from two-vocabulary to one-vocabulary structures results in an order-of-
magnitude complexity improvement. In other cases, where decision procedures are not
known for—or known not to exist for—two-vocabulary structures, the reduction to one-
vocabulary structures restores the possibility of employing decision procedures:

– With two-vocabulary structures, it is easy to see that monadic second-order logic is
undecidable even on linked lists. (The intuitive reason is that two functions, plus a
few unary relations, can be used to encode a grid.) However, monadic second-order
logic on trees is decidable [29], and thus can be used to perform the feasibility
checks on one-vocabulary structures that are needed when our method is employed.

– Rakamaric et al. [7] gave a complete decision procedure for checking feasibility
of a given (one-vocabulary) abstract state, but left open the question of how to
handle transformers in the most-precise way. Our methodology solves this problem:
the DynQF updates for singly linked lists of Hesse [6] can be used to recast the
problematic transformers using only one-vocabulary formulas, and hence the best
transformer is computable as explained in§1.
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