
The Expressiveness of a Family of Finite
Set Languages

Neil Immerman∗ Sushant Patnaik∗ David Stemple†

Computer and Information Science Department

University of Massachusetts
Amherst, MA 01003

Theoretical Computer Science 155(1) (1996), 111-140.

Abstract

In this paper we characterise exactly the complexity of a set based database
language called SRL, which presents a unified framework for queries and up-
dates. By imposing simple syntactic restrictions on it, we are able to express
exactly the classes, P and LOGSPACE. We also discuss the role of ordering
in database query languages and show that the hom operator of Machiavelli

language in [OBB89] does not capture all the order-independent properties.

1. Introduction

The expressiveness and complexity of database query and transaction languages are
of interest for a number of reasons. Since the size of inputs to expressions in these
languages is often very large, controlling the expressiveness of a language can be used
to reduce the number of intractable queries posed by naive users, a major clientele of
query languages. In addition, powerful optimization techniques are easier to develop

∗Research supported by NSF grant CCR-9008416
†Research supported by NSF grants IRI-8606424 and IRI-8822121 and ONR U.R.I. grant N00014-

86-K-0764.

1

and apply to limited languages than to more general languages. It is also often eas-
ier to reason formally about limited languages than about more general languages,
though it is sometimes hard to isolate the difficulties stemming from the superficial
diversity of a language, i. e., a large number of ways of expressing the same compu-
tation, from those due to its computational complexity. Our motivation includes the
first two reasons, but is also strongly concerned with the third - the tractability of
reasoning about finite set computations. While such tractability can be useful in op-
timizing queries and transactions, it can also be used to assure the quality of systems,
for example, in terms of consistency maintenance over transactions.

Here we address the expressiveness of languages for specifying computations over
finite sets. The family of languages we consider has very few primitives and its
semantics are expressed by a small set of algebraic axioms. It does not start with
first order logic and set theory, nor rely on concepts of destructive update or random
access memory (or the related concepts of object ids and ref types). Unlike many
approaches to computing with finite sets, it is designed to be seamlessly combined
with other algebraic computational models such as ordinary arithmetic or recursive
data type algebras. One of our goals is to be able to reason effectively about the
complexity and other properties of computations over combined algebras, including
finite set algebra.

Our logic base is simply the if-then-else function. First order logic is included
in our computational model as a result of combining set traversal and the if-then-
else operator. Our framework includes simple tuple algebra, expressing the ability to
construct typed, fixed arity, non-recursive tuples and to select their components. Set
traversal is expressed using a single mechanism, the higher order function set-reduce,
which applies functions as it traverses a set. This is the sole iterative construct,
and it can depend on the order of traversal. Its formalization in algebraic axioms
makes the order of elements in a set manifest and allows order dependence to be
reasoned about using mechanical reasoning capabilities, which are based on Boyer-
Moore computational logic ([SS89]). In this way, we can often prove that the result of
a computation is order independent even though the ordering is implicitly used as we
traverse a set. This allows a new approach to a question raised by Chandra and Harel
as to whether there is a language that expresses exactly the polynomial-time, order
independent queries. All previous research on polynomial time queries has chosen
either to deal with languages that express order dependent queries, or languages in
which certain simple order independent queries cannot be expressed.

There have been numerous studies of the expressive power of query languages. For
instance, it is well known that first order relational query languages are limited in
their expressibility [AU79]. However when augmented with recursion or looping (as
an added primitive) they become sufficiently powerful to express exactly the queries

2

in various complexity classes. Characterizing the expressive power of such languages
has been the principal object of study in [Va82], [CH80], [CH82a], [CH82b], [AU79],
[Imm82], [AV89]. For example, Immerman and Vardi discovered independently that
fixpoint logic plus ordering expresses the set of polynomial time computable queries
[Va82], [Imm82].

A common and rather useful way of measuring expressiveness is to use complexity
characterizations. One finds classes of queries capturing LOGSPACE, P, PSPACE,
PRIMREC. Interestingly, most of the classes of queries considered turned out to
capture some complexity class. It seems that certain query language comparisons are
connected with deep problems of complexity theory. Recently parallel evaluation of
recursive queries has also drawn considerable attention in [CK85], [AC89].

In the past the emphasis has been to develop a natural set of primitives for a
query language so that it can compute all the computable queries as in [CH80], [Ch81],
[AV88]. Unbounded arity relations or the ability to create new values have been used.
For example, Chandra and Harel, in [CH80], define the concept of computable queries
and present a complete database programming language and show that relational
algebra augmented with the power of iteration is complete. 1 In [HS89b], Hull and Su
consider a hierarchy of languages whose complexity is in the super exponential range.
However, we are interested in devising a natural language whose complexity is clear
from the syntax but for feasible complexity classes from a database point of view, e.g.
TIME[n] and SPACE[logkn]. Instead of computable queries, we regard primitive
recursive queries as the high end of the spectrum. Indeed, all of the interesting
complexity classes are contained in PrimRec. Our measure of complexity is data-
complexity as defined by Vardi [Va82].

The set-reduce construct (defined in section 2) can be thought of as a bounded
loop primitive. See [SS89] for more details. The set-reduce construct resembles the
hom operator of the database programming language called Machiavelli [OBB89].
We define the transaction language, unrestricted SRL and show that its corresponding
query language captures the primitive recursive properties. We then show that natural
restrictions of this language capture P , DSPACE(log n) and NSPACE(log n).

The expressive power of the bounded loop construct or its variant has been studied
before in [AU79], [Va82], [Q89], [CH80], [Imm87], [AV88] but not in this framework.
In [Ch81], Chandra raises the question of specifying a set of primitives of the form
forall tuples t in relation R do statement S, where S is restricted so as not to use the
order in which the forall cycles over all the tuples, such that programs in this style
can compute all the computable queries. The set-reduce construct provides a partial

1Here a complete database language is one that can compute every partial recursive function of
its database [CH80].

3

answer.

In [AV88], Abiteboul and Vianu present declarative and procedural update lan-
guages and show that they are complete in Chandra and Harel’s sense. They also
define restrictions on their languages and characterize their expressiveness. They
define the so-called “non-deterministic” updates and show certain languages to be
“non-deterministic” update complete. Their definition of “non-deterministic” up-
dates is actually what we refer to as order-dependent. It should not be confused as
such with non-determinism as referred to in complexity theory. In [Q89], Qian studies
the complexity of a bounded looping construct foreach x in R/p(x) do t(x) and shows
that, under deterministic semantics, her language and a subclass of it have polynomial
time and first order expressive power. Her looping construct closely resembles the set-
reduce operator, however the two corresponding languages differ in their algebras. Her
definition of “non-deterministic” semantics, identical to Abiteboul and Vianu’s, does
not lead to a decidable distinction between non-deterministic and deterministic lan-
guages. In a recent paper [AK90], Abiteboul and Kanellakis discuss an object oriented
database programming language wherein objects are built by applying set and tuple
constructors. They define an algebra for their language which is built from first-order
operators augmented with the powerset operator. The latter immediately puts the
data-complexity of their language in the exponential range. Had they instead defined
a bounded iteration operator, as we do, then it would have been possible to derive
sub-languages whose complexities lie between first-order and exponential. In [Gu83],
Gurevich characterized the complexity of functions defined using primitive recursion
over structures with finite domains. He showed that different versions of the language
(with bounded successor) capture functions in polynomial time and logspace.

This paper is organized as follows. Section 2 defines the set-reduce language
and gives some background. Section 3 presents some tools of descriptive complexity
[Imm87] and proves that SRL (with set-height at most 1) = P . Section 4 describes
ways of restricting the complexity of SRL. Section 5 shows that unrestricted SRL with
sets of unbounded width (or, equivalently, SRL with invented values) captures the
class of primitive recursive functions. Section 6 shows how to deduce the complexity
of a SRL program from its syntax. Section 7 discusses the role of ordering in database
query languages. Section 8 concludes with some comments and open questions.

2. The language

Set-reduce language is a typed language of finite expressions constructed and typed
according to the following rules. We assume a set of base types (with equality) that
includes the booleans, tuples (i.e., records without explicit attribute names) and sets

4

(without equality). Further, most of the paper can be viewed as assuming, besides
the booleans, a single base type with a finite domain.

1. true and false of type boolean are set-reduce expressions.

2. if srebool then sre1 else sre2, where srebool is a set-reduce expression of type
boolean, and sre1 and sre2 are set-reduce expressions of the same type, is a
set-reduce expression of the same type as sre1 and sre2.

3. constants of type T where T includes an equality relation are set-reduce expres-
sions of type T .

4. [sre1, ..., sren] where Ti is the type of srei, is a set-reduce expression of type
tuple(T1, ..., T n).

5. seli(sre) where sre is of type tuple(T1, ..., Tn) is a set-reduce expression of type
Ti.

6. sre1 = sre2, where sre1 and sre2 set-reduce expressions of the same type, is a
set-reduce expression of type boolean.

7. emptyset is a set-reduce expression of type set(alpha), where alpha matches any
type.

8. insert(e, s), for s, a set-reduce expression of type set(T) and e, of type T , is a
set-reduce expression of type set(T).

9. set-reduce (s, app, acc, base, extra) is a set-reduce expression of type T ′, where
s, base and extra are set-reduce expressions of types set(T), T ′ and extype, re-
spectively, and app and acc are formed by appending lambda(x, y) to set-reduce
expressions, in which only x and y can appear free. The variables x and y
in app must appear in places appropriate for set-reduce expressions of types T
and extype; and in acc in places appropriate for T and T ′, respectively. The
typing of lambda expressions follows the normal type inference rules for lambda
expression applications.

10. (srlexp) is a set-reduce expression if srlexp is a set-reduce expression, and it has
the same type as srlexp.

This defines a ground language in which no free variables occur. In the sequel,
we use expressions in the inductive language, i. e., with free variables, to stand for
ground expressions in which the bindings to the free variables are not shown.

5

Note that equality is axiomatized only for the base types. For other types, it has
to be expressed using the set-reduce operation. The extra template in the set-reduce
operator is for the purpose of passing extra variables into functions so that all refer-
ence is local; the use of extra parameters makes nested variable scoping and currying
unecessary while allowing succinct expression of a wide variety of functions and al-
gorithms [SS89]. The input to any set-reduce expression is a structure or database
specified by the name(s) of set(s) or relation(s).

The semantics of set-reduce expressions is given by the following rules and equa-
tions for which there is a straightforward reduction mechanism that is complete for
deciding equality of ground terms.
Boolean

(if true then e1 else e2) = e1

(if false then e1 else e2) = e2

Other types
The equality of constants of types other than boolean, tuple and set is defined by the
types.

Tuples
Tuple construction is a function. For tuples t and t′ of type tuple(T1, ..., Tn),
ei typed Ti for i = 1 to n, t = [e1, ..., ei, ...en] and t′ = [e′1, ..., e

′

i, ...e
′

n]

(t = t′) − > (ei = e′i) for i = 1 to n

seli(t) = ei for i = 1 to n

Finite sets
The interested reader is referred to [SS89] for a formal specification of the semantics
of emptyset, insert, choose and rest (the latter two used in the semantics of set-
reduce). Here, we point out the salient features. We assume that each base type is
equipped with an ordering (and hence, every type has an ordering induced by the
latter). For any non-empty set, S, of type T , choose(S) is defined to return the
minimal (in the ordering of T) element in S, and rest(S) returns S/choose(S).

set-reduce(s, app, acc, base, extra) =
if s = emptyset

then base
else acc(app(choose(s), extra), set-reduce(rest(s), app, acc, base, extra))

6

The semantics of lambda expressions are given by straightforward reduction rules.

Parentheses
(srlexp) = srlexp

The above specifies a many-sorted signature and a set of axioms. The axioms for
finite sets specify the existence of a total order on the domain type of a finite set
type. Any model (algebra) of the specification must supply an order. Although
an ordering is assumed to exist on types, an order symbol is not included in the
language, its only use is through the set-reduce construct. The results may still be
order-independent. (In our use of this specification a user of the type does not supply
an order. The implementation supplies the order. A user may observe the order, but
may not encode any information in it, nor depend on it in any way other than on its
existence.)

In the following definition, we consider the expressiveness of set-reduce language
over structures with a finite domain. We consider functions in our framework to
accept structures (databases) as input and return structures as output.

Definition 2.1 The class of set-reduce functions is the smallest class of functions
computed by such set-reduce expressions and closed under composition and set-reduce
operations. We denote it as F(u-SRL). We denote the class of decision problems
(boolean valued functions) expressible in this language as L(u-SRL).

Note that boolean and, or, and not can easily be defined with the if-then-else function.
Also, note that we have made available to us an ordering relation (denoted by ≤) on
the domain which is the same order in which the elements are scanned by the choose
mechanism of set-reduce ([SS89]). This is quite natural, since any computation must
use an ordering. See Section 7 for a discussion of the ordering.

We believe that the set-reduce framework can provide a suitable base on which
algebraic specifications of computations over databases can be analysed for purposes
of assuring correct behavior and achieving optimized implementations. We wish to
limit the expressiveness of unrestricted SRL to within reasonable complexity classes
so as to make the latter task feasible. We impose syntactic restrictions on unrestricted
SRL and study their effect on its expressive power.

Definition 2.2 We define set-height() as follows:

set-height(base-type) = 0

set-height(set of α) = 1 + set-height(α)

7

As a first step, we restrict the use of set types to those with set-height at most 1, but
allow arbitrary, though fixed (for any given expression), nesting and width (or arity)
of tuple types. Let us denote this restricted version of the language as SRL.

Definition 2.3 We define the class of decision problems (respectively, functions)
expressible in SRL as L(SRL) (F(SRL)).

Functions expressible in SRL are similar to Cobham’s recursive functions [Co64] and
we show that the two classes are indeed equivalent. The restrictions on set-height and
tuple-width are, as shown later, quite crucial to our result. To get started, we use the
following fact:

Fact 2.4 ([SS89]) Finite set functions such as union, intersection, difference, mem-
bership; predicates for universal and existential quantification such as forall, forsome;
and relational operators such as join, project and select can be expressed in SRL.

3. Expressiveness of SRL

Our approach to characterizing the expressive complexity of SRL follows the con-
ventions of descriptive complexity [Imm87]. We will code all inputs as finite logical
structures. The universe of structure is {0, 1, . . . , n − 1} and is denoted by D. We
assume that the ordering on the universe (or, synonymously, domain) is given by the
one on natural numbers. A vocabulary τ =< Ra1

1 , Ra2

2 , . . . , Ras

s > is a tuple of input
relation symbols of fixed arities. Let STRUCT [τ] denote the set of all finite struc-
tures of vocabulary τ . We will think of all complexity theoretic problems as subsets
of STRUCT [τ] for some τ . The advantage of this approach is that when we consider
our inputs as first order structures we may write properties of them in variants of
first-order logic.

For any vocabulary τ , there is a corresponding first-order language L(τ) built up
from the relation symbols of τ and the logical relation symbols and constant symbols
: =,≤, 0, n−1, using logical connectives : ∨,∧,¬, variables : x, y, z, .., and quantifiers
: ∀, ∃. Let FO be the set of first-order definable problems:

FO = {S|(∃τ)(∃ϕ ∈ L(τ))S ∈ STRUCT [τ] |= ϕ}.

Let us recall the definition of first-order interpretation [IL89, Imm87]. We assume
a bit-encoding for the relations in the definition. For example, R(x, y) over D =
{0, . . . , n − 1} is represented by a sequence of n2 bits such that R(x, y) is true iff
nx + y-th bit is 1.

8

Definition 3.1 Let S ⊂ STRUCT [σ], T ⊂ STRUCT [τ] be two problems. For
simplicity, assume that the vocabularies, σ, τ consist of single input relations, < Qa >
, < Rb >, of arity a and b, respectively.

Let k ≥ 1 be a constant and let ϕ(x1, . . . , xk) be a FO formula from L(σ). Then
ϕ defines a mapping mϕ : STRUCT [σ] → STRUCT [τ]. Let A = < n, Qa > ∈
STRUCT [σ] be a string of length na. Then mϕ(A) = < ni, Rb > is a string of length
nbi = nk. Thus the bit numbered (in n-ary) j1j2 . . . jbi is 1 iff A |= ϕ(j1, j2, . . . , jbi). If
for all A in STRUCT [σ],

A ∈ S ↔ mϕ(A) ∈ T

then mϕ is a k-ary first-order interpretation of S to T and we write S ≤fo T if such
an interpretation exists.

In other words, any relation of T ∈ STRUCT (τ) is defined by a formula in first order
logic over the relations of S ∈ STRUCT (σ). We refer the reader to [IL89] for further
details and examples of such reductions.

Definition 3.2 A class C is closed under FO interpretations if for any problem T ⊂
STRUCT [τ] in C and for any problem S ⊂ STRUCT [σ], S ≤fo T implies that S is
in C.

Let P denote the class of decision problems recognizable by deterministic Turing
machines in time polynomial in the length of the input. To prove that L(SRL)
contains P we will show that L(SRL) is closed under FO interpretations and that it
contains a problem that is complete for P via FO interpretations.

Proposition 3.3 L(SRL) is closed under FO interpretations.

Proof: If L(SRL) is closed under boolean and quantifier operators, and there is a
FO-translaton from S to T and T is in L(SRL), then since L(SRL) is closed under
composition, S is in L(SRL), i.e., there is a boolean-valued function expressible in
SRL that is true precisely on S.

Closure under boolean operations follows from the definition of SRL. Closure
under quantification is implicit in 2.4. Thus, for example to see that L(SRL) is closed
under universal quantification, let ϕ1(R̄, y) be a boolean function ∈ SRL, where y
is a variable ranging over domain D and R̄ are relation names, and let ϕ(R̄) be the
first-order logic formula, ∀y ϕ1(R̄, y). Then, ϕ can be expressed in SRL as :

ϕ(R̄) = set-reduce(D, λ(d, e)ϕ1(e, d),∧, true, R̄)

The existential quantifier case is handled similarly.

9

Definition 3.4 Let an alternating graph G = (V, E, A) be a directed graph whose
vertices are labeled universal or existential. Let APATH(x, y) be the smallest relation
on vertices of G such that

1. APATH(x, x),

2. If x is existential (i.e. ¬A(x)) and for some edge (x, z) APATH(z, y) holds
then APATH(x, y),

3. If x is universal (i.e. A(x)) there is at least one edge leaving x and for all edges
(x, z) APATH(z, y) holds then APATH(x, y).

Let AGAP = {G|APATH(V0, Vmax)}.

The ≤ predicate, included in the base functions of SRL is crucial to the following
result.

Fact 3.5 ([Imm87]) AGAP is complete for P under first-order reductions.

Consider the following monotone operator Γ [Imm87]:-

Γ(R)[x, y] ≡ (x = y) ∨ [(∃z)(E(x, z) ∧ R(z, y)) ∧ (A(x) → ((∀z)E(x, z) → R(z, y)))]

It is easy to see that LFP (Γ) = APATH . We show that it is possible to express
AGAP as a function in SRL in the following lemma:

Lemma 3.6 APATH is expressible in SRL.

Proof: We shall specify the types in our SRL function for APATH only at the
beginning and then use variables without mentioning types to enhance the readability.
We shall use Fact 2.4 extensively.

Let NODES of type set(V) and EDGES of type set([from, to : V, label :
{AND, OR}]) be the input. Thus, the set of AND and OR labeled vertices can
be obtained as follows:

ANDS = project(select(EDGES , λ(x)x.label = AND), from)

ORS = project(select(EDGES , λ(x)x.label = OR), from).

We can write Γ in SRL easily and then simulate the least fixed point operator on
Γ which is of arity 2, by writing a loop which runs n2 times.

10

Γ(x, y, R) = (x = y) ∨ (forsome(NODES, λ(z)(member([z, y], R) ∧
member([x, z], EDGES)))

∧ (¬(member(x, ANDS)) ∨
forall(NODES, λ(z)(¬(member([x, z], EDGES))∨

member([z, y], R)))))

Γ(R) = set-reduce(NODES,
λ(d1, S)(set-reduce(NODES, λ(d2, e)([e, d2]),

λ(t, T)(if ¬(member([t.1, t.2], T)) ∧ Γ(t.1, t.2, T)
then insert([t.1, t.2], T)
else T),

S,
d1)),

union,
R)

LFPΓ = ITERATE() where
ITERATE() = set-reduce(NODES, identity,

λ(d, Z)(set-reduce(NODES, identity, λ(d, X)Γ(X), Z)),
{})

Corollary 3.7 P ⊆ L(SRL).

Proof: Since AGAP is complete for P under FO reductions (by Fact 3.5), and it is
expressible in SRL (by Lemma 3.6), and L(SRL) is closed under FO reductions (by
Proposition 3.3), it follows that P ⊆ L(SRL).

Since we have defined SRL so that set-height is at most 1 and tuple nesting and width
are constant, we have that

Proposition 3.8 Let l be the tuple nesting and w be the tuple width of a tuple type
α. Let S be of type set of α and let n be the number of elements in the input domain
D. Then, |S| ∈ O(nw).

11

Proof: The maximum size of any set S that can be formed is equal to the number of
possible tuples of width w and nesting l which is easily seen to be wl−1nw ∈ O(nw).

It now follows that

Lemma 3.9 L(SRL) ⊆ P.

Proof: We define depth, d, of a set-reduce function, recursively as follows.

depth(base functions) = 0
depth(set-reduce(S, appf, accf, b, e)) = 1 + max(depth(S), depth(appf), depth(accf),

depth(b), depth(e))

We show by induction on d that each function F in SRL can be computed in time
polynomial in n and therefore produces sets of polynomial size.

Base case: d = 0. The base functions can clearly be computed in P . Only insert
increases the set-size by 1.

Inductive Step: Any function in SRL is of the form

F (S, e) = set-reduce(S, appf, accf, b, e)

By the inductive hypothesis, accf, appf, base, e and S can be computed in time ≤ nk,
for some constant k. Thus, we have |S| applications of appf, accf on inputs of size
at most nw by the proposition above. Total time to compute this recursion is

= the time to compute accf, appf |S| ≤ nw times on input of size nw

+ time to compute base + the time to compute e
≤ 2(nw)(nw)k + nk + nk

≤ nk′

, for some constant k′ = w(k + 1) + 1.

Theorem 3.10 P = L(SRL).

Proof: It follows from the Corollary 3.7 and Lemma 3.9 above.

Remarks:

12

• It is possible to show that DTIME(nk) ⊆ SRL by directly simulating the
Turing machine computation. Refer to section 6 where we give tighter bounds
on the complexity of an SRL expression from its syntax.

• Let FP denote the class of functions computable in polynomial time. Then, it
follows from the previous theorem that

Corollary 3.11 F(SRL) = FP .

• Restricting to a single usage of set-reduce does not help to restrict the complex-
ity. It still remains sufficiently powerful to express AGAP and hence the whole
of P .

• The restriction on set-height is crucial as the following example shows. With
set-height 2, it is possible to express a function in SRL that constructs a set of
size exponential in the size of the input set.

Example 3.12 Consider the following function, powerset(S), which given a set
S constructs the power set P (S) of S. For example, powerset({1, 2}) returns a
set of sets, {{}, {1}, {2}, {1, 2}}.

powerset(S) = set-reduce(S, identity, sift, {{}})

Sift takes an element x and a set of sets T and calls finsert to insert x in each one
of the elements of T and returns T unioned with all these new sets containing
x.

sift(x, T) = set-reduce(T, λ(y, e)([y, e]), f insert, {}, x)

Finsert takes as arguments x, a two tuple of a set and an element, and a set of
sets, T and returns T ∪ {x.1} ∪ {x.2 inserted in x.1}.

finsert(x, T) = insert(x.1, insert(insert(x.2, x.1), T))

Similarly, it can be shown that such a situation exists if we do not restrict
the tuple nesting. In this case, we are able to represent a list, e.g. 〈1, 2, 3〉 as
[1, [2, [3, [−,−]]]]. Then, T in the program above is typed as a set of tuples of
width 2 and arbitrary nesting, and we redefine finsert as follows:

finsert(x, T) = insert(x.1, insert([x.2, x.1], T))

powerset(S) = set-reduce(S, identity, sift, {[−,−]})

In [SS89], a list-reduce construct is defined which is exactly the same as set-reduce
except that the object we recurse over is a list, and not a set. The difference is that
the items appear in a specific order in the list. Clearly any function realized using

13

set-reduce can be implemented using list-reduce by simply substituting the former by
the latter construct. Define list-height analogous to set-height. Let us denote LRL
as the corresponding language with list-reduce replacing set-reduce as the recursion
operator and with list-height ≤ 1 and F(LRL) as the functions that can be expressed
in this language. As observed above, F(SRL) ⊆ F(LRL). But F(LRL) 6⊆ FP . This
can be seen from the following function which is not in P , but is readily seen to be
in LRL viz. F (< 1 >, < 1, 2, .., n >) =< 1, 1, . . . , (2n times), . . . , 1 >. Note that lists
can be of arbitrary length in this language. In fact, we will see that F(LRL) exactly
equals the class of primitive recursive functions.

The proof of Lemma 3.9 goes through as long as Proposition 3.8 is not violated.
So what are the operators that can be included in set-reduce language such that it still
remains within P ? Clearly integers and bounded operators on them such as addition
mod x and multiplication mod x, where x is an exponential function of n (the input
size), can be added to set-reduce language without blowing up its complexity, since
the size of such objects is bounded by log x, which is polynomial in n. Let N denote
the set of natural numbers. Let succ denote the successor operator on the naturals.
It is shown later that allowing objects of type N or integers, with the usual succ
operator on such types, in set-reduce language increases the complexity to that of
primitive recursive functions. In particular, if we allow addition or multiplication on
integers and allow the type, set of integer, then we can express the class of primitive
recursive functions in this language.

However, if we do not permit the use of the type, set of N or set of integer, then
its complexity is still within P . For example, we can safely add integer types along
with addition (+) on integers in set-reduce language while still remaining within P
provided we do not allow the type, set of integer. We can also add the operation of
multiplication (∗) on integers, if in addition to the previous restriction, we do not
allow the accumulator function, accf , to use it. Clearly, addition and multiplication
are in P and hence, their result is polynomial sized.

Let x and y be of some ordinal type α, like N . Let < op > be some operator such
that if x < op > y is repeated n times recursively then size of the result is polynomial
in the sizes of x and y, and in n. Let a = x op y and let |x| denote the size or length
of the binary representation of x. SRL is closed with respect to such an operator
< op > defined on α, provided the type - set of α - is not permitted. An example
would be some < op > such that |x < op > y| is an additive function of |x| and
|y|. But if |x < op > y| were a multiplicative function of |x| and |y|, then we have
to impose one further restriction - we do not allow accf in the set-reduce construct
to use < op > unless one of the operands is a fixed constant. If op is + then |a| ≤
max{|x|, |y|} + 1, whereas if op is ∗ then |a| ≤ 2 ∗ max{|x|, |y|}. Thus, if one allows
accf to use multiplication, then it is easy to compute x2n

(which cannot be done in

14

P) in set-reduce language by repeated squaring. However, we can allow multiplication
by a constant inside accf , while still remaining within P , since in this case, the size
of the result of n repeated multiplications by a constant is clearly polynomially (in
fact, linearly) bounded. It can be easily observed that

Proposition 3.13 Addition of other operators and functions to SRL will not take us
out of P provided that the size of the sets we can build, using those operators, remains
polynomially bounded.

4. Restricted versions of SRL

Let L (NL) denote the class of problems recognized by deterministic (non-deterministic)
Turing machines using space no more than logarithmic in the input size. It is well
known that L ⊆ NL ⊆ NC2. The question arises as to whether there exist any
syntactic restrictions on SRL that in an elegant and natural way capture L and NL.
Characterizing L and NL as some form of SRL would be interesting since problems
in these classes are also efficiently parallelizable.

One way of doing this follows easily from the results in [Imm87]. We adopt the
same notations. Let ϕ(x̄, x̄′) be any FO formula. Define TC[λx̄, x̄′ϕ] as the reflexive,
transitive closure of the relation ϕ. Let (FO + TC) be the set of properties expressible
using first order logic plus the operator TC. The following characterization is well
known:

Fact 4.1 ([Imm87, Imm88]) NL = (FO + TC).

We define a new operator called TC, in SRL as follows. Let the set of vertices be D.
TC(ϕ) is computed as follows in SRL:

Let EDGEp([x, y]) = ϕ(x, y), and EDGES = select(join(D, D), λ([x, y])EDGEp([x, y]))

The function bothsides(v, EDGES) returns the pairs of vertices that are at distance
2 from each other, given the adjacencies specified by the current value of relation
EDGES:

{[x, y]|[x, v] ∈ EDGES ∧ [v, y] ∈ EDGES}

bothsides(v, EDGES) = join(D, D, λ(t1, t2)((t1.to = v) ∨ (t2.from = v)),
λ(t1, t2)([t1.from, t2.to]))

Add simply updates EDGES after every iteration.

add(v, E) = union(E, bothsides(v, E))

15

The transitive closure is obtained by simply iterating bothsides |D| times.

TC(EDGES) = set-reduce(project(EDGES, to), identity, λ(x, Y)(add(x, Y)), EDGES)

Let SRFO + TC be the class of problems expressible in a subset of SRL that
has only the following functions available: forsome, forall,¬,∨,∧,≤, TC. As an
immediate corollary to the preceding fact, we have that

Corollary 4.2 SRFO + TC = NL.

Proof: Clearly every property expressible in FO +TC can be expressed in SRFO +
TC and vice versa.

Given a first order relation ϕ(x̄, x̄′), let

ϕd(x̄, x̄′) ≡ ϕ(x̄, x̄′) ∧ [(∀z̄)¬ϕ(x̄, z̄) ∨ (x̄′ = z̄)].

That is, ϕd(x̄, x̄′) is true just if x̄′ is the unique descendant of x̄. Define DTC(ϕ) ≡
TC(ϕd). Let (FO + DTC) be the set of properties expressible using first order logic
plus the operator DTC. Then, analogous to the NL case, it comes as no surprise
that,

Fact 4.3 ([Imm87]) L = (FO + DTC).

DTC(ϕ) can be computed in SRL as follows:

ϕd(x̄, ȳ) = ϕ(x̄, ȳ) ∧ forall(D, λ(z, e)(p(z, e)), [x̄, ȳ])

where p(z̄, e) = ¬(ϕ(e.1, z̄)) ∨ (equal(e.2, z̄))

DTC(ϕ) = TC(ϕd).

Let SRFO + DTC be the class of problems expressible in a subset of SRL that
has only the following functions available: forsome, forall,¬,∨,∧,≤, DTC. Thus,
we have the following easy corollary from Fact 4.3 that

Corollary 4.4 L = SRFO + DTC.

Another, perhaps more natural, way of characterizing L is achieved by considering
the following restriction on SRL : we restrict the function acc in our set-reduce
template to return just a tuple of bounded width (and set-height zero). Let us denote
this version of SRL as BASRL and the set of decision problems expressible in this

16

version of SRL as L(BASRL). Then, we can show that the class L is exactly equal
to L(BASRL) as follows. The proof is similar in form to that of P equals L(SRL).
We need the following definitions. We treat the elements of D as numbers. This will
enable us to perform arithmetic functions conveniently.

Let BIT (i, x) denote the value of the ith bit in the binary representation of x. In
the context of SRL, since it only deals with sets and not numbers, we have to impart
a meaningful interpretation to this operator. Assume the active domain of any SRL
program is D and let |D| denote the size of D and let n = |D|.

Note that we have a total order ≤ on D which is the order in which the elements
of D are scanned by set-reduce. We can either assume that it is available to us as a set
of pairs say, S = {(a, b)|a ≤ b}, or we can compute the successor or predecessor of an
element with respect to ≤ whenever we need it. Each element has a unique position
in this ordering. Let d1, d2 be any elements in D, let i1, i2 be the ranks (positions)
of d1, d2 in that total order. Then, BIT (d1, d2) ≡ BIT (i1, i2). In a similar vein we
define addition, multiplication, exponentiation. Let d1, d2 ∈ D and let i1, i2 be their
respective ranks in the ordering ≤. Then d1 + d2 is defined to be d3 ∈ D such that
if i3 is the rank of d3 in ≤ then i3 = i1 + i2. Multiplication and exponentiation are
likewise defined.

Proposition 4.5 Addition, multiplication, exponentiation are expressible in BASRL.

Proof: We show how to add 1 to a as follows. Starting with [false, false, a], we
iterate over D, changing the first false to true when we find a, changing the second
false to true on the next step when we remember a + 1 and then, finally returning
the triple, [true, true, a + 1].

increment(a) = set-reduce (D, identity,
λ(d, X)(if ¬(X.1) ∧ (d = X.3)

then [true, false, X.3]
else if ¬(X.2) ∧ (X.1) then [X.1, true, d]
else X),

[false, false, a])

Similarly one can define decrement(A). We have to take care of the boundary cases,
increment(n) and decrement(0), appropriately. Then,

ADD(a, b) = set-reduce(D, identity,
λ(d, X)(if ¬(X.1 = n)) ∧ ¬(X.2 = 0)

then [increment(X.1).3, decrement(X.2).3]
else if (X.2 = 0) then X

17

else [0, decrement(X.2).3]),
[a, b])

Note that ADD returns a tuple, [a + b, 0], while increment and decrement return a
tuple of the form ([true, true, a′]) and operators .1, .2 and .3 return the first, second
and third component of the tuple, respectively. Multiplication is expressed as follows:

MULT (a, b) = set-reduce(D, λ(s, extra)(extra),
λ(e, X)(if (X.2 = 0) then X

else [ADD(e, X.1).1, decrement(X.2).3]),
[0, b],
a)

Note that we use 0, n to simply mean the first and last elements respectively in ≤.
It is readily checked that x = 0 or, x = n can be expressed in BASRL by seeing
whether x is the first or, last element of the ordering. Exponentiation can now be
expressed as shown below:

EXP (a, b) = set-reduce(D, λ(s, x)(x),
λ(x, T)(if (T.2 = 0) then T

else [MULT (x, T.1).1, decrement(T.2).2]),
[1, b],
a)

Lemma 4.6 BIT is expressible in BASRL.

Proof: We shall use the proposition above. First we show how to divide by 2 in
BASRL:

SHIFT (a) = set-reduce(D, identity,
λ(x, e)(if ¬(e.1) ∧ ((ADD(x, x).1) = e.2)

then [true, x, false]
else if (increment(ADD(x, x).1).3 = e.2)
then [true, x, true]
else e),

[false, a, false])

18

Note that we have also defined a predicate, PARITY of a number as true iff number
is odd:

PARITY (x) = SHIFT (x).3

Finally, BIT (i, a), i.e. the ith bit of a is given by the parity of a divided by 2i as
follows:

REM(i, a) = set-reduce(D, identity,
λ(s, X)(if ¬(X.1 = 0)

then [decrement(X.1).3, SHIFT (X.2).2]
else X),

[i, a])

BIT (i, a) = PARITY (REM(i, a).2)

If a is a bounded width tuple of elements from D, then, BIT is interpreted with
respect to the ordering on the tuple induced by ≤. It is a straightforward but tedious
exercise to extend the proof to this case.

Corollary 4.7 L(BASRL) is closed with respect to FO interpretations that also
use BIT .

Proof: Let struct(σ) and struct(τ) be some vocabularies. Let A ⊂ struct(σ) and
B ⊂ struct(τ) be two problems. Given that A ∈ L(BASRL) and B ≤fo+bit A
we have to show that B ∈ L(BASRL). It follows immediately from 3.3 that
L(BASRL) is closed with respect to quantification and boolean operations, since
the set-reduce functions defined in that proof satisfy the definition of BASRL. Clo-
sure under BIT operation i.e. for any function f , f expressible in BASRL →
BIT (f, i) expressible in BASRL, follows from Lemma 4.6 above. Note that f ei-
ther returns a singleton element from the active domain or it returns a bounded
width tuple of elements.

Definition 4.8 Let π1, π2 denote two permutations on [n] = 1, 2, . . . , n. Let compo-
sition, ∗, denote the following operation:

π1 ∗ π2(i) = π2(π1(i)), 1 ≤ i ≤ n

Let Sn denote the group of permutations on [n] under composition. Let IMSn
denote

the following iterated multiplication problem: given permutations π1, . . . , πn ∈ Sn as
input, compute their composition, i.e. π1 ∗ π2 ∗ · · · ∗ πn.

19

The following theorem indicates the usefulness of IMSn
.

Fact 4.9 ([CM87, IL89]) IMSn
is complete for L under FO reductions with BIT .

We show how to express IMSn
in BASRL.

Lemma 4.10 IMSn
is expressible in BASRL.

Proof: We shall express IMSn
as a predicate in the sense that given the input as

stated earlier and also two other inputs viz. numbers i and j, our BASRL program
will return true iff the iterated product permutation maps i to j. The input will
be coded as follows: each permutation would be represented by tuples of the type,
[i, [j, k]], which means that the ith permutation maps j to k. Thus, the input,say I,
is a set of such tuples. Note that since i, j, k are represented by sets of respective
cardinalities the input is of set-height 2. It is easy to write a program in BASRL to
check that the permutation group is indeed Sn, where n is the number of elements
(permutations) being multiplied. Also, n can be regarded as a constant available to
us since one can always define it in FO as follows:

∃x∀y(y ≤ x).

Then, the following program expresses IMSn
. As before, we do not specify the types

in the following to make it easy to read.

IP (I, i) = set-reduce(I, identity,
λ(xtuple, pair)(set-reduce(I, identity,

λ(x, p)(if (x.1 = p.1) ∧ (x.2.1 = p.2) ∧ ¬(p.1 = n)
then [increment(p.1).2, x.2.2]
else p),

pair)
[1, i])

IM(I, i, j) = if IP (I, i).2 = j then true else false

Note that the accumulator function returns a bounded tuple in the above program.

Corollary 4.11 L ⊆ L(BASRL).

20

Proof: Since IMSn
is complete for L under FO interpretations that include BIT

(by Fact 4.9), and it is expressible in BASRL (by Lemma 4.10), and L(BASRL) is
closed under these reductions (by Corollary 4.7), the result follows.

Lemma 4.12 L(BASRL) ⊆ L.

Proof: It suffices to show that a logspace deterministic Turing machine can simulate
any BASRL program. Since the accumulator function only returns a bounded width
tuple, we can just write the tuple on O(log n) bits of worktape. It is easy to see
that the scan done by the set-reduce can be simulated by just scanning the input
with the read-only head and an index tape that uses at most log n bits. Now all that
remains is to show the closure under bounded number of compositions. This follows
from the well known fact that logspace computable 0-1 functions are closed under
compositions.

Finally, we have that,

Theorem 4.13 L = L(BASRL).

Proof: It follows from the previous lemma and the corollary.

Remarks. BASRL programs can be evaluated efficiently in parallel (since, L ⊆
IND(log n) ⊆ NC2).

5. Expressiveness of unrestricted SRL

Set-reduce language, without any restrictions, can become intractable, as we observed
in the remarks following Theorem 3.10. Let N be the set of natural numbers.In
this section, we consider the complexity of functions, from N → N, expressible in
the set-reduce language, when extended with an unbounded successor function. We
define SRL + new as SRL augmented with another operator, new, that gives the
language in effect the ability to construct a new element. In particular, let new(D)
return an element 6∈ D, where D is any set. Note that this is equivalent to having
an unbounded successor operator. At first glance it may seem that this version of
SRL is not that different from SRL. However, we show that these versions express
all the primitive recursive functions. Observe that SRL contains a bounded successor
function whereas SRL + new contains an unbounded successor function.

Let PrimRec denote the class of primitive recursive functions. Recall the defini-
tion of PrimRec [DW].

21

Definition 5.1 Let g :N → N, h :N × N → N. Then, f :N × N → N is defined
by primitive recursion from g, h if

f(0, t) = g(t)

f(s + 1, t) = h(s, g(s, t))

Let the initial functions be given as:

succ(i) = i + 1

n(i) = 0

pn
k([i1, . . . , in]) = ik

A function is primitive-recursive if it is obtained from the initial functions by a
bounded number of compositions and primitive-recursions.

Note that functions in SRL + new give mappings between sets. However, we
can consider them as functions from N to N, since finite ordered sets can be Gödel
numbered in a standard way. For example, in our notation, a mapping between
natural numbers and sets is given by:

0 = ∅, 1 = {d1}, 2 = {d1, d2}, . . . , n + 1 = n
⋃

{new(n)} . . .

In the following, F(SRL + new) denotes the functions from N to N that can be
expressed in the corresponding language.

Theorem 5.2 PrimRec = F(SR + new).

Proof: The initial functions are easily expressible in SR + new. Eg.,

projk(t) = t.k

(succ(S) = insert(new(S), S)).

In fact, this is the only usage of new.

(i):PrimRec ⊆ F(SRL + new):

It follows easily from the following

Proposition 5.3 F(SRL + new) is closed with respect to primitive recursion.

22

Proof: Let f be the function obtained from g, h by primitive recursion as defined
above. Given that g, h are expressible in SRL + new, we show how to compute f in
SRL + new.

f(S, T) = set-reduce(S, identity, λ(x, T ′)(hf(x, T ′)), [g(T), {}])

where hf(x, T ′) = [h(T ′.2, T ′.1), insert(x, T ′.2)]

(ii): F(SRL + new) ⊆ PrimRec:

The proof in this direction assumes the following encoding of the sets as numbers:
given an ordered domain D = {d0 ≤ d2 ≤ . . . dn ≤ . . .}, we encode any (ordered)
S ⊆ D as the number corresponding to the binary string 〈sn, . . . , sk, . . . , s0〉 such that
si is 1 iff di ∈ S. Note that k gives the largest element sk such that sk is in S, and
that any finite subset gives a finite number with infinitely many leading zeroes (which
are ignored in our framework). Also, note that di corresponds to the number 2i in
our encoding, and hence, Log(di) = i.

The initial functions in SRL + new, with the possible exception of insert and
new, are clearly primitive recursive. To show that insert is primitive recursive, we
define the following functions. Let Bit(n, i) denote the i-th bit of n, Div(n, j) denote
⌊n/2j⌋, Log(n) = maximum k such that Bit(n, k) = 1, Exp(n, i) = ni, Rlog(n) =
minimum k such that Bit(n, k) is 1, Mod(n, j) denote n mod 2j, and Cond(b, i, j)
= i, if b is 1 and j, otherwise. Let < n > denote the binary representation of the
number n. Noting that we have a successor operation, it can be shown that

Fact 5.4 Bit, Div, Mod, Log, Rlog, Cond are primitive recursive.

Using this fact, we show how to express insert(x, S): we set the bit corresponding to
x = di, in this case, the i-th bit, to 1. Let i = Log(x). Then,

new(S) ≡ Exp(2, Log(S) + 1)

insert(x, S) ≡ Cond(Bit(i, S), S, Div(S, i − 1) + 1 + Mod(S, i − 1))

Note that all the variables are treated as numbers in binary notation.

We have to show how to simulate the set-reduce operator using primitive recursion,
and that completes the proof. Note that the order, ≤, in which set-reduce scans a set
is given by the base functions, choose and rest. We observe that choose(S) is given
by 2i, where i is the position of the first non-zero least significant bit in < S >, and
rest(S) by shifting < S > to the right by i + 1 bits.

choose(S) ≡ Exp(2, Rlog(S))

23

rest(S) ≡ Div(S, Rlog(S) + 1)

Let accf , appf , basef be primitive recursive functions. Then any set-reduce expres-
sion in SRL + new, e.g.

f(S, y) = set-reduce(S, appf, accf, basef, y)

is equivalent to the following primitive recursive function:

f(0, y) = basef(y)

f(S, y) = accf(appf(choose(S), y), f(rest(S), y))

Remarks:

• Let cons be the list append operator. It can be shown in a manner similar to
the proof above that

Corollary 5.5 F(LRL) = PrimRec = F(SRL + cons).

• Note the crucial use of the types, N and set of N, in SR + new in the context
of the comments preceding 3.13. Thus, we see that merely throwing in new
operator increases the complexity of SRL all the way to PrimRec.

6. Complexity of SRL from its syntax

Given a program in set-reduce language, and the results in this paper, a scan of its
syntax allows us to make certain conclusions regarding its complexity. If the user
has sets of set-height greater than 1 in the program, then its complexity may be
exponential. On the other hand, if sets of set-height at most 1 are used, then its
complexity is polynomial in the size of the input sets. If in addition, the accumulator
functions, accf : {α, γ} → β, (for some types α, γ, β) in his set-reduce constructs are
such that β for any accf is never of type set, then we are certain that the function
expressed by the program is in L (or logspace). Any usage of the type set of some
unbounded type in the program would possibly make the function it is computing very
hard to optimize, but on the other hand using objects of unbounded type without
using set of such objects makes it less difficult.

Let a be the maximum width of a SRL expression, i.e. the maximum arity of
tuples used in a non-input set. Let d be the depth (defined in Lemma 3.6) of the

24

expression. Let Tins be the time complexity of an insert operation. Let n be the size
of the input. Keeping in mind that the sets dealt with are of size polynomial in n, Tins

could be O(1) (implemented by hashing), O(logn) (implemented by some balanced
data structure) or at worst na, the maximum size of any set in the expression. Let
DTIME[n] denote denote the class of decision problems recognizable by deterministic
Turing machines in time linear in the length of the input. Let DTIME(f(n)) denote
the class of problems recognized by deterministic Turing machines in time bounded
by O(f(n)). Then, we can easily bound the time complexity as follows.

Proposition 6.1 Any SRL expression with width a and depth d is in DTIME(nadTins).

Proof: By induction on the depth d.
d = 0: The base function insert takes time Tins.
Any set-reduce over a set, say R, of depth d, where the accf and app functions are
themselves of depth d − 1, takes time
≤ |R| (max{time of the accf or app})
≤ nana(d−1)Tins by the ind. hyp.
= O(nadTins)

The bound leaves much room for improvement. In actually analysing a particular
SRL expression, one usually can do much better, since then one can get rid of the
overestimated na term that appears in the proposition above. Is DTIME(n) ex-
pressible by a SRL expression with width 1 and depth 1? Apparently not. We show
in the following that DTIME(n) can be expressed by a SRL expression of width 2
and depth 3. However, the expression we obtain can actually be evaluated in time
O(n2Tins) which is much better than the bound O(n6Tins) given by 6.1 above.

Proposition 6.2 DTIME(n) is expressible by a SRL expression of width 2 and
depth 3.

Proof: We show how to simulate the computation of a DTIME(n) Turing ma-
chine by an SRL expression. Let σ be the alphabet, x1, . . . , xn be the input where
x1, . . . , xn ∈ σ, and n be the input size. Let S denote the input as a set of pairs
viz. {[1, x1], [2, x2], . . . , [n, xn]}. Let us denote the work tape W as another set of
pairs. It is easy to write a SRL expression, call it create-tape, that initializes W with
blanks i.e. {[1,−], [2,−], . . . , [n,−]}. Let us denote the input tape head and work
tape head positions by two variables, say P1, P2. Now we can just use a set-reduce
over S, thereby iterating n times, and in each iteration the accf , in this case, F1,
updates W ,P1,P2 according to the Turing machine program.

Simulate() = set-reduce(S, identity, λ(s, T)F1(T), [W, P1, P2])

25

F1(T) = set-reduce(S, identity, λ(s, X)F2(s, X), T)

Note that X is a 3-tuple of Worktape, position of input head, and position of work-
tape head. What F2(s, X) does is retrieve the contents of the tapes under the two
heads and modify the work-tape contents and update the head positions according
to the transition table of the Turing machine. We merely sketch an informal outline
leaving the interested reader to express the functions in SRL.

F2(s, X) = if (s.1 = X.2)
then set-reduce(X.1, λ(t, ex)[t, ex], λ(tE, Y)update(tE, Y),

[{}, 0, 0], [X.2, X.3, s.2])
else X

update(tE, R) = (if (tE.1.1 = tE.2.2)
then use TM transition table and tE.1.2

(work tape content) and tE.2.3(input cell) to make
a move i.e. change work head position tE.2.2
and input head position tE.2.1 accordingly and
return [insert([tE.1.1, tE.1.2′], R.1), tE.2.1′, tE.2.2′]

else [insert(tE.1, R.1), R.2, R.3]

Note that W is a set of pairs and hence the width is 2. F1 is of depth 2, since it
uses one set-reduce over S to get the input tape content and another over W to get
at the work-tape content. W is set up initially by a depth 1 set-reduce function called
create-tape. The total depth equals 3.

Note that we use the increment function implicitly in updating the head positions
and that that the set-reduce over W is repeated only once for one full scan of S,
and increment is also done only once for one full scan of W . An analysis of the
time complexity of the expression, Simulate(), reveals that the two set-reduce’s in F1
together take O(nTins) time and since it is iterated over n times, the total complexity
is n2Tins.

Let k be a constant. The proof above can easily be generalized to show that

Corollary 6.3 DTIME(nk) is expressible by a SRL expression of width k + 1 and
depth k + 3.

Remarks. The SRL expression obtained above can be evaluated in time O(n2kTins).

26

Let SRh denote the class of problems expressible by a version of set-reduce lan-
guage that has its set-height h and tuple-width = O(1). Let n denote the input size.
Let 2i#n denote a stack of i 2’s, i.e.20#n = nO(1), 2i+1#n = 22i#n

.

Then, following the preceding proof, it can be shown that

Corollary 6.4 For h = 1, 2, . . . SRLh = DTIME(2h#n).

Remarks. This hierarchy is mentioned here for the sake of completeness. It is quite
similar in notion to the results of [HS88], [AV88] and others.

7. The Rôle of Ordering

A set stored by a computer has its members in some order. Simply put, any object
is a sequence of bits, thus falling in place in lexicographical order. This allows any
database system to search through a set in lexicographical order à la set-reduce; and,
also to compute information that may depend on the somewhat arbitrary ordering
that ensues. For example, one may compute the order dependent boolean query:

Purple(First(S))

namely that the element that happens to be first in the arbitrary ordering of the set
S satisfies the predicate Purple(·).

It is neither surprising, nor especially dangerous that programs that search through
a set in a given order may compute some information that depends on that order.
If the order is truly independent of any information we wish to be computing and
if our programs are correct, then the answers will be independent of the ordering.
Furthermore, most sets of data have at least one natural ordering which can be used
instead of the arbitrary ordering, for example one can print the elements of a set of
employees in order of their names, or, date of hire, etc.

Still, if we are not certain that our programs are correct, then it would be nice to
know whether the answers we get depend on the arbitrary ordering of elements within
a set. Furthermore, one can imagine difficulties when long queries are suspended and
then resume, or when different parts of them are carried out at different sites of a
distributed database. In particular, these separated processes may be using different,
arbitrary ordering of the same set in which case, just combining their computations
without taking note of their dependence on the ordering, could lead to error.

In any case, there is general sentiment in the theoretical database community
that ordering is dangerous and that order dependent queries should be avoided. In

27

fact, in the influential paper [CH82a], Chandra and Harel define a query to be an
order-independent query and they ask the question:

Question 7.1 Is there a natural language that expresses exactly the set of polynomial-
time computable, order-independent queries?

One can make this question more precise by removing the undefined term “natu-
ral” and instead ask:

Question 7.2 Is there a recursively enumerable set of programs that compute ex-
actly the set of polynomial-time computable, order-independent queries over relational
databases?

The above two questions remain open in spite of many years of intensive study.
See [IL90] for a history of this subject. Here we give an overview of what is known
about Questions 7.1 and 7.2.

In a preliminary version of the paper [CH82a], Chandra and Harel defined fixed
point logic, FP, which is an extension of first-order logic to include applications of
the fixed point operator, thus allowing the inductive definition of new relations. In
symbols: FP = (FO(wo≤)+ LFP). Chandra and Harel conjectured that there was a
hierarchy of queries in FP consisting of successive applications of LFP and first-order
operations. In response, Immerman showed that Chandra and Harel’s conjecture was
false:

Fact 7.3 ([Imm82, Imm87]) Every query in FP is expressible the form

LFP(ϕ(R)[t̄]

where t̄ is a tuple of terms and ϕ is a quantifier-free formula containing no occurrences
of LFP.

Perhaps more interesting is the fact that if a total ordering of the universe is
present, then the queries expressible in (FO + LFP) are exactly those computable in
polynomial time.

Fact 7.4 ([Imm82, Va82])

(FO + LFP) = P

28

Fact 7.4 fails badly if we remove the ordering. For example, it is easy to show that
without an ordering we cannot count. In fact, if EVEN represents the query that is
true if the size of the universe is even, then:

Fact 7.5 ([CH82a]) EVEN is not expressible in (FO(wo≤)) + LFP).

Indeed, before 1989, examples involving the counting of large, unstructured sets
were the only problems known to be in order-independent P but not in (FO(wo≤) +
LFP). In 1982, Immerman [Imm82] considered the language (FO(wo≤)+LFP+count)
in which structures are two-sorted, with an unordered domain D = {d0, d1, . . . , dn−1}
and a separate number domain: N = {0, 1, . . . , n − 1} with the database predicates
defined on D and the standard ordering defined on N . The two sorts are combined
via counting quantifiers:

(∃i x)ϕ(x)

meaning that there exist at least i elements x such that ϕ(x). Here i is a number
variable and x is a domain variable.

For quite a while, it was an open question whether the language (FO(wo≤)+LFP+
count) is equal to order independent P. A positive answer would have provided a nice
solution to Question 7.1.

Instead, in [CFI89] it was proved that that (FO(wo≤) + LFP + count) is strictly
contained in order-independent P. See Theorem 7.8 below for an explanation and
slight generalization of this result.

See Figure 7.6 for the relationships between the polynomial-time query classes we
have been discussing.

(FO(wo≤) + LFP) ⊂ (FO(wo≤) + LFP + count)

⊂ (order-independent P)

⊂ (FO + LFP) = P

Figure 7.6: Some polynomial-time query classes.(The relation “⊂” denotes

proper containment.)

Another approach to capturing order-independent queries is worthy of mention
here. In [OBB89] the language Machiavelli is defined. It contains an operator called

29

hom which is similar to set-reduce. In the following definition, op is any previously
defined binary operation.

hom(f, op, z, {}) = z

hom(f, op, z, {x1, x2, . . . , xn}) = op(f(x1), . . . , op(f(xn, z)) . . .))

It is not hard to see that in the presence of an ordering, and with set-height restricted
to at most one, the languages SRL and a similar hom-based language, which we will
refer to as HL, have equivalent expressive power. However, in [OBB89], an instance of
hom is called proper if the corresponding op is commutative and associative. It follows
that an application of proper hom does not derive any information from the ordering
in which a set is presented. Thus the language “proper HL” is order-independent and
would seem to be a candidate for order-independent P.

One obstacle to this is easily overcome: when op is associative, the application of
hom may be drawn as a binary tree of height log n, and thus evaluated in parallel
time O[log n] times the parallel time to perform a single op. It follows that “proper
Machiavelli” is contained in the class NC consisting of those problems computable
in parallel time (log n)O[1] using polynomially many processors. NC is believed to be
strictly contained in P [C85].

We can alleviate this problem by allowing “proper HL” to iterate an operation
polynomially many times. One way to do this is to consider the language similar
to (FO(wo≤) + LFP + count) which has a number domain, N , separate from the
database domain. One can then safely allow arbitrary applications of hom over the
number domain. Define (FO(wo≤) + N + hom) to be this class. Then we have the
following proposition which says that “proper HL together with a polynomial iteration
operation” is at least as expressive as (FO(wo≤) + LFP + count). As of this writing,
we do not know whether or not this inclusion is proper:

Proposition 7.7

(FO(wo≤) + LFP + count) ⊆ (FO(wo≤) + N + hom)

Proof The above discussion explained why (FO(wo≤)+N+hom) contains (FO(wo≤)+
N + LFP). Thus it suffices to show how to count using proper hom. This is easy.
Let f : D → N be the function that takes everything in the database domain to the
number 1. Then we can count a set S ⊆ D using hom as follows:

count(S) = hom(f, +, 0, S)

30

We next show that the lower bound from [CFI89] does apply to the language
(FO(wo≤) + N + hom). It also applies to the language (FO(wo≤) + count + while).2

Theorem 7.8 The set (order-independent P) is not contained in (FO(wo≤) + N +
hom + while).

Proof The paper [CFI89] constructs a sequence of structures Gn, Hn, n = 1, 2,
These structures contain O[n] domain elements. Gn and Hn may be distinguished in
linear time if we have access to any ordering on their domains. By contrast, Gn and Hn

agree on all sentences in (FO(wo≤) + count) containing at most n distinct variables.
(If the simple, polynomial-time order-independent property that characterizes Gn

were expressible in (FO(wo≤) + LFP + count) or in (FO(wo≤) + count + while) then
it would follow that a first-order sentence with a bounded number of variables would
distinguish the graphs Gn and Hn. This is true because the operators LFP and ‘while’
are simply “formula iterators” and do not increase the number of distinct variables
in the formula.)

Now, we show that over the structures Gn, Hn applications of hom give us no new
expressive power. This is because Gn and Hn are almost ordered. That is, there is
a first-order, quasi-total ordering on the vertices. The vertices are partitioned into
color classes of size at most 4 and the color classes are totally ordered. Thus we
can compute hom of a set by walking through the color classes occurring in the set,
applying the operator by hand to at most four elements in each class.

One of us (Immerman) has studied the issue of ordering because of its intimate
connection with his study of descriptive and computational complexity [IL90]. An-
other of us (Stemple) has developed a theory of finite sets because of their importance
in database transactions [SS89]. It is an unaesthetic aspect of any such theory to date,
that in order to develop a theory of unordered finite sets that is rich enough to describe
computation, one seems to need an ordering on these sets.

It seems to us unacceptable to use impoverished query and transaction languages
in order to have the aesthetically desirable characteristic of order-independence. Our
view is that one should use a language that we know includes all the feasible queries,
i.e. P. But, that one should use a theorem prover such as Sheard’s extended Boyer-
Moore theorem prover [SS89] to prove that our queries and transactions are correct.

2In [Va82], Vardi defined the language (FO + while), i.e. first-order logic together with an
unbounded iteration operator, and showed that its expressive power is equal to PSPACE. (See also
[Imm82b] for an equivalent formulation of an unbounded iterator applied to FO giving PSPACE.)
See also [AV91] for a surprising new result: (FO(wo≤) + while) = (FO(wo≤) + LFP) if and only if
P = PSPACE.

31

Correctness here would mean that the queries and transactions do what we want
them to do. In particular, they preserve the database integrity constraints, and, when
desired, they compute only order-independent properties. Thus we can add to Figure
7.6 the class (proved order-independent P) of those queries in SRL, or equivalently
in (FO + LFP) that our theorem-prover has shown to be order-independent.

8. Conclusions

The inference mechanism in [SS89] on finite set terms with variables proves only
properties that are true in all models. It can be used to prove that a set-reduce
expression is independent of order, though it is of necessity incomplete with respect to
this problem. (Any algebra meeting the specification is powerful enough to express P
problems, and thus the order independence of an arbitrary expression in the language
cannot be decided.) Likewise we can prove that some expressions depend on the order.
The language of expressions that do not vary with order would have the properties of
a specification with an intial algebra, but this language is not recursively enumerable.
However, it may be that the set of expressions that their prover can prove are order
independent includes all polynomial-time computable, order independent queries. We
are investigating this possibility.

81. Open Problems

1. Problems Related to Ordering:

(a) Settle Question 7.1. In particular, prove or disprove the conjecture that
the subset of SRL that can be proved order-independent using Sheard’s
Boyer-Moore theorem prover is exactly order-independent P.

(b) Settle variants of Question 7.1 for smaller complexity classes, e.g. L, NL, NC.
Note that for complexity classes NP and above, the question is easily set-
tled because an ordering can simply be existentially quantified and thus
no ordering need be provided.

2. Our results show that there is a clear demarcation between SRL which expresses
the polynomial-time computable queries and unrestricted SRL which computes
all primitive recursive queries. Thus, it is very desirable to improve our char-
acterization of this demarcation line. We would like to be able to say in a very
general way, “Yes, these sorts of operations and functionalities can all safely be

32

added, without taking us out of P. On the other hand, any of those will bring
us all the way up to Primitive Recursive complexity.”

3. 6.1 shows that to a certain extent the time complexity of an SRL expression
can be read off its face. However, we suspect that the complexity bounds we
give here can be improved.

4. The classical complexity classes L, NL, P give an interesting basis for comparing
the expressibility of query and transaction languages. On the other hand, these
are clearly not precisely the complexity classes that are appropriate for studying
the true costs of queries and transactions for modern database systems. We
are in the process of taking a step in this direction by defining and studying
complexity classes more appropriate for database systems. In particular the cost
of disk I/O’s is given its due place, and incremental complexity is emphasized:
we consider the complexity of processing a long sequence of transactions on-line.
Much more work is needed in this direction.

References

[AU79] A. Aho, J. Ullman: Universality of data retrieval languages. Proceedings of Sixth
ACM Symposium on POPL, Jan. 1979, 110-117.

[AK90] S. Abiteboul, P. Kanellakis: Database theory column: Query languages for com-
plex object databases. SIGACT News 21 No. 3, Summer 1990, 9-18.

[AK89] S. Abiteboul, P. Kanellakis: Object identity as a query language primitive. Rap-
ports de Recherche No. 1022, INRIA, Apr 1989.

[AB88] S. Abiteboul, C. Beeri: On the power of languages for the manipulation of complex
objects. Rapports de Recherche no. 846, INRIA, May 1988.

[AC89] F. Arafati, S. Cosmadakis: Expressiveness of restricted recursive queries, Proceed-
ings of 21st ACM STOC, 1989, 113-126.

[AV88] S. Abiteboul, V. Vianu: Procedural and declarative database update languages.
Proceedings of the Seventh ACM SIGACT-SIGMOD-SIGART Symposium on
PODS, 1988, 240-250.

[AV89] S. Abiteboul, V. Vianu: Fixpoint extensions of first-order logic and datalog-like
languages. Proceedings of LICS, 1989, 2-11.

[AV91] S. Abiteboul, V. Vianu: Generic computation and its complexity. To appear in
32nd IEEE Symposium on FOCS, 1991.

[BIS88] D. Barrington, N. Immerman, H. Straubing: On uniformity within NC1. Journal
of Computer Systems and Science 41, No. 3, 1990, 274-306.

[BM] R.S.Boyer, J.S.Moore:A Computational Logic, Academic Press, New York, 1979.

33

[CFI89] J. Cai, M. Furer, N. Immerman: An optimal lower bound on the number of
variables for graph identification. Proceedings of 30th IEEE Symposium on FOCS,
1989, 612-617.

[CH80] A. Chandra, D. Harel: Computable queries for relational databases. Journal of
Computer Systems and Science 21, 1980, 156-178.

[CH82a] A. Chandra, D. Harel: Structure and complexity of relational queries. Journal of
Computer Systems and Science 25, 1982, 99-128.

[CH82b] A. Chandra, D. Harel: Horn clauses and fixpoint query hierarchy. Proceedings of
14th ACM STOC, May 1982, 158-163.

[Ch81] A. Chandra: Programming primitives for database languages. Proceedings of ACM
Symposium on POPL, 1981, 50-62.

[CSV84] A. Chandra, L. Stockmeyer, U. Vishkin: Constant-depth reducibility, SIAM Jour-
nal of Computing 13, May 1984, 423-439.

[Co64] A. Cobham: The intrinsic computational difficulty of functions. Proceedings of the
1964 Congress for Logic, Philosophy and Methodology of Science, North Holland,
24-30.

[C85] S. Cook: A taxonomy of problems with fast parallel algorithms. Information and
Control 64, (1985), 2-22.

[CM87] S. Cook, P. McKenzie: Problems complete for deterministic logspace. Journal of
Algorithms 8, 1987, 385-394.

[CK85] S. Cosmadakis, P. Kanellakis: Parallel evaluation of recursive rule queries. Pro-
ceedings of 5th ACM Symposium on PODS, 1986, 280-290.

[DW] M. Davis, S. Weyukar: Computability, Complexity and Languages. Academic
Press, 1983.

[Gu83] Y. Gurevich: Algebras of Feasible Functions. Proceedings of 24th IEEE Sympo-
sium on Foundations of Computer Science, October 1983, 210-214.

[HS89a] R. Hull, J. Su: Untyped sets, invention and computable queries. Proceedings of
8th ACM Symposium on PODS, 1989, 347-360.

[HS89b] R. Hull, J. Su: On bulk data type constructors and manipulation primitives -
a framework for analyzing expressive power and complexity. Proceedings of 2nd
International Workshop on Database Programming Languages, June 1989, 396-
410.

[HS88] R. Hull, J. Su: On the expressive power of database queries with intermediate
types. Proceedings of 7th ACM Symposium on PODS, Mar. 1988, 39-51.

[Imm87] N. Immerman: Languages that capture complexity classes. SIAM Journal on
Computing 16 No. 4, Aug. 1987, 760-778.

[Imm82] N. Immerman: Relational queries computable in polynomial time. Proceedings of
the 14th ACM STOC, May 1982, 147-152.

34

[Imm82b] N. Immerman: Upper and lower bounds for first order expressibility. Journal of
Computer and System Sciences 25, 1982, 76-98.

[Imm88] N. Immermann: Nondeterministic space is closed under complementation. SIAM
J. Comput. 17, No. 5, (1988), 935-938.

[IL89] N. Immerman, S. Landau: The complexity of iterated multiplication. Proceedings
of 4th Structure in Complexity Theory Conference, 1989, 104-111.

[IL90] N. Immerman, E. Lander: Describing graphs: a first-order approach to graph
canonization. Complexity Theory Retrospective, A. Selman, ed., Springer Verlag
(1990).

[K88] P. Kanellakis: Elements of relational database theory. Tech. Report CS-88-09,
Dept. Of Computer Science, Brown University, Apr. 1988.

[OBB89] A. Ohori, P. Buneman, V. Breazu-Tannen: Database programming in Machiavelli
- a polymorphic language with static type interference. Proceedings of the ACM
SIGMOD, June 1989, 46-57.

[Q89] X.Qian: The expressive power of the bounded iteration construct. Proceedings of
the 2nd International Workshop on Database Programming Languages, 1990.

[SS89] T. Sheard, D. Stemple: Automatic verification of database transaction safety.
ACM transactions on Database Systems 14, No. 3, Sep. 1989, 322-368.

[Va82] M.Y. Vardi: The complexity of relational query languages. Proceedings of 14th
ACM STOC, May 1982, 137-146.

[VS90] J. Vitter, E. Shriver: Optimal disk I/O with parallel block transfer. Proceedings
of the 22nd ACM STOC, May 1990, 159-169.

35

