Reachability and the Power of Local Ordering*

Kousha Etessami Neil Immerman
etessami@cs.umass.edu immerman@cs.umass.edu
Computer Science Department
University of Massachusetts

Ambherst, MA 01003 USA

Abstract

The L = NL question remains one of the major unresolved problems in
complexity theory. Both L and NL have logical characterizations as the sets
of totally ordered (<) structures expressible in first-order logic augmented with
the appropriate Transitive Closure operator [I87]: (FO + DTC+ <) captures L
and (FO+4TC+ <) captures NL. On the other hand, in the absence of ordering,
(FO + TC) is strictly more powerful than (FO + DTC) [GM92].

An apparently quite different “structured” model of logspace machines is
the Jumping Automaton on Graphs (JAG), [CR80]. We show that the JAG
model is intimately related to these logics on “one-way locally ordered” (1LO)
structures. We argue that the usual JAG model is unreasonably weak and
should be replaced, wherever possible, by the two-way JAG model, which we
define. Furthermore, the language (FO 4+ DTC + 2LO) over two-way locally
ordered (2LO) graphs is more robust than even the two-way JAG model, and
yet lower bounds remain accessible. We prove an upper bound on the power of
TC over one-way locally ordered graphs, and three lower bounds on DTC.

1 Introduction

The L = NL question remains one of the major unresolved problems in complexity
theory (L = DSPACE[log n] and NL = NSPACEllogn]). Both L and NL have logi-
cal characterizations as the sets of ordered structures expressible in first-order logic
augmented with the appropriate Transitive Closure operator [I87]. (FO 4+ DTC+ <)
captures L and (FO + TC+ <) captures NL. On the other hand, in the absence
of ordering, (FO + TC) is strictly more powerful than (FO + DTC) [GM92] (We

include a simple proof of this result which applies also to the stronger language

*Both authors were supported by NSF grant CCR-9207797.

(FO + DTC + COUNT) in which counting quantifiers are present.). Attempts to
extend this proof to separate the languages with ordering and thus separate L from
NL remain unsuccessful.

An apparently quite different “structured” model of logspace machines is the Jumping
Automaton on Graphs (JAG), [CR80]. It is known that the JAG model is not powerful
enough to search all graphs. This may be considered as some evidence that L # NL.
Unfortunately, the same proof shows that the JAG is not powerful enough to search
all trees, a problem that is easily seen to be in L. Thus, the JAG model, like the
language (FO + DTC) on unordered structures, is too weak to capture deterministic
logspace computation.

An interesting feature of the JAG model is that it posits an ordering on the edges
leaving each vertex. We call a graph equipped with such an ordering, one-way locally
ordered (1LO). We show that the language (FO + DTC + 1LO) is strictly more
powerful than the JAG model: it can do everything the JAG can do; and, it can
search all trees as well. We also consider the language (FO + TC + 1LO) and we
show that in this language a global ordering is definable for all points reachable from
a given point. Thus, we have shown that the language (FO + DTC + 1LO) is a more
robust version of the JAG model and fits in neatly between L = (FO + DTC+ <)
and, (FO + DTC).

Looking deeper, we observe that a weakness of the JAG model is that the local
ordering only considers outgoing edges: the JAG does not have the power to back
up. It is therefore quite interesting to consider the language (FO + DTC + 2LO)
with two-way local orderings and its relationship to the analogous class of two-way
JAGs. The later model is able to search all trees and is much more robust than the
traditional one-way JAG.

Our main lower bounds build on the lower bounds in [CR80] and in [BS77]. We
show that DTC of first-order formulas in the language (FO + DTC + 1LO) does not
suffice to express reachability. We also show that DTC of first-order formulas does
not suffice to express reachability for two-way local ordered graphs without numbers.
A preliminary version of this paper appeared as [EI94a).

2 Descriptive Complexity

In this paper our notation follows the conventions of Descriptive Complexity. See
[187, I89] for more detail and motivation.

We code all inputs as finite logical structures. The typical example in this paper is a
graph,
G = {vo,v1,..-,na}, E,s,t)

The universe of G, |G| = {vo,v1, ..., Un1} is the set of vertices and the binary relation
E is the edge relation. In this paper our graphs will usually have two specified vertices,
s,t € |G| and we will be particularly interested in the GAP (stCON) problem, i.e.,

2

whether there is a path in G from s to . We will use n to denote the number of
vertices of G.

In general, a vocabulary
— ai at
T=(RP,...,R{* c1,...,¢s)

is a tuple of input relation symbols and constant symbols. A structure

A A A A
A= ({vo,v1,...,0na}, Ry,..., R e, .., c0)
of vocabulary 7 is a finite set |A| = {vo,v1,...,Vn1} together with relations R# C
|A|% 1 =1,2,...,t, and elements c;-",j: 1,2,...,s.

Let STRUC|7| denote the set of all finite structures of vocabulary 7. We define a
complexity theoretic problem to be any subset of STRUC|r]| for some 7.

For any vocabulary 7 there is a corresponding first-order language £(7) built up from
the symbols of 7, the logical relation symbol, “=," the logical connectives, A, V, —,
variables, and quantifiers, V, 3.

A logical structure will be called ordered if it includes a relation, <, that represents
a total ordering on the universe of the structure. Ordered structures will also have
constants 0, m denoting the first and last elements of the universe. We will usually
assume for ordered structures that the universe is just {0,1,...,72—1} with the usual
ordering.

Let FO be the set of first-order definable problems. FO over ordered structures (with
an additional predicate, BIT) is equal to the the low-level complexity class uniform
AC° which is the set of problems checkable in constant parallel time by CRAMs with
polynomial much hardware. A CRAM is a uniform CRCW PRAM.

Fact 2.1 ([I89a]) Over ordered structures with BIT,

FO = AC® = CRAM]]

An appealing way to increase the descriptive power of first-order logic, so that it
can capture more powerful complexity classes, is by adding various transitive closure
operators:

Let (21, ..., 2k, @], . .., 2}) be a formula with the specified 2k free variables (¢ might
also have other free variables). We will write (TCzl---zkzi---z;) to denote the reflexive,
transitive closure of the binary relation ¢(z,2z'). Let (FO + TC) be the closure of
first-order logic with arbitrary occurrences of TC.

Fact 2.2 ([I87,188]) (FO+ TC+<) = NL

A deterministic version of TC called DTC is defined as follows. For any formula
©(z,z') define the deterministic reduct of ¢ by cutting off all outgoing edges from
every vertex that has more than one outgoing edge:

0dl@) = 9(,7) A(VD)(p(E5) > 5 = 7)
Define DTC(¢p) to be the transitive closure of the deterministic reduct of ¢:

A formula ¥ = (DTCEI---zkmi---zk P(z, ar_:’;'zI)))(ﬁ,'T)) is somewhat intimidating. We can
make it simpler to write by noting that £ and z’ are dummy variables and the free
variables w, u, v are all just parameters, serving the same role. Observe that, given a
vocabulary with constants s and ¢, we may rewrite ¥ in the form

V' = (DTC,,. 04402}, ¥'(Z,2"9))(5,7)

by letting p = w,u,v and ¢’ be

Y = (2=5A 2 =1,st)V(Z="0,st ANz' =1V

1_)7 ?
(W; 1, ... Tk, T, Ty))

I I
(mk+1, Tht2 = Tpy1, L NP

U can thus be abbreviated as the equivalent and simpler looking formula: ¥’ =

DTC(¢'(p))-
Fact 2.3 ([I87]) (FO+DTC+<) = L

Other transitive closure operators are interesting to consider. We briefly mention a
third one: Alternating Transitive Closure (ATC) is the generalization of TC to and/or
graphs. See [I87] for details.

Fact 2.4 ([I87]) (FO+ATC+<) = P

Facts 2.2, 2.3, and 2.4 do not go through for non-ordered structures. One reason for
this is that these languages are overly weak when restricted to graphs without much
structure. For example, on a graph with no edges, even (FO + ATC) is powerless to
walk through the vertices and so cannot express the proposition that there is an odd
number of vertices [I82].

On the other hand, the reason we would prefer not adding the ordering relation is
that it allows the language to express order dependent properties, i.e., properties that
depend not on the graph but rather on the arbitrary ordering in which the graph is
presented. One way to add back some of what is lost when we take away ordering,
is to add a second universe of numbers, with an associated ordering. Thus a graph
with numbers is a two-sorted structure,

G={0,1,...,n—1},{vo,v1,...,Un1},<,0,m, E)

4

Here the edge relation E applies to the domain of vertices {vo, v1,...,vns} and the
ordering < and constants 0, m refer to the domain of numbers. For convenience we
will assume that there are two sorts of variables, number variables: 2,7, k,... and
vertex variables: u,v,w,z,y,2,.... In this paper we will assume that graphs
are equipped with numbers, unless we explicitly state otherwise.

Once numbers are available it is nice to be able to count. To do this, we can add
counting quantifiers. Let the meaning of the formula:

(3iz)p(a)

be that there exist at least ¢ distinct vertices z such that ¢(z). Note that this
quantifier binds z and leaves ¢ free. We will let (FO + COUNT) denote first-order
logic over structures with numbers and counting quantifiers. Let ThC® be the set of
problems checkable by uniform sequences of polynomial size, bounded depth threshold
circuits. We have the following relationships: (The relation BIT is mentioned in the
following fact. We have avoided talking in detail about BIT because it is definable
in (FO +DTC+ <) and above [I87]; and, thus is not needed in the remainder of this

paper.)

Fact 2.5 For totally ordered structures with BIT the following containments hold.
The classes inside bozes are equal. (In this fact we assume that all languages have <

and BIT.)

M

AC ACC
FO i (FO—I—@k) g

ThC c L c | NL P
(FO+COUNT) | = |(FO+DTC)| = | (FO+TC) (FO+ATC)

Unfortunately, counting does not suffice to replace ordering:

Fact 2.6 ([CFI92]) There is a property in (FO 4+ ©24 <) that is not expressible
over non-ordered structures even in (FO + COUNT 4+ ATC) and thus not in (FO +
COUNT + TC) nor (FO+ COUNT + DTC) either.

2.1 Separation of TC Logics Without Ordering

It is known that the language (FO + TC) is more powerful than (FO+DTC) [GM92].
Here we give a particularly simple proof of this fact and also note that the proof goes
through in the presence of counting.

Theorem 2.7 Reachability from s to t is expressible in (FO+ T'C); but, not in (FO+
DTC), nor even in (FO+ DTC+ COUNT).

Proof The existence of a path from s to ¢ is expressible in (FO 4 TC) as follows:
TC, o (E(z,z'))(s,1t)

5

[} [} [}
[} [} [}
.)))
bl b2 b3 bn 1 bn
An+1 An+2 an+3 azn-1 azn
[] [] []
[] [] []
[} [} [}
bn+1 bn+2 bn+3 b2n- 1 b2n

Figure 1: The graph G,.
To prove that this is not expressible in (FO 4+ DTC), we consider the graphs G, =
(Va, Ey) (see Figure 1).
Gn = (Vu,E,); Vo = {a;,b; | i=1,2,...,2n}
En = {(ai, az-_|_1>, <ai, bi_|_1>, <bz, az-_|_1>, <bz, bi_|_1> | = 1, 2, e, — 1,1’L + 1, e 72'I’L — 1}

Observe that the transpositions m; = (a; b;) are automorphisms of G, for 1 <17 < 2n.

Thus, for any formula ¢(zy,...,zs,2},...,z,) and any pair of k-tuples ¢,d from V,,
and any z, 1 <1 < 2n, we have that
GnEp(6d) & GuF o(mi(e),(d) (2.8)

It follows from Equation 2.8 that if G, = ¢4(¢,d) and ? includes a vertex with
subscript ¢, then so does ¢. (Otherwise, 7;(¢) = ¢, but, m;(d) # d and thus ¢ has two
outgoing ¢-edges.)

It follows that over the graphs G,,n = 1,2,... DTC(p) is equivalent to a first-order
formula. Thus over these graphs, (FO + DTC) = (FO). Of course reachability is
not first-order expressible over the G,,’s. (This follows for example from Gaifman’s
theorem, see Theorem 4.2.)

To show that reachability is not expressible in (FO 4+ COUNT + DTC), we first note
that the above argument shows that on the G,’s, (FO + COUNT + DTC) is equal
to (FO + COUNT). It now remains to show that (FO + COUNT) cannot express
reachability over the G,,’s.

The automorphism of the GG,,’s rendered the DTC operator useless. Now that DTC
i1s gone we lose no generality in considering slightly simpler graphs. Let D, be the
induced subgraph of G, restricted to the vertices {a,as,...,a.}. In Dy, let s = ay,
and ¢t = a,, so that ¢ is reachable from s in D,,. Let D! be the same graph but with
t = agy, so t is not reachable from s in D! . We prove:

6

Lemma 2.9 No sentence from (FO+ COUNT) is true for all the D,,’s and false for
all the D! ’s.

Proof We use the Ehrenfeucht-Fraissé counting game of [CFI92] to prove that D,
and D! agree on all sentences from (FO + COUNT) of quantifier-rank [lg(n) — 1].
We must show that Player II — the Duplicator — wins the |lg(n) — 1]-move counting
game on D,, and D! .

Consider the standard winning strategy for the Duplicator in the game without count-
ing. Namely, for 1 < ¢ < n the response to the chosen vertex v € {a;, an;} in one
graph is w € {a;,an;} in the other graph. The rule for deciding which is that we
look at the previously chosen point v; that is closest to v, and we answer with the
w that is on the same line (and thus the same distance) from w;. If two points on
different lines are the same shortest distance away, then we arbitrarily reply with w
on the same line as v. An induction argument shows that this is a winning strategy
for the Duplicator in the |logn| — 1 move game.

Note that the Duplicator’s winning strategy gives a 1 : 1 correspondence between v’s
and w’s. Thus any set chosen by the spoiler in the counting game is answered by a
set of the same cardinality. The Duplicator wins the counting game as claimed. O

This completes the proof of Theorem 2.7. O

Note that this theorem is not very satisfying because rather than proving that L ## NL,
it just shows the weakness of the model: It is easy for (FO 4+ DTC) to express
reachability over the GG,,’s in the presence of ordering: Let

N(z,z') = E(z,z') A (V2)(E(z,2) = &' < 2), then,
PATH(u,v) = (Jw)[DTC(N(z,z'))(v,w) A (v=wV E(w,v))]

This definition also works in the presence of a one-way (and thus also a two-way)
local ordering, cf. Definition 3.1 (4.1).

3 The JAG Model: Locally Ordered Graphs

In this section we define the JAG model. We will see that the JAG model is somewhat
weaker than (FO+DTC+1LO), cf. Theorem 3.5. When the JAG is applied to ordered
graphs it has the same power as (FO + DTC+ <), i.e. exactly L, cf. Proposition 3.6.

As we have indicated, an important issue concerning the power of JAGs is that they
take as input one-way locally ordered graphs. We thus first define:

Definition 3.1 [One-way Local Ordering] Consider a graph

G={0,1,...,n—1},{vo,v1,...,Vn1},<,0,m, E, F,s,t)

7

in which F is a ternary relation on vertices. Suppose that for each vertez, v, F (v, -, ")
1s a total ordering on the vertices w for which there s an edge from v to w. Then
F is called a one-way local ordering on (the outgoing edges of) G, and G is called
a one-way locally ordered graph. We denote logics over graph structures augmented
with one-way local ordering with the abbreviation 1LO. O

The following observation gives an alternate way to view local orderings:

Observation 3.2 In (FO + DTC + 1LO) one can express for graphs the relation
E;(v,w) meaning that vertex w is the head of the i** edge out of v. (Here i is a
number variable, not a constant.)

Proof Using (FO 4+ DTC + 1LO) we can express the 1:1 correspondence between
the numbers 0,1, ...,7 and the first : + 1 edges out of v. We first say that a vertex z
is the head of the zero'® edge out of v:

((2) = (E(v,2z) A (Vw)(E(v,w) = F(v,z,w))

Then we say that there is a p-edge from the pair (j, z) to the pair (j 4+ 1,y) iff y is
the head of the next edge out of v after z:

o7, z,k,y) = (k=j7+)Ae£yAF(v,z,y) A (Yu)[(F(v,z,u)AF(v,u,y)) = (2 = uVy = u)]

Finally,
Ei(vaw) = (EIz)(C(z) A (DTCjEkySO)(Oaz7i7w))
a

We now define the JAG. Note that the JAG defined in [CR80] is a non-uniform model.
We modify the definition here exactly so that the model is uniform:

Definition 3.3 [JAG/A uniform Jumping Automaton on Graphs (JAG) is a logspace
Turing machine that accesses its input via a bounded number of pebbles. Input to a
JAG is a one-way locally ordered graph with two specified vertices, s and t. Initially,
all the pebbles are on the wnitial vertex, s. At each move, the JAG can detect which
of its pebbles coincide, and which are on s or t. Based on this information, besides
making its usual Turing machine moves, it may jump any pebble to the location of
another specified pebble, or, it may slide a pebble currently at vertex v along a specified
edge out of v. Edges are specified by their number in the local ordering F(v,-,-). If
there is no such edge, then the pebble remains where it 1s. a

As an example, we prove the following

Proposition 3.4 The GAP problem for the set of graphs G,, of Figure 1, is solvable
by a JAG.

Proof Define the JAG, Jy as follows: Jy needs two pebbles: po,p;; and, doesn’t
use its work tape. Jy begins with its pebbles on vertex s. If s = ¢, then Jp accepts.
Otherwise, at the first move Jy moves py along the 0 edge out of the current vertex,
and p; along the 1 edge. If either pebble is on ¢, Jy accepts, otherwise it jumps p;
to po, and repeats. Jy can detect if its current vertex has no outgoing edge because
after it tried to slide po along the 0 edge, po and p; would still coincide. In this case
it should reject. a

We will see in Corollary 3.9 that JAGs are strictly weaker than (FO + DTC + 1LO).

Right now we show:

Theorem 3.5 JAG C (FO+ DTC+ 1LO)

Proof Let J be an arbitrary JAG. We must show that there is a sentence x5 €
(FO 4+ DTC) such that the set accepted by J is exactly the set of one-way locally
ordered graphs that satisfy x.

This is similar to the proof that L C (FO + DTC+ <) [I87]. We will use a bounded
number of numeric variables to code J’s O(logn) bit work tape. We will use a
vertex variable v; to denote the vertex on which pebble p; sits. Thus jumping, and
coincidence of pebbles is first-order. The movement along edges is expressible in
(FO + DTC) by Observation 3.2. Thus, the relation NEXT;(ID;,ID;), meaning that
ID, follows from ID; in one move of J, is expressible. Finally, the acceptance condition
is given by
x5 = DTC(NEXT;)(IDo,IDy)

a

When a JAG is given an ordered graph we assume that it has a pebble placed on 0
and that it may slide any pebble from vertex i to vertex z + 1. It is interesting to
note that in this case:

Proposition 3.6 The JAG model over ordered graphs is equivalent to (FO + DTC+ <),
i.e., it exactly captures L.

Proof This can be seen as follows: We use one pebble to simulate each first-order
variable. Quantification can be simulated by cycling through all vertices in numeric
order. Furthermore, DTC can be simulated by starting at a tuple %, and cycling
through all tuples v in lexicographical order. If it is discovered that there is a unique
v such that ¢(a,v) holds, the JAG shifts the @ pebbles to ¥ and repeats. O

3.1 Reachability on Trees with DTC

Now we show that in (FO 4+ DTC + 1LO) a total ordering is expressible on trees. It
follows from the proof that reachability on trees is expressible as a DTC of a first-
order formula. It is interesting to contrast this with Theorem 5.5 which shows that
such DTC’s can not express reachability on one-way locally ordered DAGs.

Theorem 3.7 There is a formula v(z,y) € (FO + DTC + 1LO) which, over con-
nected trees, expresses a linear ordering of the vertices of the tree. Furthermore, v is
ezpressible as a single DTC of arity 2 (plus booleans).

Proof We do a preorder traversal of the tree. The formula = below expresses the
next step in this preorder traversal. Then we define v(z,y) to mean that we can get
from z to y in this traversal, i.e. x precedes y.

In our definition of m and 4 we make use of boolean variables ¢ and j. This is so
that the arity of the vertex variables can be kept down to two. In the definition of
the preorder traversal, 7, when we enter a vertex v for the first time, we will actually
enter (v,0). When we want to leave v for the last time after visiting all of v’s children,
we will enter the dummy node, (v,1). Thus the traversal of V' x {0} is the preorder
traversal, and the vertices V' x {1} are just used for bookkeeping.

Let the formula o(u,v) mean that v is u’s next sibling:

o(u,v) = w#v A (3p)[F(p,u,v) A (Yw)(F(p,u,w) = (v =wV F(p,v,w)))]

The preorder traversal, 7, and the ordering, -y, are defined as follows:

m(z,i,2',1) = & V 8 V 8 V &3 where,
o = (1=0A7=0 A E(z,2') A Vz(—0(z,2)))
5 = (=0Ad=1Az=2" A (V2)-E(z,2))
8 = (FE=1A7=0 A o(z,z))
83 = (1=1A7=1A E(z',z) A (V2)o(z,2))
v(a,b) = DTC(w(z,:,2',1))(a,0,b,0)

a

One can easily modify the above formula for linear ordering to obtain a formula for
s-t-Reachability, just by conjoining 7w with =(z = s A7 = 1). This guarantees that =
does not ascend from s, and thus that v(s,¢) holds iff ¢ is a descendant of s.

In fact, Reachability on directed trees is expressible in (FO 4+ DTC) without local
ordering. This is because each vertex besides the root has a unique edge to it. Thus

10

we can use DTC to walk backwards. Thus the following formula expresses reachability
for directed trees:

Reach(s,t) = DTC..(E(z',z))(¢,s)
This proves:

Proposition 3.8 Reachability on trees (even without local ordering) is ezpressible in
(FO+ DTC). In fact, it is expressible as a single DTC of arity 2.

Cook and Rackoff proved that reachability on trees is not checkable by JAGS (see
Fact 5.4). Together with Theorem 3.5 and Proposition 3.8, this yields:

Corollary 3.9 JAG g (FO+ DTC+ 1LO)

3.2 One-Way Local Ordering and (FO + TC)

The empty set is a local ordering for any graph with no edges. It follows that:

Proposition 3.10 Having an odd number of vertices is not expressible in (FO+ TC+
1L0).

However, the more interesting situation is when the graph is connected:

Theorem 3.11 There is a formula A(z,y) € (FO+ TC+ 1LO) that describes a total

ordering on the vertices reachable from s.

Proof We only consider those vertices reachable from s. We first construct a formula
§(z,y,7) which means that the distance from z to y is 7. This is done below as follows:
o identifies a single step; p(u,v,7) takes the transitive closure of o, asserting that there
is a path from u to v of length 7; and, then § is defined using u:

o(w,j,w',j") = (G'=7+1)AE(w,w)
8(z,y,7) = wlz,y,1) A (Vb <i)(-p(z,y, k)
Next, we construct a formula a(z,z) which means that z occurs on the lexicograph-
ically first, shortest path from s to . This is done again by taking single steps:
p(u,i,u,7') means that if u occurs on the lexicographically first, shortest path from

s to ¢ and is distance 7 from z, then u’ is the next vertex on this path and is distance
=1 —1 from z:

plu,i,v',7") = (F'=i-1ANE(u, v)N, z,1) A(VO)[(F(u,v,uY)N6(v, z,1')) = v

11

and « is a transitive closure of p:
a(sz) = (Ad)(E(s,2,d) A (F)TC(p)(s,d,21))

Now, define the total ordering A(z,y) to mean that the distance from s to is less
than the distance from s to y, or the distances are equal, but the lexicographically
first, shortest path from s to « precedes the lexicographically first, shortest path from
s toy:

Mz,y) = (3i5)(6(s,2,8) Ad(s,9,5) A (G <3 V
(2 =7 A (Fzuwvk)(a(z,z) A a(z,y) A a(u,z) A afv,y) A F(z,u,v) A u # 'u))))

In the above, z is the last vertex on which those two lexicographically first, shortest
paths agree. O

Theorem 3.11 shows that for the interesting case, ordering is definable in (FO 4+ TC +
1LO). In [EI94a] we conjectured that (FO + TC + COUNT + 1LO) would capture
all of NL. This turns out to be false. However, (FO + TC + COUNT + 2L.O) = NL.
Both of these facts appear in [EI94b] and are discussed further in Section 7.

4 Two-Way Locally Ordered Graphs

The feature of the JAG model that makes it unrealistically weak is its inability to
back up. This is the reason why JAGs can’t search trees as they should be able to,
unlike the language (FO + DTC) which can: Proposition 3.8.

In (FO 4+ DTC) we can usually back up. Namely, if we are at a vertex a that has
an edge coming into it from vertex b and vertex b has some special property (such as
being the only vertex z such that the 17** edge out of z is to a) then we can back up to
b. On the other hand, we can construct our graphs so that all vertices of interest have
duplicate, “shadow” predecessors that look locally identical to each real predecessor.
In this way we can force the language (FO + DTC + 1LO) to be artificially weak. We
will exploit this idea to get a general lower bound for (FO + DTC + 1LO): Theorem
5.5.

For this reason, we feel that it is more reasonable to consider graphs equipped with
a two-way local ordering:

Definition 4.1 A two-way local ordering (denoted by 2LO) is just a one-way local
ordering, H, on the incoming edges to each vertex, in addition to the one-way local
ordering, F', on the outgoing edges. There is no assumption about consistency between

F and H.

A two-way JAG s a JAG that takes as input graphs with a two-way local ordering.
At each move, the JAG may choose a specified incoming or outgoing edge and move
a pebble along it. From now on, we will refer to the usual JAG model as a one-way

JAG. e

12

4.1 (FO + DTC) and Two-Way JAGs

Now we show that the language DTC(FO+2LO) - the restriction of (FO+DTC+2LO)
to single DTC’s of first order formulas — is essentially equivalent to the two-way JAG.
The first observation we make is the well known fact that fixed first-order statements
are essentially local in nature. This is stated nicely, for example, in the following
theorem of Gaifman. Any logical structure A may be thought of as a generalized
graph in which an edge exists between two points a and b iff @ and b occur together
in some tuple of a relation in 4. The distance between a and b (dist(a,bd)) is the
minimum number of such edges that must be traversed to get from a to b.

If we restrict all quantifiers in a formula ¢ to the union of the balls of distance d around
a set of points, ¥, then we get a local formula, denoted ¢%(%). Gaifman’s theorem
says that a first-order formula may describe the local neighborhood around its free
variables and constants (1), and it may describe the existence of certain landmarks

(2), and that is all:

Fact 4.2 ([Ga81]) Let ¢ be a first-order formula whose free variables and constants
are wn the tuple u. Then there exists a distance d depending only on ¢ such that ¢ s
equivalent to a boolean combination of

1. a finite set of formulas, al(#), and,

2. a finite set of sentences (in which no constants nor free variables occur),

8

B; = (Fvy, ... ,vs)[/\ 1/}‘1('01') A /\ dist(v;,v;) > 2d]

i=1 i<j<s
We now use Fact 4.2 to analyze the computation performed by the expression DTC[p(Z, Z')](¢, €),
where ¢ is an arbitrary first-order formula.

We know that ¢ is equivalent to a boolean combination of some (;’s asserting the
existence of some distant landmarks; and, some «;’s which are local facts about z, ',
and the only constants available: s and {. We may assume that all of the §;’s are
satisfiable because any unsatisfiable ones are just superfluous. It follows that there is
a one-way locally ordered graph L, that contains neither s nor ¢, but does satisfy all
of the B;’s; 1.e., L, contains all the relevant landmarks. By only considering graphs
that include a copy of L, disjoint from everything else, we reduce ¢ to a boolean
combination of a;’s which is thus equivalent to one fixed formula,

o(z,7) = o'(z,7,s,t)

Now, consider a DTC(y) walk. Call the step from @ to b d-local (or just local if d
is understood) if every point b; in b is within the d-neighborhood of some point in
a U {s,t}. If the step is not local because of b;, then the point b; must have been the
unique point in the graph with some special property. Suppose now, that we add two

13

new, disjoint copies of the graph (with the vertices s and ¢ not labelled in the new
copies). Then in this expanded graph there are two equally valid points b; that we
could move to. Thus, in the expanded graph all steps are local.

We summarize the above discussion in the following definition, observation, and
lemma:

Definition 4.3 Let ¢ be a fized first-order formula as in the above discussion. Let
p be the set of parameters in ¢, i.e., constants s and t plus any other constants or
assigned variables. We will call a graph G adequate for ¢ (or just adequate if ¢ is
understood) iff G satisfies all the 3;’s of Fact 4.2; and, for every point a € Vg, such
that dist(a,p) > d, G contains another point b where dist(b,p) > d and dist(a,b) > 2d
and b’s d-local neighborhood s isomorphic to a’s. a

The following observation shows that without loss of much generality we can restrict
our attention to adequate graphs.

Observation 4.4 Let G be any graph containing the constants s and t. Given ¢, a
formula with v variables, let adg(G) be the disjoint union of 2v + 1 one-way locally
ordered graphs: G,Gy,...,Gy, Hy,...,H, where G= G, = ... =2 G, and H; = ... =
H, = L,. Then adq(G) is adequate for ¢. Furthermore, in terms of reachability from
s to t and as inputs to JAG-like automata, G and adq(G) are indistinguishable.

Lemma 4.5 Let ¢(Z,';p) be a first-order formula where p is the set of parameters,
1.€., constants and free variables besides z,y. Then there exists a constant d depending
only on ¢ and there exists a d-local formula o®(z,%',p) such that for every graph G
that 1s adequate for ¢, we have,

1. In G, a is equivalent to ¢.

2. FEvery step in every DTC(p) walk in G is d-local.

A consequence of Lemma 4.5 is that the two-way JAG is very similar to the language
(FO + DTC + 2LO). In particular, a lower bound in one of these models translates
to a lower bound in the other:

Theorem 4.6 Let G be a class of two-way locally ordered graphs with numbers that 1s
closed under the adq operation of Observation 4.4. Then the following two statements
are equivalent:

1. For some first-order formula ¢, DTClp(Z,%')|(3,t) exzpresses reachability from
stot forG.

2. There exists a two-way JAG that recognizes reachability from s to t for G.

14

On the other hand, if G is as above but without numbers, then condition (1) is
equivalent to

3. There exists a finite state, two-way JAG that recognizes reachability from s to t
for G.

Proof One direction of this follows from Theorem 3.5. The other direction follows
from Lemma 4.5. The JAG can simulate the DTC because it can exhaustively visit
all vertices of distance at most d and thus choose the correct tuple to go to next. If
we remove numbers and the JAG’s worktape then the simulations go through and we
have that 1 and 3 are equivalent. Note that since d is a fixed constant, a finite state
JAG can do the simulation. O

5 Lower Bound: (FO +DTC + 1LO)

In this and the following section, we use Theorem 4.6, together with two previous
lower bounds, to prove lower bounds on the descriptive power of (FO +DTC + 1LO),
and then in the next section on (FO + DTC + 2LO).

As mentioned at the beginning of Section 4, a weakness of one-way JAGs is that
they can’t back up. We can however similarly prevent DTC walks from backing up
by replacing a tree T' by a shadowed counterpart 7", where for each edge (v, w) we
introduce a new vertex v’ and edge (v’, w) that will be locally indistinguishable from

(v, w).

Definition 5.1 Given a directed forest T, and a number §, we define a new DAG G
called the shadowed forest:

G < shadow(T, §)

G s constructed as follows: First, for each edge (u,v) of T create a new vertez v' and
an edge (v',v). Nezt, replace each old and new edge by a path of length &, keeping
the original local ordering for vertices with out-degree > 1. We call the vertices in
G corresponding to the original vertices in the forest tree vertices. Every labeled
vertez in T will maintain the same label in G.

For a given vertez w in G, the tree vertex assoctated with w, denoted tv(w), is
the vertex in the original forest T immediately “above” w. If w is on a shadow path
(v',v), then “above” is taken to mean the tree vertez w at the top of the shadowed
path (see figure 5). O

Lemma 5.2 For any first-order formula ¢ and DTC formula ® = [DTC Azz’ (¢)],
there is a logspace JAG J, and distance d, such that J simulates ¢ wn the following
sense. For any forest F, let F' = adq(shadow(F,d)). Then

(J accepts F) & (F'E=9)

15

Figure 5: G = shadow(T, ¢)

Proof By Lemma 4.5 we may assume that there is a constant d such that ¢ is
d-local and every ¢ step is d-local. Let § = 3d+ 1. Furthermore, we may assume that
¢ 1s deterministic, i.e., we have already cut off any double outgoing edges. Using the
number variables, we can also insure that ¢ keeps a counter to check itself for looping
and that it has no outgoing edges after its counter overflows.

We build J so that it simulates ® step by step. Initially, J has one pebble on ¢ and
the rest of its pebbles on s. At each step, J will start with its z; pebble on tv(z;),
the vertex in F' that is “above” the vertex z; € F'. J will also keep on its worktape
the distance d; from tv(z;) to @; in F'. For those z; that are numeric variables, J will
just keep this numeric value on its worktape.

At each step, J must find the tuple z’ of points in F’ such that
' oz,) (5.3)

if it exists.

Observe, that if such a tuple z’ exists, then each corresponding vertex tv(z}) is equal
to a currently pebbled vertex, or is an immediate descendent of a currently pebbled
vertex. This is the main point of the construction. The reason is that (1) ¢ can’t
talk about distances greater than d and so cannot jump a whole edge from F'; and,
(2) if there are no current points above a node v € F, then the path from u to v is
indistinguishable by ¢ from the shadow path from u' to v. Thus, if there were an |
on one of these paths, then the corresponding z, on the other path would also satisfy
¢ and thus, there would be no outgoing y-path.

Thus, to test for a possible z’, all that J has to do is to cycle through all the bounded
number of possible movements of its =’ pebbles by leaving them where they are,
jumping them to another pebble, or sliding them along a single edge. For each such

16

placement of the pebbles, J must cycle through all the possible distances from them
that are less than or equal to d.

Finally, for each candidate tuple, J must test whether Equation 5.3 holds. Again,
since @ is d-local, this amounts to cycling through all the nearby values of the variables
quantified in ¢. Note, that in this case quantified vertices may assume positions that
are slightly above a pebbled vertex. However, J knows that such vertices exist (unless
the vertex is s in which case J would know that they don’t exist. We are assuming
that ¢ is never a root and thus s is the only root that J can reach. Note that to check
the truth of Eq. 5.3, J will employ two auxiliary pebbles which it can slide one step
down from newly pebbled vertices to check for leaves.) Thus J can keep track of all
possible assignments to these variables long enough to test Equation 5.3.

Thus J simulates ® and accepts iff it reachs a situation where z’ = £ a

To prove our lower bound on (FO 4+ DTC + 1LO) we use the following fact from
[CR80].

Fact 5.4 ([CR80]) No JAG can decide s-t-reachability on forests.

Theorem 5.5 No formula ® = [DTC A\z,z' (¢)] expresses s-t-reachability on one-
way locally ordered DAGS.

6 Lower Bound: (FO + DTC + 2LO)

It is harder to prove a lower bound on two-way locally ordered graphs. In particular,
reachability on the above shadowed trees equipped with a two-way local ordering is
expressible as a single DTC.

Two known lower bounds on undirected graphs, together with Theorem 4.6, give a
lower bound on the language (FO + DTC + 2LO) without numbers. Recall from
Theorem 4.6 that (FO + DTC) without numbers corresponds to finite state JAGs as
opposed to logtape JAGs.

Blum and Sakoda considered finite automata walking on three dimensional mazes.
These mazes are subsets of Z™, where each node has some subset of its six possible
neighbors consistently marked north, south, east, west, up, and, down.

Fact 6.1 ([BS77]) No bounded set of finite automata can search all three dimen-

stonal mazes.

The following Fact by Cook and Rackoff proves a somewhat stronger result on a
slightly weaker model. A finite state JAG is stronger than a bounded set of finite
automata in that the automata cannot communicate unless they run into each other.
Another way to think of a finite state JAG is that it is a bounded set of finite

17

automata equipped with walkie talkies so that they can ask each other what state
they are currently in. The following lower bound involves locally consistent two-way
local orderings, but the graphs in question curve around themselves rather than being

embeddable in Z>. See also [BH92] for a related lower bound.
Fact 6.2 ([CR80]) No finite state JAG can search all degree three undirected graphs.

Corollary 6.3 The reachability problem for undirected graphs equipped with two-way
local orderings is not exzpressible in the form DTC(p), with ¢ first-order and without
numbers. Furthermore, the same problem for mazes embedded in Z° with the inherited
directions north, south, east, west, up, and, down, is not expressible as an arity two

DTC.

7 Conclusion

We have begun an investigation of transitive closure logics applied to locally ordered
graphs. We have shown that the JAG model is intimately related to these logics.
We have indicated why the JAG model is unreasonably weak and should, wherever
possible, be replaced by the two-way JAG model. Furthermore, we have shown that
the language (FO 4+ DTC + 2LO) is more robust than even the two-way JAG model,

and yet lower bounds remain accessible.

We have proved an interesting upper bound on the power of TC over one-way locally
ordered graphs (Theorem 3.11), and three lower bounds on DTC (Theorems 2.7 and
5.5, and Corollary 6.3).

We hope that we have given convincing evidence that further study of the relationship
between (FO+DTC) and (FO+TC) is both feasible and important for understanding
the relationship between L and NL.

The following topics merit further study:

1. The lower bounds of Theorem 5.5 and Corollary 6.3 prove the impossibility of
expressing reachability by formulas of the form DTC[p](5,%), where ¢ is first-
order. We conjecture that the lower bound of Theorem 5.5 holds for all of
(FO 4+ DTC + 1LO). There is a normal form theorem which says that every
formula in (FO + DTC+ <) can be written in the form DTC[y]|(5,?) where ¢
is not only first-order, but quantifier-free, [I87]. This normal form theorem is
false without ordering, even with two-way local ordering. However, we feel that
a generalization of the proof of Theorem 5.5 will extend to a lower bound on

all of (FO + DTC+1LO).

2. We have argued that (FO + COUNT + DTC + 2LO) is a robust approximation
to L and yet admits tractable approaches to lower bounds. Much further study
is needed. In particular, lower bounds on (FO + COUNT + DTC + 2LO) are

18

very desirable. Such a lower bound would at least show us a deficiency of this
language which we could then fix. At best, such a lower bound could prove that

L # NL.

3. Related to 2 is the following challenge: Find a set of graphs for which reacha-
bility is in L but not in (FO + DTC 4+ COUNT + 2LO).

As mentioned in section 3.2, we had in the conference version of this paper conjectured
that the language (FO+TC+COUNT+1LO) would capture all of NL. What remained
to be shown to prove this conjecture was that the language (FO + TC + COUNT)
canonizes all trees, cf. [IL90, L92]. However, we have recently [EI94b] proven that
tree canonization is not in (FO + TC + COUNT) and, using the result of [L92], this
yields that (FO + TC + COUNT + 1LO) # NL. However, in that same paper we
prove that (FO +TC+ COUNT +2LO) = NL, further justifying the continued study

of local orderings.

Acknowledgements
Thanks to Allan Borodin and Dexter Kozen for pointing out Facts 6.2 and 6.1 to us.

References

[AF90] M. Ajtai and R. Fagin, “Reachability is Harder for Directed than for Undi-
rected Graphs,” J. Symb. Logic, 55 (1990), 113-150.

[A-R79] R. Aleliunas, R. Karp, R. Lipton, L. Lovasz, and C. Rackoff, “Random
Walks, Universal Traversal Sequences, and the Complexity of the Maze Prob-
lem,” Proceedings of the 20th annual IEEE Found. of Comp. Sci. Symp.
(1979), 218-223.

[BB90] P. Beame, A. Borodin, P. Raghavan, W. Ruzzo, and M. Tompa, “Time-
Space Tradeoffs for Undirected Graph Traversal,” Proceedings of the 31st
Annual IEEE Found. of Comp. Sci. Symp. (1990), 429-438.

[BK78] M. Blum and D. Kozen, “On the Power of the Compass,” Proceedings of the
19th Annual IEEE Found. of Comp. Sci. Symp. (1978), 132-142.

[BS77] M. Blum and W.J. Sakoda, “On the Capability of Finite Automata in 2
and 3 Dimensional Space,” Proceedings of the 18th Annual IEEE Found. of
Comp. Sci. Symp. (1977), 147-161.

[BH92] M. Bull and A. Hemmerling, “Traps for Jumping Multihead Counter Au-
tomata,” J. Inform. Process. Cybernet. EIK 28 (1992) 6, 343-361.

[CFI92] J. Cai, M. Fiirer, N. Immerman, “An Optimal Lower Bound on the Number
of Variables for Graph Identification,” Combinatorica 12 (4) (1992) 389-410.

19

[CRS80]

[EI94a]

[EI94b]

[Ga81]

[GM92]

[182]

[187]

[188]

[189)]

[189a]

[IL90]

[L92]

S. A. Cook and C. W. Rackoff, “Space Lower Bounds for Maze Threadability
of Restricted Machines,” SIAM J. Comput. , 9(3):636-652, Aug 1980.

K. Etessami and N. Immerman, “Reachability and the Power of Local Order-
ing,” Proceedings of the 11th Annual Symp. Theoretical Aspects Comp. Sct.
(1994), 123-135.

K. Etessami and N. Immerman, “Tree Canonization and Transtive Closure,”
in preparation.

H. Gaifman, “On Local and Non-Local Properties,” Proc. Herbrand Logic
Collog. (1981), pages 105-135.

E. Gradel and G. McColm, “Deterministic vs. Nondeterministic Transitive
Closure Logic,” In Proceedings of the 7th IEEE Conference on Logic in Com-
puter Science (1992).

N. Immerman, “Upper and Lower Bounds for First Order Expressibility,”
JCSS 25, No. 1 (1982), 76-98.

N. Immerman, “Languages that Capture Complexity Classes,” SIAM
J. Comput. 16:4 (1987), 760-778.

N.Immerman, “Nondeterministic Space is Closed Under Complementation,”

SIAM J. Comput. 17: 5 (1988), 935-938.

N. Immerman, “Descriptive and Computational Complexity,” in Computa-
tional Complexity Theory, ed. J. Hartmanis, Proc. Symp. in Applied Math.,
38, American Mathematical Society (1989), 75-91.

N. Immerman, “Expressibility and Parallel Complexity,” SIAM J. of Comput
18 (1989), 625-638.

N. Immerman and E. Lander, “Describing Graphs: A First-Order Approach
to Graph Canonization,” in Complezity Theory Retrospective, Alan Selman,

ed., Springer-Verlag (1990), 59-81.

S. Lindell, “A Logspace Algorithm for Tree Canonization,” ACM
Symp. Theory Of Comput. (1992), 400-404.

20

