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Abstract

The L
�
� NL question remains one of the major unresolved problems in

complexity theory� Both L and NL have logical characterizations as the sets
of totally ordered ��� structures expressible in �rst�order logic augmented with
the appropriate Transitive Closure operator �I��	
 �FO�DTC� �� captures L
and �FO�TC� �� captures NL� On the other hand� in the absence of ordering�
�FO� TC� is strictly more powerful than �FO �DTC� �GM
�	�

An apparently quite di�erent �structured� model of logspace machines is
the Jumping Automaton on Graphs �JAG�� �CR��	� We show that the JAG
model is intimately related to these logics on �one�way locally ordered� ��LO�
structures� We argue that the usual JAG model is unreasonably weak and
should be replaced� wherever possible� by the two�way JAG model� which we
de�ne� Furthermore� the language �FO � DTC � �LO� over two�way locally
ordered ��LO� graphs is more robust than even the two�way JAG model� and
yet lower bounds remain accessible� We prove an upper bound on the power of
TC over one�way locally ordered graphs� and three lower bounds on DTC�

� Introduction

The L
�
� NL question remains one of the major unresolved problems in complexity

theory �L � DSPACE�log n� and NL � NSPACE�log n��� Both L and NL have logi�
cal characterizations as the sets of ordered structures expressible in �rst�order logic
augmented with the appropriate Transitive Closure operator �I�	�� �FO
 DTC
 ��
captures L and �FO 
 TC
 �� captures NL� On the other hand� in the absence
of ordering� �FO 
 TC� is strictly more powerful than �FO 
 DTC� �GM�
� �We
include a simple proof of this result which applies also to the stronger language
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�FO 
 DTC 
 COUNT� in which counting quanti�ers are present��� Attempts to
extend this proof to separate the languages with ordering and thus separate L from
NL remain unsuccessful�

An apparently quite di�erent �structured� model of logspace machines is the Jumping
Automaton on Graphs �JAG�� �CR���� It is known that the JAGmodel is not powerful
enough to search all graphs� This may be considered as some evidence that L �� NL�
Unfortunately� the same proof shows that the JAG is not powerful enough to search
all trees� a problem that is easily seen to be in L� Thus� the JAG model� like the
language �FO
 DTC� on unordered structures� is too weak to capture deterministic
logspace computation�

An interesting feature of the JAG model is that it posits an ordering on the edges
leaving each vertex� We call a graph equipped with such an ordering� one�way locally
ordered ��LO�� We show that the language �FO 
 DTC 
 �LO� is strictly more
powerful than the JAG model� it can do everything the JAG can do� and� it can
search all trees as well� We also consider the language �FO 
 TC 
 �LO� and we
show that in this language a global ordering is de�nable for all points reachable from
a given point� Thus� we have shown that the language �FO
DTC
 �LO� is a more
robust version of the JAG model and �ts in neatly between L � �FO 
 DTC
 ��
and� �FO 
 DTC��

Looking deeper� we observe that a weakness of the JAG model is that the local
ordering only considers outgoing edges� the JAG does not have the power to back
up� It is therefore quite interesting to consider the language �FO 
 DTC 
 
LO�
with two�way local orderings and its relationship to the analogous class of two�way
JAGs� The later model is able to search all trees and is much more robust than the
traditional one�way JAG�

Our main lower bounds build on the lower bounds in �CR��� and in �BS		�� We
show that DTC of �rst�order formulas in the language �FO 
 DTC 
 �LO� does not
su�ce to express reachability� We also show that DTC of �rst�order formulas does
not su�ce to express reachability for two�way local ordered graphs without numbers�
A preliminary version of this paper appeared as �EI��a��

� Descriptive Complexity

In this paper our notation follows the conventions of Descriptive Complexity� See
�I�	� I��� for more detail and motivation�

We code all inputs as �nite logical structures� The typical example in this paper is a
graph�

G � hfv�� v�� � � � � vn��g� E� s� ti

The universe of G� jGj � fv�� v�� � � � � vn��g is the set of vertices and the binary relation
E is the edge relation� In this paper our graphs will usually have two speci�ed vertices�
s� t � jGj and we will be particularly interested in the GAP �stCON� problem� i�e��






whether there is a path in G from s to t� We will use n to denote the number of
vertices of G�

In general� a vocabulary

� � hRa�
� � � � � � R

at
t � c�� � � � � csi

is a tuple of input relation symbols and constant symbols� A structure

A � hfv�� v�� � � � � vn��g� R
A
� � � � � � R

A
t � c

A
� � � � � � c

A
s i

of vocabulary � is a �nite set jAj � fv�� v�� � � � � vn��g together with relations RA
i �

jAjai� i � �� 
� � � � � t� and elements cAj � j � �� 
� � � � � s�

Let STRUC�� � denote the set of all �nite structures of vocabulary � � We de�ne a
complexity theoretic problem to be any subset of STRUC�� � for some � �

For any vocabulary � there is a corresponding �rst�order language L�� � built up from
the symbols of � � the logical relation symbol� ���� the logical connectives� ������
variables� and quanti�ers� ����

A logical structure will be called ordered if it includes a relation� �� that represents
a total ordering on the universe of the structure� Ordered structures will also have
constants ��m denoting the �rst and last elements of the universe� We will usually
assume for ordered structures that the universe is just f�� �� � � � � n	�g with the usual
ordering�

Let FO be the set of �rst�order de�nable problems� FO over ordered structures �with
an additional predicate� BIT� is equal to the the low�level complexity class uniform
AC� which is the set of problems checkable in constant parallel time by CRAMs with
polynomial much hardware� A CRAM is a uniform CRCW PRAM�

Fact ��� ��I��a�� Over ordered structures with BIT�

FO � AC� � CRAM���

An appealing way to increase the descriptive power of �rst�order logic� so that it
can capture more powerful complexity classes� is by adding various transitive closure
operators�

Let ��x�� � � � � xk� x��� � � � � x
�
k� be a formula with the speci�ed 
k free variables �� might

also have other free variables�� We will write �TCx����xkx
�

�
���x�

k
�� to denote the re�exive�

transitive closure of the binary relation ���x� �x��� Let �FO 
 TC� be the closure of
�rst�order logic with arbitrary occurrences of TC�

Fact ��� ��I�	
 I���� �FO
 TC
 �� � NL

�



A deterministic version of TC called DTC is de�ned as follows� For any formula
���x� �x�� de�ne the deterministic reduct of � by cutting o� all outgoing edges from
every vertex that has more than one outgoing edge�

�d��x� �x
�� 
 ���x� �x�� � ���z�����x� �z� � �z � �x��

De�ne DTC��� to be the transitive closure of the deterministic reduct of ��

�DTCx����xkx
�

�
���x�

k
�� 
 �TCx����xkx

�

�
���x�

k
�d�

A formula � 
 �DTCx����xkx
�

�
���x�

k
���x� �x�� �w����u� �v� is somewhat intimidating� We can

make it simpler to write by noting that �x and �x� are dummy variables and the free
variables �w� �u� �v are all just parameters� serving the same role� Observe that� given a
vocabulary with constants s and t� we may rewrite � in the form

�� 
 �DTCx����xk��x
�

�
���x�

k��
����x� �x�� �p����s� �t�

by letting �p � �w� �u� �v and �� be

�� 
 ��x � �s � �x� � �u� s� t� � ��x � �v� s� t � �x� � �t� �

�xk��� xk�� � x�k��� x
�
k�� � �� �w�x�� � � � � xk� x

�
�� � � � � x

�
k��

� can thus be abbreviated as the equivalent and simpler looking formula� �� 

DTC�����p���

Fact ��� ��I�	�� �FO
DTC
 �� � L

Other transitive closure operators are interesting to consider� We brie�y mention a
third one� Alternating Transitive Closure �ATC� is the generalization of TC to and�or
graphs� See �I�	� for details�

Fact ��� ��I�	�� �FO
 ATC
 �� � P

Facts 
�
� 
��� and 
�� do not go through for non�ordered structures� One reason for
this is that these languages are overly weak when restricted to graphs without much
structure� For example� on a graph with no edges� even �FO
 ATC� is powerless to
walk through the vertices and so cannot express the proposition that there is an odd
number of vertices �I�
��

On the other hand� the reason we would prefer not adding the ordering relation is
that it allows the language to express order dependent properties� i�e�� properties that
depend not on the graph but rather on the arbitrary ordering in which the graph is
presented� One way to add back some of what is lost when we take away ordering�
is to add a second universe of numbers� with an associated ordering� Thus a graph
with numbers is a two�sorted structure�

G � hf�� �� � � � � n	�g� fv�� v�� � � � � vn��g��� ��m� Ei
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Here the edge relation E applies to the domain of vertices fv�� v�� � � � � vn��g and the
ordering � and constants ��m refer to the domain of numbers� For convenience we
will assume that there are two sorts of variables� number variables� i� j� k� � � � and
vertex variables� u� v� w� x� y� z� � � �� In this paper we will assume that graphs
are equipped with numbers
 unless we explicitly state otherwise�

Once numbers are available it is nice to be able to count� To do this� we can add
counting quanti�ers� Let the meaning of the formula�

��i x���x�

be that there exist at least i distinct vertices x such that ��x�� Note that this
quanti�er binds x and leaves i free� We will let �FO 
 COUNT� denote �rst�order
logic over structures with numbers and counting quanti�ers� Let ThC� be the set of
problems checkable by uniform sequences of polynomial size� bounded depth threshold
circuits� We have the following relationships� �The relation BIT is mentioned in the
following fact� We have avoided talking in detail about BIT because it is de�nable
in �FO
DTC
 �� and above �I�	�� and� thus is not needed in the remainder of this
paper��

Fact ��
 For totally ordered structures with BIT the following containments hold�
The classes inside boxes are equal� �In this fact we assume that all languages have �
and BIT ��

AC�

FO
�
��

ACC�

�FO��k�
� ThC�

�FO�COUNT�
� L

�FO�DTC�
� NL

�FO�TC�
� P

�FO�ATC�

Unfortunately� counting does not su�ce to replace ordering�

Fact ��� ��CFI���� There is a property in �FO 
 
�
 �� that is not expressible
over non�ordered structures even in �FO 
 COUNT 
 ATC� and thus not in �FO 

COUNT 
 TC� nor �FO
 COUNT 
DTC� either�

��� Separation of TC Logics Without Ordering

It is known that the language �FO
TC� is more powerful than �FO
DTC� �GM�
��
Here we give a particularly simple proof of this fact and also note that the proof goes
through in the presence of counting�

Theorem ��	 Reachability from s to t is expressible in �FO
TC�� but� not in �FO

DTC�� nor even in �FO
DTC
 COUNT��

Proof The existence of a path from s to t is expressible in �FO
 TC� as follows�

TCx�x��E�x� x����s� t�

�



a1 a2 a3 an-1 an

b1 b2 b3 bn-1 bn

an+1 an+2 an+3 a2n-1 a2n

b b b b bn+1 n+2 n+3 2n-1 2n

Figure �� The graph Gn�

To prove that this is not expressible in �FO 
 DTC�� we consider the graphs Gn �
�Vn� En� �see Figure ���

Gn � �Vn� En�� Vn � fai� bi j i � �� 
� � � � � 
ng

En � fhai� ai��i� hai� bi��i� hbi� ai��i� hbi� bi��i j i � �� 
� � � � � n	 �� n 
 �� � � � � 
n	 �g

Observe that the transpositions �i � �ai bi� are automorphisms of Gn for � � i � 
n�
Thus� for any formula ��x�� � � � � xk� x

�
�� � � � � x

�
k� and any pair of k�tuples �c� �d from Vn

and any i� � � i � 
n� we have that

Gn j� ���c� �d� � Gn j� ���i��c�� �i� �d�� �
���

It follows from Equation 
�� that if Gn j� �d��c� �d� and �d includes a vertex with
subscript i� then so does �c� �Otherwise� �i��c� � �c� but� �i� �d� �� �d and thus �c has two
outgoing ��edges��

It follows that over the graphs Gn� n � �� 
� � � � DTC��� is equivalent to a �rst�order
formula� Thus over these graphs� �FO 
 DTC� � �FO�� Of course reachability is
not �rst�order expressible over the Gn�s� �This follows for example from Gaifman�s
theorem� see Theorem ��
��

To show that reachability is not expressible in �FO
COUNT
DTC�� we �rst note
that the above argument shows that on the Gn�s� �FO 
 COUNT 
 DTC� is equal
to �FO 
 COUNT�� It now remains to show that �FO 
 COUNT� cannot express
reachability over the Gn�s�

The automorphism of the Gn�s rendered the DTC operator useless� Now that DTC
is gone we lose no generality in considering slightly simpler graphs� Let Dn be the
induced subgraph of Gn restricted to the vertices fa�� a�� � � � � a�ng� In Dn� let s � a��
and t � an� so that t is reachable from s in Dn� Let D�

n be the same graph but with
t � a�n� so t is not reachable from s in D�

n� We prove�

�



Lemma ��� No sentence from �FO
COUNT� is true for all the Dn�s and false for
all the D�

n�s�

Proof We use the Ehrenfeucht�Fraiss�e counting game of �CFI�
� to prove that Dn

and D�
n agree on all sentences from �FO 
 COUNT� of quanti�er�rank blg�n� 	 �c�

We must show that Player II  the Duplicator  wins the blg�n�	 �c�move counting
game on Dn and D�

n�

Consider the standard winning strategy for the Duplicator in the game without count�
ing� Namely� for � � i � n the response to the chosen vertex v � fai� an�ig in one
graph is w � fai� an�ig in the other graph� The rule for deciding which is that we
look at the previously chosen point vt that is closest to v� and we answer with the
w that is on the same line �and thus the same distance� from wt� If two points on
di�erent lines are the same shortest distance away� then we arbitrarily reply with w

on the same line as v� An induction argument shows that this is a winning strategy
for the Duplicator in the blog nc 	 � move game�

Note that the Duplicator�s winning strategy gives a � � � correspondence between v�s
and w�s� Thus any set chosen by the spoiler in the counting game is answered by a
set of the same cardinality� The Duplicator wins the counting game as claimed� �

This completes the proof of Theorem 
�	� �

Note that this theorem is not very satisfying because rather than proving that L �� NL�
it just shows the weakness of the model� It is easy for �FO 
 DTC� to express
reachability over the Gn�s in the presence of ordering� Let

N�x� x�� 
 E�x� x�� � ��z��E�x� z� � x� � z�� then�

PATH�u� v� 
 ��w��DTC�N�x� x����u�w� � �v � w � E�w� v���

This de�nition also works in the presence of a one�way �and thus also a two�way�
local ordering� cf� De�nition ��� ������

� The JAG Model� Locally Ordered Graphs

In this section we de�ne the JAG model� We will see that the JAG model is somewhat
weaker than �FO
DTC
�LO�� cf� Theorem ���� When the JAG is applied to ordered
graphs it has the same power as �FO
DTC
 ��� i�e� exactly L� cf� Proposition ����

As we have indicated� an important issue concerning the power of JAGs is that they
take as input one�way locally ordered graphs� We thus �rst de�ne�

De�nition ��� �One�way Local Ordering� Consider a graph

G � hf�� �� � � � � n	�g� fv�� v�� � � � � vn��g��� ��m� E� F� s� ti

	



in which F is a ternary relation on vertices� Suppose that for each vertex� v� F �v� �� ��
is a total ordering on the vertices w for which there is an edge from v to w� Then
F is called a one�way local ordering on �the outgoing edges of� G� and G is called
a one�way locally ordered graph� We denote logics over graph structures augmented
with one�way local ordering with the abbreviation 	LO� �

The following observation gives an alternate way to view local orderings�

Observation ��� In �FO 
 DTC 
 	LO� one can express for graphs the relation
Ei�v�w� meaning that vertex w is the head of the ith edge out of v� �Here i is a
number variable� not a constant��

Proof Using �FO 
 DTC 
 �LO� we can express the ��� correspondence between
the numbers �� �� � � � � i and the �rst i
 � edges out of v� We �rst say that a vertex z
is the head of the zeroth edge out of v�

��z� 
 �E�v� z� � ��w��E�v�w�� F �v� z� w��

Then we say that there is a ��edge from the pair hj� xi to the pair hj 
 �� yi i� y is
the head of the next edge out of v after x�

��j� x� k� y� 
 �k � j
���x �� y �F �v� x� y�� ��u���F �v�x� u��F �v�u� y��� �x � u�y � u��

Finally�
Ei�v�w� 
 ��z����z� � �DTCjxky����� z� i� w��

�

We now de�ne the JAG� Note that the JAG de�ned in �CR��� is a non�uniform model�
We modify the de�nition here exactly so that the model is uniform�

De�nition ��� �JAG�A uniform Jumping Automaton on Graphs �JAG� is a logspace
Turing machine that accesses its input via a bounded number of pebbles� Input to a
JAG is a one�way locally ordered graph with two speci
ed vertices� s and t� Initially�
all the pebbles are on the initial vertex� s� At each move� the JAG can detect which
of its pebbles coincide� and which are on s or t� Based on this information� besides
making its usual Turing machine moves� it may jump any pebble to the location of
another speci
ed pebble� or� it may slide a pebble currently at vertex v along a speci
ed
edge out of v� Edges are speci
ed by their number in the local ordering F �v� �� ��� If
there is no such edge� then the pebble remains where it is� �

As an example� we prove the following

Proposition ��� The GAP problem for the set of graphs Gn of Figure 	� is solvable
by a JAG�

�



Proof De�ne the JAG� J� as follows� J� needs two pebbles� p�� p�� and� doesn�t
use its work tape� J� begins with its pebbles on vertex s� If s � t� then J� accepts�
Otherwise� at the �rst move J� moves p� along the � edge out of the current vertex�
and p� along the � edge� If either pebble is on t� J� accepts� otherwise it jumps p�
to p�� and repeats� J� can detect if its current vertex has no outgoing edge because
after it tried to slide p� along the � edge� p� and p� would still coincide� In this case
it should reject� �

We will see in Corollary ��� that JAGs are strictly weaker than �FO
DTC 
 �LO��
Right now we show�

Theorem ��
 JAG � �FO
DTC
 	LO�

Proof Let J be an arbitrary JAG� We must show that there is a sentence �J �
�FO 
 DTC� such that the set accepted by J is exactly the set of one�way locally
ordered graphs that satisfy �J �

This is similar to the proof that L � �FO 
 DTC
 �� �I�	�� We will use a bounded
number of numeric variables to code J �s O�log n� bit work tape� We will use a
vertex variable vi to denote the vertex on which pebble pi sits� Thus jumping� and
coincidence of pebbles is �rst�order� The movement along edges is expressible in
�FO
DTC� by Observation ��
� Thus� the relation NEXTJ�ID��ID��� meaning that
ID� follows from ID� in one move of J � is expressible� Finally� the acceptance condition
is given by

�J 
 DTC�NEXTJ��ID�� IDf�

�

When a JAG is given an ordered graph we assume that it has a pebble placed on �
and that it may slide any pebble from vertex i to vertex i 
 �� It is interesting to
note that in this case�

Proposition ��� The JAG model over ordered graphs is equivalent to �FO
DTC
 ���
i�e�� it exactly captures L�

Proof This can be seen as follows� We use one pebble to simulate each �rst�order
variable� Quanti�cation can be simulated by cycling through all vertices in numeric
order� Furthermore� DTC can be simulated by starting at a tuple �u� and cycling
through all tuples �v in lexicographical order� If it is discovered that there is a unique
�v such that ���u� �v� holds� the JAG shifts the �u pebbles to �v and repeats� �

�



��� Reachability on Trees with DTC

Now we show that in �FO 
 DTC 
 �LO� a total ordering is expressible on trees� It
follows from the proof that reachability on trees is expressible as a DTC of a �rst�
order formula� It is interesting to contrast this with Theorem ��� which shows that
such DTC�s can not express reachability on one�way locally ordered DAGs�

Theorem ��	 There is a formula ��x� y� � �FO 
 DTC 
 	LO� which� over con�
nected trees� expresses a linear ordering of the vertices of the tree� Furthermore� � is
expressible as a single DTC of arity � �plus booleans��

Proof We do a preorder traversal of the tree� The formula � below expresses the
next step in this preorder traversal� Then we de�ne ��x� y� to mean that we can get
from x to y in this traversal� i�e� x precedes y�

In our de�nition of � and � we make use of boolean variables i and j� This is so
that the arity of the vertex variables can be kept down to two� In the de�nition of
the preorder traversal� �� when we enter a vertex v for the �rst time� we will actually
enter �v� ��� When we want to leave v for the last time after visiting all of v�s children�
we will enter the dummy node� �v� ��� Thus the traversal of V � f�g is the preorder
traversal� and the vertices V � f�g are just used for bookkeeping�

Let the formula 	�u� v� mean that v is u�s next sibling�

	�u� v� 
 u �� v � ��p��F �p� u� v�� ��w��F �p� u�w�� �u � w � F �p� v� w����

The preorder traversal� �� and the ordering� �� are de�ned as follows�

��x� i� x�� i�� 
 
� � 
� � 
� � 
� where�


� 
 �i � � � i� � � � E�x� x�� � �z��	�z� x����


� 
 �i � � � i� � � � x � x� � ��z��E�x� z��


� 
 �i � � � i� � � � 	�x� x���


� 
 �i � � � i� � � � E�x�� x� � ��z��	�x� z��

��a� b� 
 DTC���x� i� x�� i����a� �� b� ��

�

One can easily modify the above formula for linear ordering to obtain a formula for
s�t�Reachability� just by conjoining � with ��x � s � i � ��� This guarantees that �
does not ascend from s� and thus that ��s� t� holds i� t is a descendant of s�

In fact� Reachability on directed trees is expressible in �FO 
 DTC� without local
ordering� This is because each vertex besides the root has a unique edge to it� Thus

��



we can use DTC to walk backwards� Thus the following formula expresses reachability
for directed trees�

Reach�s� t� 
 DTCxx��E�x�� x���t� s�

This proves�

Proposition ��� Reachability on trees �even without local ordering� is expressible in
�FO
DTC�� In fact� it is expressible as a single DTC of arity ��

Cook and Racko� proved that reachability on trees is not checkable by JAGS �see
Fact ����� Together with Theorem ��� and Proposition ���� this yields�

Corollary ��� JAG �
��

�FO
DTC
 	LO�

��� One�Way Local Ordering and �FO�TC�

The empty set is a local ordering for any graph with no edges� It follows that�

Proposition ���� Having an odd number of vertices is not expressible in �FO
TC

	LO��

However� the more interesting situation is when the graph is connected�

Theorem ���� There is a formula ��x� y� � �FO
TC
	LO� that describes a total
ordering on the vertices reachable from s�

Proof We only consider those vertices reachable from s� We �rst construct a formula

�x� y� i� which means that the distance from x to y is i� This is done below as follows�
	 identi�es a single step� ��u� v� i� takes the transitive closure of 	� asserting that there
is a path from u to v of length i� and� then 
 is de�ned using ��

	�w� j� w�� j�� 
 �j� � j 
 �� � E�w�w��

��u� v� i� 
 TC�	��u� �� v� i�


�x� y� i� 
 ��x� y� i� � ��k 
 i�����x� y� k��

Next� we construct a formula ��z� x� which means that z occurs on the lexicograph�
ically �rst� shortest path from s to x� This is done again by taking single steps�
��u� i� u�� i�� means that if u occurs on the lexicographically �rst� shortest path from
s to x and is distance i from x� then u� is the next vertex on this path and is distance
i� � i	 � from x�

��u� i� u�� i�� 
 �i� � i	��E�u� u��� 
�u�� x� i��� ��v���F �u� v� u���
�v� x� i���� v � u���

��



and � is a transitive closure of ��

��z� x� 
 ��d��
�s� x� d� � ��i�TC����s� d� z� i��

Now� de�ne the total ordering ��x� y� to mean that the distance from s to x is less
than the distance from s to y� or the distances are equal� but the lexicographically
�rst� shortest path from s to x precedes the lexicographically �rst� shortest path from
s to y�

��x� y� 
 ��ij�
�

�s� x� i� � 
�s� y� j� � �i 
 j �

�i � j � ��zuvk����z� x� � ��z� y� � ��u� x� � ��v� y� � F �z� u� v�� u �� v���
�

In the above� z is the last vertex on which those two lexicographically �rst� shortest
paths agree� �

Theorem ���� shows that for the interesting case� ordering is de�nable in �FO
TC

�LO�� In �EI��a� we conjectured that �FO 
 TC 
 COUNT 
 �LO� would capture
all of NL� This turns out to be false� However� �FO 
 TC 
 COUNT
 
LO� � NL�
Both of these facts appear in �EI��b� and are discussed further in Section 	�

� Two�Way Locally Ordered Graphs

The feature of the JAG model that makes it unrealistically weak is its inability to
back up� This is the reason why JAGs can�t search trees as they should be able to�
unlike the language �FO
 DTC� which can� Proposition ����

In �FO 
 DTC� we can usually back up� Namely� if we are at a vertex a that has
an edge coming into it from vertex b and vertex b has some special property �such as
being the only vertex x such that the �	th edge out of x is to a� then we can back up to
b� On the other hand� we can construct our graphs so that all vertices of interest have
duplicate� �shadow� predecessors that look locally identical to each real predecessor�
In this way we can force the language �FO
DTC
�LO� to be arti�cially weak� We
will exploit this idea to get a general lower bound for �FO
 DTC 
 �LO�� Theorem
����

For this reason� we feel that it is more reasonable to consider graphs equipped with
a two�way local ordering�

De�nition ��� A two�way local ordering �denoted by �LO� is just a one�way local
ordering� H� on the incoming edges to each vertex� in addition to the one�way local
ordering� F � on the outgoing edges� There is no assumption about consistency between
F and H�

A two�way JAG is a JAG that takes as input graphs with a two�way local ordering�
At each move� the JAG may choose a speci
ed incoming or outgoing edge and move
a pebble along it� From now on� we will refer to the usual JAG model as a one�way
JAG� �

�




��� �FO � DTC� and Two�Way JAGs

Now we show that the language DTC�FO

LO�  the restriction of �FO
DTC

LO�
to single DTC�s of �rst order formulas  is essentially equivalent to the two�way JAG�
The �rst observation we make is the well known fact that �xed �rst�order statements
are essentially local in nature� This is stated nicely� for example� in the following
theorem of Gaifman� Any logical structure A may be thought of as a generalized
graph in which an edge exists between two points a and b i� a and b occur together
in some tuple of a relation in A� The distance between a and b �dist�a� b�� is the
minimum number of such edges that must be traversed to get from a to b�

If we restrict all quanti�ers in a formula � to the union of the balls of distance d around
a set of points� �v� then we get a local formula� denoted �d��v�� Gaifman�s theorem
says that a �rst�order formula may describe the local neighborhood around its free
variables and constants ���� and it may describe the existence of certain landmarks
�
�� and that is all�

Fact ��� ��Ga���� Let � be a 
rst�order formula whose free variables and constants
are in the tuple �u� Then there exists a distance d depending only on � such that � is
equivalent to a boolean combination of

	� a 
nite set of formulas� �d
i ��u�� and�

�� a 
nite set of sentences �in which no constants nor free variables occur��

�j 
 ��v�� � � � � vs��
s�

i��

�d�vi� �
�

i�j�s

dist�vi� vj� � 
d�

We now use Fact ��
 to analyze the computation performed by the expression DTC����x� �x�����c� �e��
where � is an arbitrary �rst�order formula�

We know that � is equivalent to a boolean combination of some �j�s asserting the
existence of some distant landmarks� and� some �i�s which are local facts about �x� �x��
and the only constants available� s and t� We may assume that all of the �j�s are
satis�able because any unsatis�able ones are just super�uous� It follows that there is
a one�way locally ordered graph L� that contains neither s nor t� but does satisfy all
of the �j�s� i�e�� L� contains all the relevant landmarks� By only considering graphs
that include a copy of L� disjoint from everything else� we reduce � to a boolean
combination of �i�s which is thus equivalent to one �xed formula�

���x� �x�� 
 �d��x� �x�� s� t�

Now� consider a DTC��� walk� Call the step from �a to �b d�local �or just local if d
is understood� if every point bi in �b is within the d�neighborhood of some point in
�a � fs� tg� If the step is not local because of bi� then the point bi must have been the
unique point in the graph with some special property� Suppose now� that we add two

��



new� disjoint copies of the graph �with the vertices s and t not labelled in the new
copies�� Then in this expanded graph there are two equally valid points bi that we
could move to� Thus� in the expanded graph all steps are local�

We summarize the above discussion in the following de�nition� observation� and
lemma�

De�nition ��� Let � be a 
xed 
rst�order formula as in the above discussion� Let
�p be the set of parameters in �� i�e�� constants s and t plus any other constants or
assigned variables� We will call a graph G adequate for � �or just adequate if � is
understood� i� G satis
es all the �i�s of Fact 
��� and� for every point a � VG� such
that dist�a� �p� � d� G contains another point b where dist�b� �p� � d and dist�a� b� � 
d
and b�s d�local neighborhood is isomorphic to a�s� �

The following observation shows that without loss of much generality we can restrict
our attention to adequate graphs�

Observation ��� Let G be any graph containing the constants s and t� Given �� a
formula with v variables� let adq�G� be the disjoint union of 
v 
 � one�way locally
ordered graphs� G�G�� � � � � Gv�H�� � � � �Hv where G �� G�

�� � � � �� Gv� and H�
�� � � � ��

Hv
�� L�� Then adq�G� is adequate for �� Furthermore� in terms of reachability from

s to t and as inputs to JAG�like automata� G and adq�G� are indistinguishable�

Lemma ��
 Let ���x� �x�� �p� be a 
rst�order formula where �p is the set of parameters�
i�e�� constants and free variables besides �x� �y� Then there exists a constant d depending
only on � and there exists a d�local formula �d��x� �x�� �p� such that for every graph G

that is adequate for �� we have�

	� In G� � is equivalent to ��

�� Every step in every DTC��� walk in G is d�local�

A consequence of Lemma ��� is that the two�way JAG is very similar to the language
�FO 
 DTC 
 
LO�� In particular� a lower bound in one of these models translates
to a lower bound in the other�

Theorem ��� Let G be a class of two�way locally ordered graphs with numbers that is
closed under the adq operation of Observation 
�
� Then the following two statements
are equivalent�

	� For some 
rst�order formula �� DTC����x� �x�����s� �t� expresses reachability from
s to t for G�

�� There exists a two�way JAG that recognizes reachability from s to t for G�

��



On the other hand� if G is as above but without numbers� then condition �	� is
equivalent to

�� There exists a 
nite state� two�way JAG that recognizes reachability from s to t
for G�

Proof One direction of this follows from Theorem ���� The other direction follows
from Lemma ���� The JAG can simulate the DTC because it can exhaustively visit
all vertices of distance at most d and thus choose the correct tuple to go to next� If
we remove numbers and the JAG�s worktape then the simulations go through and we
have that � and � are equivalent� Note that since d is a �xed constant� a �nite state
JAG can do the simulation� �

� Lower Bound� �FO�DTC � �LO�

In this and the following section� we use Theorem ���� together with two previous
lower bounds� to prove lower bounds on the descriptive power of �FO
DTC
�LO��
and then in the next section on �FO 
 DTC 
 
LO��

As mentioned at the beginning of Section �� a weakness of one�way JAGs is that
they can�t back up� We can however similarly prevent DTC walks from backing up
by replacing a tree T by a shadowed counterpart T �� where for each edge hv�wi we
introduce a new vertex v� and edge hv�� wi that will be locally indistinguishable from
hv�wi�

De�nition 
�� Given a directed forest T � and a number 
� we de
ne a new DAG G

called the shadowed forest�

G� shadow�T� 
�

G is constructed as follows� First� for each edge �u� v� of T create a new vertex v� and
an edge �v�� v�� Next� replace each old and new edge by a path of length 
� keeping
the original local ordering for vertices with out�degree � �� We call the vertices in
G corresponding to the original vertices in the forest tree vertices� Every labeled
vertex in T will maintain the same label in G�

For a given vertex w in G� the tree vertex associated with w� denoted tv�w�� is
the vertex in the original forest T immediately �above� w� If w is on a shadow path
�v�� v�� then �above� is taken to mean the tree vertex u at the top of the shadowed
path �see 
gure ��� �

Lemma 
�� For any 
rst�order formula � and DTC formula ! � �DTC ��xx� �����
there is a logspace JAG J � and distance d� such that J simulates � in the following
sense� For any forest F � let F � � adq�shadow�F� d��� Then

�J accepts F � � �F � j� !�

��
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Proof By Lemma ��� we may assume that there is a constant d such that � is
d�local and every � step is d�local� Let 
 � �d
�� Furthermore� we may assume that
� is deterministic� i�e�� we have already cut o� any double outgoing edges� Using the
number variables� we can also insure that � keeps a counter to check itself for looping
and that it has no outgoing edges after its counter over�ows�

We build J so that it simulates ! step by step� Initially� J has one pebble on t and
the rest of its pebbles on s� At each step� J will start with its xi pebble on tv�xi��
the vertex in F that is �above� the vertex xi � F �� J will also keep on its worktape
the distance di from tv�xi� to xi in F �� For those xi that are numeric variables� J will
just keep this numeric value on its worktape�

At each step� J must �nd the tuple x� of points in F � such that

F � j� ���x� x�� �����
if it exists�

Observe� that if such a tuple x� exists� then each corresponding vertex tv�x�i� is equal
to a currently pebbled vertex� or is an immediate descendent of a currently pebbled
vertex� This is the main point of the construction� The reason is that ��� � can�t
talk about distances greater than d and so cannot jump a whole edge from F � and�
�
� if there are no current points above a node v � F � then the path from u to v is
indistinguishable by � from the shadow path from u� to v� Thus� if there were an x�i
on one of these paths� then the corresponding x�i on the other path would also satisfy
� and thus� there would be no outgoing ��path�

Thus� to test for a possible x�� all that J has to do is to cycle through all the bounded
number of possible movements of its x� pebbles by leaving them where they are�
jumping them to another pebble� or sliding them along a single edge� For each such

��



placement of the pebbles� J must cycle through all the possible distances from them
that are less than or equal to d�

Finally� for each candidate tuple� J must test whether Equation ��� holds� Again�
since � is d�local� this amounts to cycling through all the nearby values of the variables
quanti�ed in �� Note� that in this case quanti�ed vertices may assume positions that
are slightly above a pebbled vertex� However� J knows that such vertices exist �unless
the vertex is s in which case J would know that they don�t exist� We are assuming
that t is never a root and thus s is the only root that J can reach� Note that to check
the truth of Eq� ���� J will employ two auxiliary pebbles which it can slide one step
down from newly pebbled vertices to check for leaves�� Thus J can keep track of all
possible assignments to these variables long enough to test Equation ����

Thus J simulates ! and accepts i� it reachs a situation where x� � �t �

To prove our lower bound on �FO 
 DTC 
 �LO� we use the following fact from
�CR����

Fact 
�� ��CR���� No JAG can decide s�t�reachability on forests�

Theorem 
�
 No formula ! � �DTC ��x� �x� ���� expresses s�t�reachability on one�
way locally ordered DAGs�

� Lower Bound� �FO 	 DTC 	 �LO


It is harder to prove a lower bound on two�way locally ordered graphs� In particular�
reachability on the above shadowed trees equipped with a two�way local ordering is
expressible as a single DTC�

Two known lower bounds on undirected graphs� together with Theorem ���� give a
lower bound on the language �FO 
 DTC 
 
LO� without numbers� Recall from
Theorem ��� that �FO
DTC� without numbers corresponds to �nite state JAGs as
opposed to logtape JAGs�

Blum and Sakoda considered �nite automata walking on three dimensional mazes�
These mazes are subsets of Zn� where each node has some subset of its six possible
neighbors consistently marked north� south� east� west� up� and� down�

Fact ��� ��BS		�� No bounded set of 
nite automata can search all three dimen�
sional mazes�

The following Fact by Cook and Racko� proves a somewhat stronger result on a
slightly weaker model� A �nite state JAG is stronger than a bounded set of �nite
automata in that the automata cannot communicate unless they run into each other�
Another way to think of a �nite state JAG is that it is a bounded set of �nite

�	



automata equipped with walkie talkies so that they can ask each other what state
they are currently in� The following lower bound involves locally consistent two�way
local orderings� but the graphs in question curve around themselves rather than being
embeddable in Z�� See also �BH�
� for a related lower bound�

Fact ��� ��CR���� No 
nite state JAG can search all degree three undirected graphs�

Corollary ��� The reachability problem for undirected graphs equipped with two�way
local orderings is not expressible in the form DTC���� with � 
rst�order and without
numbers� Furthermore� the same problem for mazes embedded in Z� with the inherited
directions north� south� east� west� up� and� down� is not expressible as an arity two
DTC�

� Conclusion

We have begun an investigation of transitive closure logics applied to locally ordered
graphs� We have shown that the JAG model is intimately related to these logics�
We have indicated why the JAG model is unreasonably weak and should� wherever
possible� be replaced by the two�way JAG model� Furthermore� we have shown that
the language �FO
DTC 
 
LO� is more robust than even the two�way JAG model�
and yet lower bounds remain accessible�

We have proved an interesting upper bound on the power of TC over one�way locally
ordered graphs �Theorem ������ and three lower bounds on DTC �Theorems 
�	 and
���� and Corollary �����

We hope that we have given convincing evidence that further study of the relationship
between �FO
DTC� and �FO
TC� is both feasible and important for understanding
the relationship between L and NL�

The following topics merit further study�

�� The lower bounds of Theorem ��� and Corollary ��� prove the impossibility of
expressing reachability by formulas of the form DTC�����s� �t�� where � is �rst�
order� We conjecture that the lower bound of Theorem ��� holds for all of
�FO 
 DTC 
 �LO�� There is a normal form theorem which says that every
formula in �FO 
 DTC
 �� can be written in the form DTC�����s� �t� where �
is not only �rst�order� but quanti�er�free� �I�	�� This normal form theorem is
false without ordering� even with two�way local ordering� However� we feel that
a generalization of the proof of Theorem ��� will extend to a lower bound on
all of �FO 
 DTC
�LO��


� We have argued that �FO
COUNT
DTC

LO� is a robust approximation
to L and yet admits tractable approaches to lower bounds� Much further study
is needed� In particular� lower bounds on �FO 
 COUNT 
 DTC 
 
LO� are

��



very desirable� Such a lower bound would at least show us a de�ciency of this
language which we could then �x� At best� such a lower bound could prove that
L �� NL�

�� Related to 
 is the following challenge� Find a set of graphs for which reacha�
bility is in L but not in �FO
 DTC 
 COUNT
 
LO��

As mentioned in section ��
� we had in the conference version of this paper conjectured
that the language �FO
TC
COUNT
�LO� would capture all of NL� What remained
to be shown to prove this conjecture was that the language �FO 
 TC 
 COUNT�
canonizes all trees� cf� �IL��� L�
�� However� we have recently �EI��b� proven that
tree canonization is not in �FO 
 TC 
 COUNT� and� using the result of �L�
�� this
yields that �FO 
 TC 
 COUNT 
 �LO� �� NL� However� in that same paper we
prove that �FO
TC
COUNT

LO� � NL� further justifying the continued study
of local orderings�
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