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Abstract

We characterize the polynomial time computable queries as those ex�

pressible in relational calculus plus a least �xed point operator and a total

ordering on the universe� We also show that even without the ordering

one application of �xed point su�ces to express any query expressible

with several alternations of �xed point and negation� This proves that
the �xed point query hierarchy suggested by Chandra and Harel collapses

at the �rst �xed point level� It is also a general result showing that in

�nite model theory one application of �xed point su�ces�

Introduction and Summary

Query languages for relational databases have received considerable attention�
In ���� Codd showed that two natural languages for queries � one algebraic
and the other a version of �rst order predicate calculus � have identical powers
of expressibility� �Cod��	� Query languages which are as expressive as Codd
s
Relational Calculus are sometimes called complete� This term is misleading
however because many interesting queries are not expressible in �complete�
languages�

In ����� Aho and Ullman� �AU��	 noted that relational calculus does not
su
ce to express the transitive closure property� They suggested adding a least
�xed point operator to relational calculus in order to create a query language
which can express transitive closure� In ����� Chandra and Harel� �CH��b	�
studied the expressive power of relational calculus with added primitives such
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as a least �xed point operator� They de�ne a Fixed Point Hierarchy of query
classes� the queries in each particular class being those expressible with a certain
number of applications of the least �xed point operator� followed by a certain
number of alternations of of ordinary quanti�cation and negation� In this paper
we show�

Theorem �� The Fixed Point Hierarchy collapses at the �rst �xed point level�

That is� any query expressible with several applications of least �xed point
can already be expressed with one� We also show�

Theorem �� Let L be a query language consisting of relational calculus plus
the least �xed point operator� �� Suppose that L contains a relation symbol for
a total ordering relation on the domain �e�g� lexicographic ordering�� Then the
queries expressible in L are exactly the queries computable in polynomial time�

Theorem � was discovered independently by M� Vardi �Va��	� It gives a syn�
tactic categorization of those queries which can be answered in polynomial time�
Of course queries requiring polynomial time in the size of the database are usu�
ally prohibitively expensive� We also consider weaker languages for expressing
less complex queries�

� Background and Notation

This section will brie�y de�ne and give examples of the objects under con�
sideration� The reader is referred to �Ull��	� �End��	� �AHU��	� and �Mo��	 for
excellent discussions of relational query languages� �rst order predicate calculus�
computational complexity� and least �xed points� respectively�

First� a relational database� B � hU�Ra�
� � � � � � Rak

k � c�� � � � � csi� is simply a �rst
order structure with �nite universe� U � For i � � � � � k� Rai

i is an ai�ary relation
on U � i�e� Ri � Uai � The superscripts� ai� will be omitted where confusion does
not arise�

The constants� c� � � � cs are elements of U � As an example we can consider a
database B� � hU�� F�� P��H��Abrahami� where U� is a �nite set of people�

U� � fAbraham� Isaac� Sarah� Leah� � � �g

F� is a monadic relation true of the female elements of U��

F� � fSarah� Leah� � � �g

P� and H� are the binary relations for parent and husband� respectively� e�g�

P� � fhAbraham�Isaaci� hSarah�Isaaci� � � �g

A similarity type� � � hRa�
� � � � � � Rak

k � c�� � � � � csi� is a �nite list of relation
and constant symbols� Rai

i is an ai�ary relation symbol� For example� B� is a
database of type �f � hF �� P ��H�� c�i�
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De�ne Domain Relational Calculus to be the query language consisting of
�rst order predicate calculus� Thus if � � hR�� � � � � Rk� c�� � � � � csi is any simi�
larity type� then L���� the relational calculus for � � consists of all well formed
formulas built up in the usual way from the symbols of � � together with equal�
ity� �� logical connectives� ��� � variables� x� y� z� � � �� and quanti�ers� ����
For example we can express the grandparent relation as the following w�

��x� y� � ��z�
�
P �x� z�� P �z� y�

�
The w� � � L��f � has free variables� x� y� If � is thought of as a query to
B�� then the response is the set of all pairs� ha� bi � �U���� such that a is a
grandparent of b� More formally this is the set of all pairs ha� bi such that B�

satis�es ��a� b�� In symbols�

�B� � fha� bi � �U��
�jB� j� ��a� b�g

First order logic gives a rich class of database queries� but some plausible
queries are not �rst order expressible� For example it is impossible to express
the relation �ancestor�x�y�� in L��f �� Aho and Ullman �AU��	 suggest adding a
least �xed point operator to relational calculus so that transitive closures such
as �ancestor� may be expressed�

For example� let R be a new binary relation symbol and consider the follow�
ing �rst order formula�

��R��x� y	 �
�
x � y � ��z�

�
P �x� z�� R�z� y�

��

For any databaseB of type �f � � induces a mapping� �B� of each binary relation�
R� on the universe of B to the binary relation�

�B� �R� �
�
hx� yi

�� B j� ��R��x� y	
�

The operator �B� is monotone� i�e� if R� � R� then �B� �R�� � �B� �R��� It

follows that for any database� B� �B� has a least �xed point� i�e� a minimal

binary relation� R� with the property that �B� �R�� � R�� It can be shown that
the least �xed point of the above �� denoted ��R��� is just the ancestor relation
� the transitive closure of P �

A syntactic criterion which assures that the operator� �B� � is always mono�
tone is that � is R positive� i�e R always appears within an even number of �
s
in �� As in �AU��	 and �CH��b	 we de�ne the �xed point language� L����� to be
the closure of L��� under the operation of taking least �xed points of R positive
formulas� ��R��

Notation� Given a formula ��R� �x� where R is a relation symbol of arity a
occuring positively in � and �x is an a�tuple of distinct variables� we will write

��t��R��x���
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to denote the least �xed point of � with the a�tuple �t of terms� �i�e� variables
and constants�� substituted in� For simplicity we will often write ��R�� for
��t��R��x�����

De�nition� Given a similarity type� � � let L���� be the closure of L���
under the usual operations of conjunction� negation� and quanti�cation� and
also under �� If ��R� �x� � L���� is as above� then ��R�� is also in L�����

Constant Assumption� We assume in the sequel that every similarity
type� � � under consideration has at least one constant symbol� c�� Without this
assumption there is no way to write a boolean query in the form ��t��R��x���
simply because any such expression will have free variables� Without the con�
stant assumption Theorems � and � must be modi�ed to allow a single quanti�er
after the application of � to get rid of the free variables�

� The Complexity of Fixed Point Queries

In L���� we have a very rich class of queries� including but not restricted to
all �rst order queries and transitive closures� It is interesting to consider the
complexity of evaluating queries in L����� Chandra and Harel show that all
�xed point queries are computable in polynomial time�

Fact ��� �CH��b� � If � � L���� is any �xed point query� then there is a
polynomial� p� such that if B is any database of type � with universe U � then
�B � i�e� the query � evaluated on B� may be computed in time p�jU j��

The idea behind the proof is as follows� Let n � jU j be the size of the
database and let ��R� be R positive� where the arity of R is a� Then ��R��
evaluated on B is equal to ��na����� i�e� to � applied na times to the empty
relation� The reason that na applications su
ce is that until the least �xed
point is reached each application adds at least one a�tuple� �remember that �
is monotone��� and B has at most na a�tuples�

Let QPTIME be the set of all queries computable in time polynomial in the
size of the database�

QPTIME �
�
�
�� graph��� � PTIME

�

where graph��� � fhB� �cijB j� ���c�g�� Write L� for the set of all �xed point
queries with � unspeci�ed� Thus Fact ��� says that L� � QPTIME� Chandra
and Harel also show that equality does not hold�

�See 
CH��b� for a more complete explanation of least �xed point operators� We have
adopted their notation except that we write � where they write Y �

�We are implicitly identifying a database B with its encoding as a binary string listing the
characteristic functions of all of its relations�
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Fact ��� �CH��b� � L� 	� QPTIME�

Their proof shows that queries in L� don
t necessarily have the ability to
count� Thus for example the query concerning family databases� �Are there an
even number of females�� is not expressible in L���f ��

The inability of �xed point queries to count can be eliminated by adding
an ordering of the universe to the language� Such an ordering� e�g� by bit
representation� is always available in real databases� Let us assume that every
database has a total ordering� 
� on its universe� Let L��
� be the set of
�xed point queries which may include the logical relation� 
� which must be
interpreted as a total ordering on the universe� We will show in the next section
that L��
� � QPTIME�

In fact we will see that any polynomial time query may be expressed as a
simple least �xed point� i�e� in the form ��R�� where � is �rst order� Let
us �rst describe the proposed Fixed Point Hierarchy of Chandra and Harel�
They considered a classi�cation of queries in L� by the number of alternate
applications of quanti�cation and of �� Let

�� � fM � L�jM is quanti�er and � freeg
�� � f��j� � ��g
���� � f��x��j� � ��g
��n � f��R��j� � ��� � � �ng

Thus �m is the set of �rst order queries withm alternations of quanti�cation
begining with existential� and ��n is the set of queries expressible using n
applications of � with intermediate applications of quanti�cation and negation�
Since our queries must be �nite we have L� � ��� � It is known that additional
alternations of �rst order quanti�cation give increased expressibility� This is
proved in �CH��b	 for languages without ordering� In �Si��	 Sipser showed that
polynomial size bounded depth circuits form a strict hierarchy for depth� A
corollary of this result as noted in �Im��	 is the strict �rst order hierarchy for
alternation of quanti�ers where any �xed set of logical relations including 
 is
used� It is also known that transitive closure is not �rst order expressible with
or without ordering� see �AU��	 or �Im��	� Thus we have

Fact ��	 � The �xed point hierarchy is strict up to and including ��� i�e� all
the following containments are strict�

�� �� � �� � � � � �
��
i��

�i � ��

�� ���
� � ���
� � � � � �
��
i��

�i�
� � ���
�

Chandra and Harel ask whether the hierarchy continues past ��� We will
show that it does not� In the next section we show that in the presence of

 



ordering the hierarchy stops at ���
� and is equal to the polynomial time
computable queries� In section � we will show the more subtle fact that even
without ordering the hierarchy stops at ���

� In the Presence of Ordering

In this section we prove our �rst main result�

Theorem �� ���
� � QPTIME � L��
�

Proof We have already seen that L��
� � QPTIME� We must show that
QPTIME � ���
�� To make our presentation slightly simpler we will only
consider boolean queries� Let S be a set of databases� B� of type � � Let M be a
Turing machine which accepts S in time less than nk� Here n is the size of the
universe of the input database� B� being tested for membership in S� We must
show that there is a query � � ���
� which expresses S� i�e�

S �
�
B

�� B j� �
�
�
�
B

�� M accepts B
�

We will show that M
s computation on input B can be described in ���
�� To
do this� we will build a �rst order formula �M whose least �xed point evaluated
on any B is a coding of M
s computation on input B� There are two steps to
writing the formula �M � First we show in Lemma ��� that the �rst line of M
s
computation� i�e� the input database� B� can be described in a �rst order w��
Second we show that given one line of M
s computationwe can describe the next
line in a �rst order way� Thus �M will determine a monotone operator which
given any partial computation� R� will add the �rst line of M
s computation
on B that has not yet been �lled in� Thus the least �xed point of �M will be
the entire computation� Then we can read the answer of whether M accepts or
rejects B from ��R��M �

Now let
s look at some of the details� Each candidate for S is a database B
which has a �nite universe� U� with a total ordering� 
� on it� Let n � jU j� We
can think of U as the set of integers from � to n�� with the usual ordering� We
will use k�tuples of variables to denote numbers between � and nk � �� Using
one application of � we will form the relation CM � ��R��M which codes M
s
computation� That is� B j� CM �p�� � � � � pk� t�� � � � � tk� a� if and only if in M
s
computation on input B� the contents of the cell p� � � � pk at time t� � � � tk is !a
�
Once we have written CM we can let

� � CM ��� nk � �� qf � �

Here � says that M is in its accept state� qf � after nk � � steps� Thus as
desired

B j� � 
 B � S

"



The �rst step in building �M is to write the sentenceM���p� a� meaning that
at time �� cell �p is a� We will show in Lemma ��� that for any Turing machine�
M � the w� M� is �rst order expressible�

Lemma 	�� � M���p� a� is �rst order expressible� i�e� M� � L���
��

Proof This is a matter of encoding and decoding B� Suppose for concreteness
that k � � and that � consists of a single binary relation symbol� E� We code B
on M
s input tape with a sequence of n� bits coding E� followed by a sequence
of n� � n� blanks� Before we write M� we must know how the symbols of M
s
instantaneous description are coded� Assume� for example� that � and � code
themselves� � codes !blank
� � codes the start state looking at a �� and � codes
the start state looking at a �� Using the ordering on B
s domain we may assume
that we have symbols for these numbers� Note� In writing � we may assume
that n is larger than a given constant k� We can assure this by listing all the
element of S whose size is at most k� We then say� �Either B is on this list� or
B has more than k elements and � holds��

Now M� for the above example is given as follows�

M��p�� p�� p�� a� �h
�p� � p� � p� � ���

�
�E��� ��� a � �� � ��E��� ��� a � ��

	i
���

�
h
p� � � � �p� 	� � � p� 	� �� � �a � � � a � ���

�
E�p�� p��� a � �

	i
���

�
h
p� 	� � � a � �

i
���

The above mess says ���� �The �rst tape symbol is M
s start state looking at
the �rst bit of E�� ���� �The next n� � � tape cells are � or � according as the
corresponding bit of E holds or doesn
t hold�� and ���� �The last n� � n� cells
are blank�� We hope the reader can generalize from this example to arbitrary
� �

Now that we have expressed the input tape� we can complete the description
of �M � �M will have a relation variable� R� of arity �k#�� If R codes a partial
computation of M� then �M �R� codes one additional step of this computation�

Let the notation �hxyzi � w� mean that if at a given moment the tape cells
i� �� i� i#� contain the letters x� y� z� respectively� then at the next move of M
cell i will contain the letter w� Thus �hxyzi � w� is just an abbreviation for
the following disjunction�

hxyzi � w �



hc
���c��c��ci��M

�
x � c�� � y � c� � z � c� �w � c

�

where 	M is the appropriate �nite set of quadruples� Thus �M �R� codes the
input tape and includes those tuples h�p� �t� ai whose precursors� a��� a�� and a�
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already appear in the computation coded by R� In symbols�

�M �R���p� �t� a	 � ��t � � �M���p� a�� �

�
�a��a�a�

�
ha��a�a�i � a

�R��p� �� �t� �� a���� R��p� �t � �� a�� �R��p# �� �t � �� a��
	�

Note that the crucial use of 
 is in expressing the motion left or right on
the input tape� i�e� to write �p� � or �p# ��

Let CM � ��R��M and put � � CM��� nk��� qf �� Thus�

B j� �
 B � S

as desired� It is in this last step that we need the constant assumption� If we have
at least one constant symbol� c�� then we can do our coding so that c� means
the correct thing in each place� i�e� so that CM ��� nk��� qf � � CM �c�� � � � � c���

and we are done� Otherwise as mentioned above an additional quanti�cation is
necessary�

� One Fixed Point Su�ces

If we do not have access to an ordering on the universe then it is not in general
possible to simulate a computation� so Theorem � fails �cf� Fact ����� We can
still show� however� that the hierarchy collapses at the �rst �xed point level�

Theorem �� L� � �� �

To prove this theorem we will use some of the machinery developed in
�Mos��	� Moschovakis considers inductive de�nitions on a �xed in�nite struc�
ture and he assumes that L contains a constant symbol for each element of
the structure� We consider uniform inductive de�nitions for all �nite relational
structures of a given similarity type and we assume only that at least one con�
stant symbol exists� We must thus check that Moschovakis
 results remain true
in this new setting� We derive the facts we need in ��� through ���� below�

The outline of the proof of Theorem � is as follows� We want to show that
several applications of � are no more expressive than one� Following �Mos��	
we show that two simultaneous inductions can be combined into a single one�
�Lemma ��� � Simultaneous Induction Lemma�� Next we show that two nested
applications of � with no occurrences of negation may be combined into a single
one� �Lemma ��� � Transitivity Theorem�� It immediately follows �Corollary
���� that �� is closed under conjunction� disjunction� and quanti�cation� Third

�That is we use a slightly di�erent ordering for position inwhich c� is the �rst element� for
time inwhich c� is the last element� and coding symbols so that c� codes the accepting state�
qf � Of course there are more straight forward ways of doing the same thing by increasing the
arity of the �xed point by one�
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we show that �� is closed under negation� This surprising fact is true because
in a �nite structure any least �xed point will be reached after a �nite number of
iterations� Furthermore we can express in �� the relations �x �� �y� �and �x 
�

�y�� meaning that in the computation of ��R��� the tuple �x enters the relation
and does so before �y� �resp� no later than �y�� This is the Stage Comparison
Theorem � Fact ����� Using �� and 
� we can expressMAX���x� meaning that
�x is of maximal rank with respect to �� i�e� it comes in on the last round of
the computation of ��R��� Finally once we have a tuple� �x� of maximum rank�
anything of greater rank will never enter the �xed point� i�e� negation may be
expressed as follows�

�
�
�y��R

	
� � ��x

�
MAX���x� � �x �� �y

	

Before we prove our �rst lemma we make a few convenient de�nitions� If
��T � is any formula where T is an r�ary relation symbol and if R is an r#m�ary
relation symbol and �t is an m�tuple of terms then the notation

�
�
f�ujR��t� �u�g

	
will mean the result of replacing each occurrence of T ��v� in ��T � by R��t� �v��
Let ��R� �x� be any R positive formula where the arity of R is j�xj� When the
structure� A� is understood we will follow Moschovakis and use the notation In�
to denote the nth iterate of �� inductively�

I�� � �� In��
� � f�ajA j� ��In� � �a�g

Also de�ne the closure ordinal of � in A� in symbols cl���� to be the �rst ordinal
� such that

A j�
�
�������� ���������

�

Note that if A is �nite then so is cl���� We also write I� to denote I
cl���
� � i�e�

the least �xed point of � in A�

The following lemma shows that two simultaneous inductions may be com�
bined into one�

Lemma 
�� �cf� Simultaneous Induction Lemma� �Mos

��� Suppose

��y� S� T � and ���x� S� T � are �rst order formulas that are positive in S and T�
Let r� � arity�S� � j�yj� and r� � arity�T � � j�xj� For any �nite structure A
de�ne the relations I�� and I�� by simultaneous induction�

I�� � I�� � �
�a � In� 
 A j� 
��a� In��

� � In��
� �

�b � In� 
 A j� ���b� In��
� � In��

� �

I�k �
��
n��

Ink � k � �� �

�



Then both I�� and I�� are uniformly inductive� i�e� they are expressible in ��

and the same formula works for all structures A�

Proof Following �Mos��	 �rst assume that we have constants c� and c� which
are guaranteed to refer to distinct elements of A�

Let �x� and �y� be any sequence of constants of lengths r� and r� respectively�
for example �x� could be an r��tuple of c�
s� Let U be a relation symbol of arity
r� # r� # �� Put

��t� �y� �x�U� �

�
t � c� � 


�
�y� f�y�jU�c�� �y�� �x��g� f�x�jU�c�� �y�� �x��g

��

�

�
t � c� � �

�
�x� f�y�jU�c�� �y�� �x��g� f�x�jU�c�� �y�� �x��g

��

Then for all n and A�
�y � In� 
 hc�� �y� �x

�i � In� �

This is a straightforward induction� see �Mos��	 for details�
If we don
t have the distinct constants c� and c� available then the proof

can be modi�ed as follows� We increase the arity of U by one and replace
occurrences of t by the pair t��t�� Each clause of the form t � c� is changed to
t� � t�� t � c� is changed to t� 	� t�� Where before we substituted c�� we now
existentially quantify a t� not equal to t� and substitute this new pair�

The next result shows that two uses of � are no more powerful than one
assuming that there are no intervening negations�

Lemma 
�� �cf� Transitivity Theorem� �Mos

��� Suppose that R and
S occur only positively in ��R�S� and 
�R�� Then the nested �xed point
��S�����R�
� S� is expressible in ��� i�e� there is a positive w	 � such that

��S�����R�
� S�
 ��U���U� �

Proof If we assume that there are two constants� c� and c�� always representing
distinct elements then Moschovakis
 de�ntion of � and his proof goes through
without any change�

Let r � arity�R�� and s � arity�S�� Let �y� and �x� be an r�tuple and an
s�tuple of constants� Put

��t� �y� �x�U� �

�
t � c� � 


�
�y� f�y�jU�c�� �y�� �x��g

��
��

t � c� � �
�
�x� f�y�jU�c�� �y�� �x��g� f�x�jU�c�� �y�� �x��g

��

��



Let A be any �nite structure and let m be the closure ordinal of � in A�
The formula � simultaneously simulates 
 and �� Thus for all naturals n

In� �
�
�y�

�� hc�� �y�� �x�i � In�
�

���

Afterm iterations the computation of I� is complete so the simulation of � can
begin in earnest� We have for all n�

In� �
�
�x�

�� hc�� �y�� �x�i � In�m�

�
� In�m� ���

Thus in particular
I� � f�x�jhc�� �y

�� �x�i � I�g

and we have h
��x���S��

�
��R�
� S

	i
�
h
�c�� �y

�� �x���U��
i

i�e� ��S�� is computed as a single �xed point as desired� Equations � and � are
proved by inductions� see �Mos��	 for further details� Note that if constants are
not available then the result still holds� we modify the proof as in Lemma ����

Another way of stating lemma ��� is to say that �� is closed under least
�xed point� Note that � is at least as powerful as quanti�cation� conjunction�
and disjunction� For example we could write ��y�R�y� �x� as ��x���S���yR�y� �x���
Thus the following is immediate�

Corollary 
�	 � �� is closed under quanti�cation� disjunction� conjunction�
and taking of least �xed points�

Let ��x� � � � xr� R� be an R positive formula and let A be a �nite structure�
Each tuple ha� � � � ari � I� comes in at some stage of the induction� Let j�aj��
the rank of �a with respect to �� be the step at which �a enters I��

j�aj� �



n �a � In� � In��

�

� �a 	� I�

De�ne the relation �x 
�� �y to mean �x � I� and j�xj� 
 j�yj� � Similarly
�x ��� �y means that j�xj� � j�yj� � A powerful result is that even though we may
not have an ordering on the universe we can express propositions concerning
the relative times at which tuples appear in �xed points�

Fact 
�
� 
Mo��� Stage Comparison Theorem
 Given positive formulas ��R�
and 
�S� the relations 
�� and ��� are uniformly inductive� i�e� expressible
in ���

Moschovakis
 proof goes through without change� except for reading all or�
dinals as �nite�

Let 
�x� S� be S positive and let 
�� �resp� ���� abbreviate 
�� � �resp�
����� The following are simultaneous inductive de�nitions for 
� and �� �

��



These de�nitions will be used in the proof of Lemma ���� Note that unlike the
inductions in �Mo��	 they only work for �nite structures because in an in�nite
structure x may not have an immediate predecessor� z�

x 
� y � 
�x� ��� �z
�
z �� y � 
�x� fx�jx� 
� zg�

	
x �� y �

�

�x� ��� �
�y� ��

	
�

�z
�
z �� y � 
�x� fx�jx� 
� zg� � �
�y� fx�j�z �� x�g�

�
Note that the above equations �t into the form of lemma ���� We can rewrite

them in the more familiar form�

��x� y� S� T � � 
�x� ��� �z
�
T �z� y� � 
�x� fx�jS�x�� z�g�

	
��x� y� S� T � �

�

�x� �� � �
�y� ��

	
�

�z
�
T �z� y� � 
�x� fx�jS�x�� z�g� � �
�y� fx�j�T �z� x��g�

�
Claim � For all k�

Ik� �
�
hx� yi

�� jxj� 
 k and jxj� 
 jyj�
�

Ik� �
�
hx� yi

�� jxj� 
 k and jxj� � jyj�
�

Proof By induction on k� This is clear for k � �� �� Let k � � and jxj� � k#��
Let z be such that jzj� � k� Then ��x� y� Ik�� I

k
� � �resp� ��x� y� I

k
�� I

k
� �� holds i�

it holds with z as a witness i� jyj� � k # � �resp� jyj� 
 k # ���

In order to negate �xed points we need a slight modi�cation of the above
fact� Let �x�� �y mean j�xj� # � � j�yj�� Then

Lemma 
��� If ���x�R� is R�positive then the formula �� is �rst order ex�
pressible using positive occurrences of 
� and ���

Proof
�x�� �y 
 �x 
� �x � ����y� f�uj��x �� �ug�

As we have already pointed out� if A is �nite then cl���� the closure ordinal
of �� is also �nite� Thus there must be at least one tuple �m of maximal rank�
namely j �mj� � cl���� In the next lemma we show that we can say in �� that �m
is of maximal rank� We can thus express the negation of a �xed point� the tuple
�x will never come into the �xed point if it
s rank is greater than the maximum
rank�

Lemma 
��� �� is closed under negation�

Proof Let ���x�R� be R�positive� We must show that �
�
��R��

�
� ���

Let
MAX���y� �

h
��z��z 
� �y � �y �� �z�

i

��



Note that MAX���y� says that �y has maximum rank� Put

���x� � ��y
�
MAX���y� � �y �� �x

�

���x� says that there exists a tuple �y of maximum rank� and that the rank of
�x is greater than the rank of �y� Thus

���x�
 �
�
��R��

�

It follows from ��� through ��" that � � ���

I had thought that the proof of theorem � was now complete� However a
referee pointed out the following problem� Consider the formula � � ����

� � ��S�
h


�
x�
�
���R���u��S�R�

	
� S
	i

Although S occurs positively in �� it occurs positively and negatively in 
�

and ���� Thus it remains to be shown that�

Lemma 
�
 � The above formula � is equivalent to a formula in ���

Proof We have already seen how to de�neMAX��S�u� meaning that u enters
the �xed point I��S at the �nal stage� It follows that we can express the condition
that the �xed point is �nished� and we can express its negation� Now we wish
to describe a two level �xed point computation� Compute R� � I���� then
S� � I��R�

� then R� � I��S� � and so on� To do this we de�ne the following six
relations by simultaneous induction�


��z � ���z � 
���� ����� 
� � ��

Here u 
��z v �resp� u ���z v� means that u enters I� and does so at least
as soon as �resp� sooner than� v does� where

S � fy�jy� 
� zg��S � fy�jz �� y�g

Also u 
��� v and u ���� v are the analagous relations when S � �� The
positive inductive de�nitions of 
��z and ���z using 
� and �� are immediate
from Fact ���� For example the de�nition of x 
��z y is the conjunction of
�z 
� z� with the old de�nition of �x 
� y� where the above expressions have
been substituted for S and �S�

�See 
GS��� for a more general result than lemma ��� concerning making monotone �xed
points positive�

��



Put

MAX��z�u� � u 
��z u � �w
�
w 
��z u � ���w� fx�j�x� 
� zg� fu�j�u ���z u�g�

�
��y� z� � �u

�
MAX��z�u�� 
�y� fu�ju ���z u�g� fx�jx� 
� zg�

�

$��y� z� � �u
�
MAX��z�u�� �
�y� fu�j�u� 
��z ug� fx�j�z �� x�g�

�

��y� �� � �u
�
MAX����u� � 
�y� fu

�ju ���� u
�g� ��

�

$��y� �� � �u
�
MAX����u� � �
�y� fu

�j�u� 
��� ug� ��
�

The above formulas are all positive in the relations being inductively de�ned�
Note that ��y� z� �resp� $��y� z�� is equivalent to 
�y����R����S�R�� S� �resp�
�
�y����R����S�R�� S�� where S � fx�jx� 
� zg� Thus if we substitute �
�resp� $�� for 
� �resp� �
� in the equations following Fact ��� we arrive at
inductive de�nitions for 
� and ���

x 
� y � ��x� ��� �z
�
z �� y � ��x� z�

	
x �� y �

�
��x� ��� $��y� ��

	
� �z

�
z �� y � ��x� z� � $��y� z�

�

It now follows from lemma ��� that 
� and thus � are expressible in ���

A formula with �xed points and negations nested to a depth greater than �
can be handled by repeatedly using lemma ��� from the inside out� Note that
the parameter P from an outer �xed point ��P �� may appear both positively
and negatively in an inner �xed point during the construction� However when
we substitue P � fvjv 
	 zg and �P � fvjz �	 vg in these inner formulas they
become positive again� This completes the proof of theorem ��

It should be noted that Theorem � is a general result saying that in �nite
model theory any property expressible with several alternations of � and � is
already expressible with one positive application of �� This result is not true
for in�nite models� cf� �Mo��	�

� Relations to Previous Work

Another way to view � is as an operator that iterates a given formula a poly�
nomial number of times� More precisely� let ��x�� � � � � xa� R� be positive in R
where R has arity a� Let ��m���� denote the formula � applied to itself m times
and then applied to the empty set� Inductively�

������x� �� � x� 	� x�
������x�R� � R��x�
��m�����x�R� � �

�
�x� f�uj��m���u�R�g

	
We have already noted the following in our discussion of Fact ����

��



Proposition ��� � Let � be as above and let A be a structure of size n for the
language of �� Then

A j�
�
��R��� ��na����

�

Thus as stated � is an iteration operator� One problem with this proposition
is that if R occurs more than once in � then the formula ��na� will be of size
exponential in na� It is not hard to show however that � is always equivalent
to a formula in which R occurs only once�

In the next few arguments it will be convenient to use the following notation�

��v�A�� � ��v��A� ��� ��v�A�� � ��v��A� ��

Fact ��� �Canonical Form for Positive Formulas� Mo

� � Let � be R
positive� Then there is a quanti�er and R free formula ���x� �z� �u� and a block of
quanti�ers Q�� � � � � Qk such that

���x�R� �
h
�Q�z���Q�z�� � � � �Qkzk���u�� � � � ��un����x� �z� �u��

i
R��u�

To make things neater we can requantify the variables� x� � � � xn� Note that

���x�R� �
h
�Q�z���Q�z�� � � � �Qkzk���u�� � � � ��un����x� �z� �u����x��x� � u�� � � � ��xn�xn � un�

i
R��x�

Now combining  �� and  �� we see that the � operator can be thought of as a
quanti�er block repeater�

Corollary ��	 � Let � be as above and let

QBLOCK �
h
�Q�z���Q�z�� � � � �Qkzk���u�� � � � ��un����x� �z� �u����x��x� � u�� � � � ��xn�xn � un�

i

Then for any structure A of size n

A j�
�
��R��� QBLOCK�na��x� 	� x��

�

The above formulation makes our results about � �t in with some of our
previous work concerning expressibility and complexity� �Im���Im��a	� In par�
ticular an immediate corollary of Corollary  �� and Theorem B� from �Im��a	
is another proof of Theorem ��

Since � is an iteration operator we propose a new query hierarchy based on
such iterations�

De�nition� Let IQ�f�n�	 be the set of queries expressible by iterating a �rst
order query f�n� times� An equivalent formulation is the set of queries whose
value on a structure of size n is equivalent to some quanti�er block repeated
f�n� times�

IQ�f�n�	 ��
�
�� ��QBLOCK���A��A j�

�
�� QBLOCK�f�jAj���x� 	� x��

	�

� 



As an example let

��R�x�� x�� �
�
x� � x� �E�x�� x�� � ��z��R�x�� z� �R�z� x��	

�

It is easy to see that E�� the transitive closure of E� is equal to ��R�� which is
in turn equal to ��log n� for graphs of size n� Thus the transitive closure query
is in IQ�log n��

Let IQ�
� be the set of iterated queries which include the logical relation

 denoting a total ordering on the universe� The following Fact summarizes
some of the known facts concerning IQ� The proofs �though not quite these
statements� may be found in �Im���Im��a	�

Fact ��
 �

�� IQ�
���	 � First Order Queries �	� QSPACE�log n	

�� Transitive Closures � IQ�log n	

��
��
k��

IQ�logk n	 �	� IQ�n	

��
��
k��

IQ�
��nk	 � L��
� � QPTIME

�� IQ�
� � QPSPACE

� Conclusions� and Directions for Future Work

We have shown that all queries using �rst order quanti�cation and a least �xed
point operator� �� may be expressed with a single occurence of � applied to
a �rst order expression� Furthermore� in the presence of a total ordering� 
�
the queries so expressible are exactly the polynomial time computable queries�
Finally� a further study of the number of iterations needed to compute �xed
points is desirable� The following open problems should be considered�

�� One attraction of Theorem � is that it shows that L��
� is a very general
query language in which the complexity of a given query is clear from its
syntax� The problem is that queries that take even quadratic time in the
size of a database are not feasible� It is very desirable to �nd a fairly rich
query language such that the complexity is still clear from the syntax� but
the complexities involved are feasible�

�� Show that IQ�
��f�n�	 forms a hierarchy as f�n� increases� This of course
will be extremely di
cult as it would imply a corresponding hierarchy
result for complexity classes�

�"



�� Prove the following conjecture� If f�n� and g�n� are reasonable functions�

no larger than �n
k

� and such that limn���f�n��g�n�� � � then IQ�f�n�	
is strictly contained in IQ�g�n�	�

�� Study and compare potential hierarcies obtained by restricting the number
of distinct quanti�ed variables and the arity of �xed points� cf� �dR���
Im��a	�

 � An issue raised by Chandra and Harel among others is that languages
with an ordering such as L��
� treat di�erently numbered isomorphic
databases di�erently� That is� the answer to some queries will depend
on the ordering� It is extremely desirable to have a language without this
problem and yet still rich enough to simulate computation� One possibility
would be instead of ordering to add variables ranging over f� � � � ng with

�#� � available over this domain� We would also add counting quanti�ers�
��ix�s�P �x�� meaning that there exist i x�s such that P � I am anxious to
know whether or not L� plus counting quanti�ers is equal to polynomial
time�
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