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Abstract

For a monoid G, the iterated multiplication problem is the computa-
tion of the product of n elements from G. By refining known completeness
arguments, we show that as G varies over a natural series of important
groups and monoids, the iterated multiplication problems are complete
for most natural, low-level complexity classes. The completeness is with
respect to “first-order projections” — low-level reductions that do not ob-
scure the algebraic nature of these problems.

1 Introduction

In recent years, the structure of low-level complexity classes (Figure 1) has been
of great interest. For many of these classes there is a natural graph problem
which serves as a complete set for the class. In this paper we consider the com-
plexity of iterated multiplication. More specifically we study the complexity of
multiplying together n elements of a monoid G. As G ranges over a sequence
of well-studied monoids, including the symmetric group on 5 elements Ss, the
symmetric group on n elements S, the monoid of n x n boolean matrices un-
der multiplication M,,(bool), and the monoid of n x n integer matrices M, (Z),
the iterated multiplication problem is complete for a corresponding well stud-
ied complexity class. Furthermore, the notion of completeness in question is
extremely low-level and algebraic. This point of view results in a very pretty
picture, and establishes a framework for the investigation of an important se-
ries of questions relating algebraic complexity to (boolean) complexity. Figure
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Figure 1: Known relationships among low-level complexity classes

2 summarizes the completeness results. The main contribution of this paper
is to show that these previously-known completeness results hold with respect
to first-order projections. These extremely low-level reductions are defined in
Section 3.

A very surprising fact — reported in [BCH, Rei] — is that iterated integer
multiplication is in P-uniform ThC® but not known to be in (uniform) ThC?,
or even in L. Usually, uniformity does not pose as a serious issue for complex-
ity classes, at least non-randomized ones. The fact that such a natural and
important problem as iterated multiplication seems to require polynomial-time
uniformity is important and surprising. The issue of uniformity in this algebraic
context requires extensive study. We make a step in this direction in Sections 3
and 5.

2 Iterated Multiplication

We begin with some definitions of low-level complexity classes. As usual, L
denotes DSPACE[logn] and NL denotes NSPACE[log n].

Definition 2.1 Define the complexity classes NC!, ACY, ThC® for i > 0 as
follows: These are the sets of problems acceptable by “uniform” sequences of
circuits that are polynomial-size, depth O[(logn)*] and consist of binary and/or
gates, unbounded fan-in and/or gates, unbounded fan-in threshold gates, respec-
tively. These circuits may also contain negation gates, which we may assume
are all pushed down to the bottom level.

The meaning of “uniform” in the above definition is that the map from 1™
to the n'® circuit is easily computable. For the classes above NC! this may be
taken to be logspace computable. Alternatively, we would say that the circuit
class is polynomial-time uniform if this map is computable in polynomial-time.
For NC! and below we assume logtime uniformity or equivalently first-order
uniformity [BIS]. We discuss uniformity in detail in §3.

Beame, Cook, and Hoover have shown:

Theorem 2.2 ([BCH]) Iierated integer multiplication (Problem [[(Z)) is com-
putable by polynomial-time uniform NC' circuits.

Beame, Cook, and Hoover proved Theorem 2.2 by using the Chinese Remain-
der Theorem. Each of the input integers is reduced modulo each of the first n?



primes. The product of the inputs modulo each of these primes is computed via
discrete logs. Then, the products modulo each of the primes are combined to
give the final answer.

All of the above steps can be carried out in NC' once we are given a
polynomial-size table consisting of information such as the discrete log tables
for each of the first n? primes. Reif pointed out that the [BCH] proofs goes
through when NC' is replaced by the (perhaps smaller) class ThC”.

Theorem 2.3 ([Rei]) Iierated integer multiplication (Problem [[(Z)) is com-
putable by polynomial-time uniform ThC® circuits.

We find it quite surprising that Theorem 2.2 seems to require polynomial-
time uniformity. A more careful look shows that the amount of polynomial-time
computation needed to compute the n!? circuit is no more than the computation
of a single instance of iterated multiplication:

Corollary 2.4 ([BCH]) Let P,: be the product of the first n* primes. There
is a logspace map from P2 to the n'™ ThC® circuit for iterated integer multi-
plication.

This leads us to wonder about the complexity of iterated multiplication
problems on other monoids. In particular, the last five years have seen proofs
of completeness results for iterated multiplication of elements in Ss, in S,, in
n X n Boolean matrices, and in 7 x n matrices from Z. In §5 we will present
proofs of strong versions of these results (that is, using weak reductions).

First we give a precise definition of the iterated multiplication problems we
will consider.

Definition 2.5 Let M be a monoid and let ¢d : M — {0,1}* be an encoding of
the elements of this monoid as binary strings. Then the Iterated Multiplication
Problem for M (in symbols [J(M)) is the problem of multiplying together a
sequence of elements from M.

More formally, we want to consider these iterated multiplication problems
as decision problems. Thus an input will consist of an n-tuple of binary strings
coding n elements of M, together with an integer ¢. This input will be in the
language iff the 5% bit of the coding of the product of the inputs is a one. Let
z[[i]] denote the i*" bit of the binary string z.

M) = {[(ed(e),- - cd(an)), ] € (cd(M))" x N | ed([] a;)Ili] = 1}

j=1

Technically, the encoding, cd, could affect the complexity of the iterated mul-
tiplication problems. For example, if we coded integers in unary, then iterated
integer multiplication would be in AC?. As long as we use common sense, the
complexity of these iterated multiplication problems are not usually sensitive to



| Problem | Complexity |

[1(Z) in P-unif ThC"; in DET*
11(Ss), TT(M5(F9)) complete for NC*
[1(5%) complete for L

[[ (M, (bool)) complete for NL
11(M(Z)) DET*

Figure 2: The Complexity of Iterated Multiplication

which particular encoding we use. (However, we will see that the coding can ef-
fect whether or not the problem is complete via extremely low-level reductions,
cf. Remark 6.1.) The encodings we will be using for each of the problems we
study are explicitly given in Figure 3.

Theorem 2.6 ([Bar]) [[(Ss) is complete for NC* via AC® reductions.

An alternate version of Barrington’s Theorem was shown recently by Ben-Or
and Cleve, using iterated multiplication of 3 x 3 matrices over the field with two
elements:

Theorem 2.7 ([BC]) [[(M3(F2)) is complete for NC* wia projections.
Theorem 2.8 ([CM]) [[(Sn) is complete for L via NC' reductions.

Theorem 2.9 ([Co085]) [[(My,(bool)) is complete for NL* via NC' reduc-
tions.

(Note, that by [Imm88], NL* is equal to NL.)

Theorem 2.10 ([Coo85, Ber]) [[(M,(Z)) is complete for DET* via NC' re-
ductions.

Almost always, when a natural problem has been shown to be in a non-
uniform circuit complexity class, it has been straightforward to see that it is in
the corresponding uniform complexity class, with the exception of probabilistic
complexity classes. It is unknown how to do this with problem [[(Z), which is in
polynomial-time uniform ThC®, but not even known to be in L. This anomaly
caused us to first examine the issue of the complexity of iterated multiplication.
We spend the rest of this paper discussing uniformity and reductions.



3 Reductions

In this section we describe first-order interpretations. These are very low-level
many-one reductions, given by interpretations — a standard concept from logic
for translating one language into another [End, Imm87]. We define a very weak
version of first-order interpretations, namely first-order projections. These are
first-order interpretations that are at the same time projections in the sense of
Valiant [Val]. We will see that the completeness results listed in Figure 2 all
hold via first-order projections. The value of this observation is that first-order
projections are sufficiently low-level that they retain the full algebraic character
of the problems.

(In Imm87] a reduction called “projection translations” were defined. These
are equivalent to what we now call “quantifier-free projections” (qfp’s). First-
order projections (fop’s) allow a bit more flexibility without giving away much
in power; and so, we now consider fop’s to be the very low-level reduction of
choice rather than qfp’s.)

Background on Descriptive Complexity

In order to define and use very low-level reductions, we take an approach to
complexity theory derived from mathematical logic. Our notation follows the
conventions of Descriptive Complexity. See [Imm87, Imm89] for more detail and
motivation.

We will code all inputs as finite logical structures. For example, the input
for problem [[(Z) — n n-bit integers — is just a binary string bg...b,2 1. We
associate this string with a finite structure

A=({0,1,...,n—1}, R;)

where R; is the binary relation on |A| defined so that Ri(z,y) holds in A (in
symbols, A = Ri(z,y)) just if b,zqy = 1. As is customary, the notation |.A4|
will be used to denote the universe {0,1,...,n—1} of the structure A. We will
write |.A| to denote n, the cardinality of |.A].

In general, a vocabulary

T=(RT, ..., R, c1,...,Cs)
is a tuple of input relation symbols and constant symbols. A structure

A={{0,1,...,n=1}, R, ... RA, ety )
of vocabulary 7 is a finite set |A| = {0,1,...,n— 1} together with relations
RAC|A|%,i=1,2,...,t, and elements c;“, j=1,2,...,s.
Let STRUC|r] denote the set of all finite structures of vocabulary 7. We
define a complexity theoretic problem to be any subset of STRUC[7] for some




[ Problem | Relation | Meaning | Decision Version

[[(Z) Ry(z,y) bit y of integer z is 1 | PROD[[c1]] = 1

1(55) Ro(2,1,j) | bit j of 72(i) is 1 PROD(c1)[[e2]] = 1
IIER) R3(z,1,7) bit j of 7, (z) is 1 PROD(cy)][e2]] = 1
[[(M,.(bool)) | Ra(z,4,7) | Mau(s,5) =1 PROD(c1,c2) =
[1(M,(Z)) Rs(z,1,7,7) | bit 7 of M,(4,7) is 1 | PROD(c1, c2)[[c ]] =1

Figure 3: Coding of Problems as First-Order Structures

7. For simplicity, in this paper we will only consider vocabularies consisting of
a single input relation R' of arity i, and perhaps some constant symbols. For
example, when ¢ = 2 the input is a single binary relation — a graph, with the
elements of the universe ranging over the vertices. When ¢ = 1 the input is a
binary string, with the elements of the universe ranging over the bit positions
of the string. Figure 3 gives the coding of the problems we are considering. For
example, in problem [](S,) the input structure codes n elements of S,. The
meaning of R3(z,i,7) is that the j*® bit of 7,(7) is one where 7, is the z*}
permutation. See Remark 6.1 for a further explanation of the choice of some of
these codings.

The advantage of this approach is that when we consider our inputs as first-
order structures we may write properties of them in variants of first-order logic.
It is a pleasant surprise that first-order logic provides elegant characterizations
of most natural complexity classes [Imm87].

For any vocabulary 7 there is a corresponding first-order language £(7) built
up from the symbols of 7 and the logical relation symbols and constant symbols:
=,<,s,BIT,0,m,! using logical connectives: A,V, -, variables: z,¥, z, ..., and
quantifiers: V, 3.

Let FO be the set of first-order definable problems. We define the majority
quantifier M so that (Mz)p(z) holds if more than half the elements of the
universe satisfy ¢(z). Let FOM be the set of problems definable in FO extended
by uses of the majority quantifier. It has often been observed that a first-order
sentence has a natural interpretation as a uniform sequence of AC? circuits. A
similar fact holds for FOM and ThC, cf. Fact 3.1. (For example, consider the
sentence ¢ = (3z)(Vy)(32)(E(z,y) AE(y, 2)). For each n, ¢ determines a circuit
C,, which takes as input a binary string of length n?: the adjacency matrix of
a graph on n vertices. The circuit C, is an n-ary “or” of an n-ary “and” of an

1Here < refers to the usual ordering on {0,...,n — 1}, s is the successor relation, BIT is
described below, and 0, m refer to 0,n — 1, respectively. Some of these are redundant, but
useful for quantifier-free interpretations. For simplicity we will assume throughout that n > 1
and thus 0 # m. Sometimes the logical relations are called “numeric” relations. For example,
“BIT(4,7)” and “¢ < j” describe the numeric values of ¢ and j and do not refer to any input
predicates.



n-ary “or” of a binary “and”.)

To capture uniform AC?, we make use of the logical relation “BIT.” BIT(z,y)
means that the z'® bit in the binary expansion of y is a one. Remember that
the variables range over a finite universe, {0,1,...,n — 1}, for some value of n.
Thus they may be thought of as (logn)-bit numbers. In [BIS] it is shown that
BIT is definable in FOM(wo BIT), if we assume that the majority quantifier
may apply to pairs of individual variables. (By “wo BIT” we mean without the
logical relation BIT.) Thus FOM = FOM(wo BIT), whereas FO # FO(wo BIT).
(To see the latter, note that the parity of the universe is expressible in FO, but
not in FO(wo BIT). See also [Lin] for further discussion of BIT.)

In fact, the following are completely syntactic definitions for the uniform
classes AC® and ThC?:

Fact 3.1 ([BIS]) FO = AC® and FOM = ThC’.

First-Order Interpretations and Projections

In [Val], Valiant defined the projection, an extremely low-level many-one re-
duction. Projections are weak enough to preserve the algebraic structure of
problems such as iterated multiplications. For this reason we find it particu-
larly interesting that projections suffice for proving completeness properties of
various iterated multiplication problems.

Definition 3.2 Let 5,7 C {0,1}*. A k-ary projection from S to T is a sequence
of maps {pn}, n = 1,2,..., such that for all n and for all binary strings s of
length n, p,(s) is a binary string of length n* and,

s€S & pals)eT.

Let s = 50951 ...5,1. Then each map p, is defined by a sequence of n* literals:
(lo,11,. .., ln_1) where

l; € {O,l}U{Sj,gj |0 <7< n—l} .
Thus as s ranges over strings of length n, each bit of p,(s) depends on at most
one bit of s,
pa()lldl] = L(s)

Projections were originally defined as a non-uniform sequence of reductions
— one for each value of n. We now define first-order projections, which are a
uniform version of Valiant’s projections. The idea of our definition is that the
choice of the literals {lo,1,...,l+ 1) in Definition 3.2 is given by a first-order
formula in which no input relation occurs. Thus the formula can only talk about
bit positions, and not bit values. The choice of literals depends only on n. In
order to make this definition, we must first define first-order interpretations.



These are a standard notion from logic for translating one theory into another,
cf. [End], modified so that the transformation is also a many-one reduction,
[[mm87]. (For readers familiar with databases, a first-order interpretation is
exactly a many-one reduction that is definable as a first-order query.)

Definition 3.3 (First-Order Interpretations) Let o and 7 be two vocabu-
laries, with 7 = (R{*,... ,R%,¢1,...,¢5). Let S C STRUC[o], T C STRUC|7]
be two problems. Let k& be a positive integer. Suppose we are given an r-tuple
of formulas ¢; € L(0),i=1,...,r, where the free variables of ¢, are a subset of
{z1,...,2Zkq,}. Finally, suppose we are given an s-tuple, t1,...,ts, where each
t; is a k-tuple of closed terms? from L£(0). Let I = Aoy 2u{01,. - Ory b1yt sts)
be a tuple of these formulas and closed terms. (Here d = max;(ka;).)

Then T induces a mapping I from STRUC[¢] to STRUC]7] as follows. Let
A € STRUC[o] be any structure of vocabulary o, and let n = || A||. Then the
structure /(.A) is defined as follows:

I(A) = ({0,...,n* —1},Ry1,...,Rryc1,...,Cq)

Here each c; is given by the corresponding k-tuple of closed terms ¢;. The

relation R; is determined by the formula ¢;, for ¢ = 1,...,7. More precisely, let
the function (-,...,-) : |A|¥ — |I(A)| be given by
(U1, U2, .0, Uk) = Uk + Up—1M+ -+ unt
Then,

R; = {((ula"'auk>a---’<u1+k(a,~—1)a---,ukai>) ’ A'ZQOi(ul,---ukai)}

If the structure A interprets some variables % then these may appear freely in
the the ;s and t,’s of I, and the definition of I(.A) still makes sense. This will
be important in Definition 4.2 where we define operators in terms of first-order
interpretations.

Suppose that / is a many-one reduction from S to T, i.e. for all A in
STRUC[o], )

AeS & IA)eT

Then we say that I is a k-ary first-order interpretation of S to T'. Furthermore,
if the p;’s are quantifier-free and do not include BIT then [ is a quantifier-free
interpretation.

2A closed term is an expression involving constants and function symbols. This is as
opposed to an open term which also has free variables. In this paper, since we do not have
function symbols, closed terms are synonymous with constant symbols. Note that a more gen-
eral way to interpret constants and functions is via a formula ¢ such that - (VZ)(3ly)(Z,v).
However, in this paper the simpler definition using closed terms suffices.



Note that I induces a map which we will also call I from £(7) to £(o). For
@ € L(7), I(p) is the result of replacing all relation and constant symbols in
@ by the corresponding formulas and closed terms in I. Note that if I is a k-
ary interpretation then each variable in ¢ is replaced by a k-tuple of variables.
Furthermore, the logical relations s, <,= are replaced by the corresponding
quantifier-free formulas on k-tuples ordered lexicographically. For example, with
k =2, an occurrence of the successor relation, s(x,y), would be replaced by

I(s(z,y)) = (x1=y1 As(z2,92)) V (22 =mAy2 = 0A s(z1,91))

The logical constants, 0, m, are replaced by k-tuples of the same constants.

Note that the logical relation BIT when mapped to k-tuples cannot be easily
replaced by a quantifier-free formula. This is the reason we have omitted BIT
from the allowable logical formulas in our definition of quantifier-free interpreta-
tions and quantifier-free projections. However, BIT on tuples is definable in FO
(with BIT'), so we retain BIT when talking about full first-order interpretations
and first-order projections, cf. [Lin].

It follows immediately from the definitions that:

Proposition 3.4 Let 0,7, and I be as in Definition 3.3. Then for all sentences
@ € L(7) and all structures A € STRUC[o],

AEIp) & I(A)Ey

Example 3.5 Asan example, define the GAP problem to be the set of directed
graphs containing a path from vertex 0 to vertex m. We now present a first-order
interpretation of GAP to [[(Mn(bool)). Since GAP is known to be complete
for NSPACE[logn] via first-order interpretations (Fact 4.1) it follows that so
is [[(M,(bool)). Following the notation of Definition 3.3, the vocabulary of
GAP is ¢ = (E?) consisting of a binary edge relation E. The vocabulary of
[I(M,(bool)) is 7 = (R4, c1,c2) where Ry(z,4,7) is true just if entry (4,7) of
matrix z is 1. (See Figure 3.)

The arity of the interpretation will be £k = 1. We will reduce an instance
G of the GAP problem to the problem of multiplying together n copies of the
adjacency matrix. Note that entry (0,m) of this product is a 1 iff there is a
path in G from 0 to m, i.e., iff G € GAP.

Thus the first-order interpretation must give the meaning of R4(z,4,7) as
E(7,7),independently of z. The first-order interpretation is simply I = (E(z2,23),0, m).
In fact, I is a quantifier-free interpretation.

We are now ready to define first-order projections, a syntactic restriction of
first-order interpretations.

If each formula in the first-order interpretation I satisfies this syntactic con-
dition then it follows that I is also a projection in the sense of Valiant. In this
case we call I a first-order projection.



Definition 3.6 (First-Order Projections) Let I be a k-ary first-order in-
terpretation from S to T as in Definition 3.3. Let I = {@1,...,¢r,t1,...,ts).
Suppose further that the ¢;’s all satisfy the following projection condition:

pi=o1 V(aa AX) V-V (as AAy) (1)

where the a;’s are mutually exclusive formulas in which no input relations occur,
and each A; is a literal, i.e. an atomic formula P(z;,,...z;,) or its negation.

In this case the predicate Ri((u1,...,ur),.., (..., Ukq,)) holds in I(A) if
a1(@) is true, or if a;(@) is true for some 1 < j < ¢t and the corresponding
literal \;() holds in .A. Thus each bit in the binary representation of I(.A) is
determined by at most one bit in the binary representation of A. We say that
I is a first-order projection.

Finally define a quantifier-free projection to be a first-order projection that
is also a quantifier-free interpretation. Write S <, 7', S <. T to mean that
S is reducible to T via a first-order projection, respectively a quantifier-free
projection.

Observe that the first-order interpretation I of Example 3.5 easily fits into
the form of Equation 1. Here oy = false, aa = true, and Ay = E(z2,23).
Thus this I is a first-order projection and in fact a quantifier-free projection. In
symbols, GAP<,., [I(M,(bool)).

In the following proposition we show that these new reductions behave like
other reductions.

Proposition 3.7 The relations <., and <., are reflezive and transitive.

Proof Let A C STRUC|r] be any problem where 7 = (R{*,..., R ,c1,...,Cs).
Then the identity map from STRUC|7] to itself is given by the quantifier-free
projection Iy where

Iy = (Ri(z1,-- -, Tay)s- -y Br(T1y- .o, T, )5 Clye vty Cs)

Thus <,,, and <, are reflexive.

For transitivity, suppose that I is a kj-ary first-order projection of A C
STRUC[r] to B C STRUC(r2| and J is a ke-ary first-order projection of B to
C C STRUC]r3]. Recall that the interpretation I induces a map from L(73)
to £(r1). Thus, I(J) is a kike-ary interpretation from £(73) to L(r1). It is
immediate that I(J) = J o I. Thus, I(J) is a first-order interpretation from
A to C. Furthermore, if I and J were quantifier-free then so is I(J). It thus
suffices to show that I(J) is a first-order projection.

Recall that I(J) is the result of replacing each variable in J by a k;i-tuple
of variables, each relation symbol R by I(R), and each constant symbol ¢ by
I(c). From Definition 3.6 we have that each formula in I or J is of the form of

10



Equation 1. If we substitute a formula of this form for one of the A;’s then we
obviously remain in the same form. This is less clear when we have to negate
the formula.

However, observe that the negation of the formula ¢, in Equation 1 is still
a formula of the same form. Namely,

—|<piE—|(O¢1\/...\/Ots) V (Oég/\—'/\z)\/-"\/(as/\—'As)

Hence, I(J) is still a projection. |

As another example of quantifier-free projections, we prove the following:

Proposition 3.8 The following quantifier-free projections exist. (Refer to Fig-
ure 3.)

H(S5) Squ H(Sn) Squ H(Mn(bOOZ)) Squ H(Mn(Z))

Proof (I](Ss) <. [I(S»)): This is immediate because S5 is a subgroup of S,
and we have coded the two problems in the same way. Thus the quantifier-free
projection is the identity map, I; = id, where Iy = (Ra(x1, z2,23),¢1,¢2)
(I1(Sn) <4 [I(M,(bool))): This is similar to the above situation. Every
element 7 of S, may be thought of as an element A(w) of M,(bool) as follows:

1 if#x(d)=7y
(A(W))i,j:{ 0 imgi;#;

However, there is a problem. We chose to code the problem [](S,) in a
bitwise fashion, see Figure 3. Thus, each bit of the matrix A(7) depends upon
log n bits of the coding of w. In order to be a projection we must depend on at
most one bit.

The solution to this problem is to increase the arity of the boolean matrix so
that it can figure out the value of j = 7(¢) via a path of length at most n. Think
of A(w) as a boolean adjacency matrix. Then we simulate the move 7 : ¢ — j
by

(2,0,0) — (¢,v1,1) — (4,v2,2) — -+ — (%,Vi0gn,logn) — (4,0,0)

where 0 = vy, and vp41 = v, + 27(7(¢)[[r]]), and thus, j = vieg n.

The above would be a quantifier-free projection except that BIT is needed to
say that v,11 = v,.+2". The details of expressing BIT as a qfp of [[(M,(bool))
are complicated and so we omit them here. (See [Imm87, Lemma 3.2, Cor. 3.8]
where it is shown that BIT is a qfp of GAP.) In any case, it follows from Theorem
5.1 that [1(Sn) <u I1(Ma(bool).

(II(M,(bool)) <. [I(Mn(Z))): Again every element of M,(bool) may be
thought of as an element of M, (Z) by mapping the boolean values 0,1 to the inte-
gers 0,1 respectively. We may think of the n boolean matrices By, B1,...,Bp_1

11



as a sequence of n adjacency matrices for a layered graph in which all edges of
B; go from layer ¢ to layer ¢ + 1. Thus, there is a path from point s of layer
0 to point ¢ of layer n iff entry (s,¢) in [[ B; is 1. Let Zy,...,Zn—1 be the
n X n integer matrices resulting from the above boolean matrices by mapping
the boolean values 0,1 to the integers 0,1. It is well known that entry (s,t) in
11 Z: is equal to the number of paths from point s, layer 0 to point ¢, layer n.
Thus, a particular entry of the product of the boolean matrices is 0 iff the same
entry of the product of the corresponding integer matrices is 0.

We have to work a little here because the answer to [[(M,(Z)) does not
automatically code whether or not an entry is 0 into a single bit. Suppose we
want to compute entry (c1,c2) in the product of the boolean matrices. It suffices
to modify the problem by adding 2" — 1 new paths from ¢; to ca, where r is
chosen so that 2" is greater than the number of possible original paths. In this
way the r*® bit of entry (c1,c2) of the product of the integer matrices will be
1 iff entry (e1,¢2) of the product of the original boolean matrices is 1. We will
use the value r = n? — 1 (which certainly suffices).

We now give the explicit coding of a binary quantifier-free projection of
[I(M,(bool)) to TI(M.(Z)). We are projecting a structure A = ({0,...,n —
1}, R4, c1,c¢a) consisting of n n X m boolean matrices onto a structure fg(A) =
({0,...,n% — 1}, Rs,c1,ca,c3) consisting of n? n? x n? n?-bit integer matrices.
The upper left nx7n corners of the first n matrices of I5(.A) represent the original
boolean matrices. The upper left corners of the remaining n? — n matrices are
the n x n identity matrix. In addition, entry (c1,n? — 1) of the O*® integer
matrix contains the value 2» 1 — 1. The integer matrices all have value 1 in
entry (n? — 1,n? — 1). Finally, the last integer matrix contains a 1 in entry
(n2 — ]., 02).

The quantifier-free projection I3 is given by the following hard-to-read for-
mula. We suggest that the reader look at the picture which follows. Then the
reader should check that each bit in the picture of I3(.A) (which follows) depends
on at most one bit from A’s input relation. (The upper left hand corners de-
pend on the corresponding bits from .A. None of the other entries depend on the
input relation of \A.) Finally, the reader should observe that the specification of
I3(A) can be accomplished by the following quantifier-free projection.

13 = <O¢($17$27$37$47$5yx67x77$8)7<0701>7<07C2>7<m7m>>’ Where’
a = alv(agAR4($1,$3,$5))
ay = (mi=r3=25=27=183=0)

[Upper left corner of first n matrices copy input]

a1 ($1¢0/\J)7:3)8:0/\3)3:$5 /\334::135)
[Rest of the matrices have 1’s on the diagonal]

\Y (:U7=$8=0 A $3=$4=$5=$6=m)

12



[Lower right corner of each matrix is a 1]

V(zi=22=23=0 A 2a=c1 A ts=2¢=m A =(z7=23=m))
[Entry (c1,n? — 1) of matrix 0 is 2" ~! — 1]
V(zi=za=z3=x4=m A z5=x7=25=0 A 26=c2)

[Entry (n? — 1,c2) of last matrix is 1]

Iy (A% (AY)--- (A" -

A%y ... A%, O ... 0 mo. AT 0 0
cr | A%, o A%, 0 ... 27l :
. : Do, : kv ok . .
Y R | B 0 Ay - AR O 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
Ca
1 0 0 0 0 1 0 0 0 0
1. 2|0 ... 1 ... 00 ... 0
0 0 10 0 0 0 10 0
0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 1 0 0 1
|

Remark 3.9 The above quantifier-free projection from [[(Mn(bool)) to [[(M.(Z))
is wasteful in the sense that it has arity k = 2. This means that the resulting
universe has size |[I(A)] = |A|?, when size 2|.A| would easily have sufficed.

A more general definition of first-order interpretation would allow some of the
coordinates of f(A) to be restricted, thus allowing greater efficiency.

In [Coo71], Cook proved that the boolean satisfiability problem (SAT) is
NP complete via polynomial-time Turing reductions. Over the years SAT has
been shown complete via weaker and weaker reductions, e.g. polynomial-time
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many-one [Kar], logspace many-one [Jon], one-way logspace many-one [HIM].
We find it astounding that SAT remains NP complete via reductions that are
provably much weaker than L.

Fact 3.10 ([Dah]) SAT is complete for NP via quantifier-free projections.®

4 Operators and Normal Forms

Many natural complete problems for other important complexity classes remain
complete via first-order projections and sometimes even quantifier-free projec-
tions. The following example involves variants of the GAP problem: 1GAP in
which there is at most one edge leaving any vertex, and AGAP, an alternating
version of GAP in which the vertices are marked “and” or “or”. The notion of
reachability for alternating graphs is defined inductively as for alternating Tur-
ing machines. Thus the node ¢ is reachable from an “or” node z if ¢ is reachable
from one of z’s children; ¢ is reachable from an “and” node if it is reachable
from all of the “and” node’s children.

Fact 4.1 ([Imm87]) 1GAP, GAP, AGAP are complete for L, NL, P, respec-
tively via quantifier-free projections.

We next discuss the proof of Fact 4.1 in [Imm87] because it sheds light on
quantifier-free projections and when they exist. Each of the problems 1GAP,
GAP, and AGAP have an operator version which is called DTC, TC, and ATC,
respectively. For example, TCJy, §,7] is a formula in the language (FO + TC)
meaning that there is a “p-path” from si,... sk to ¢1,...,t; where a “p-edge”
exists from z1,...,2Zx t0 Tht1,..., T2k T ©(z1,...,29,) holds.

Fact 4.1 was then proved by demonstrating that the languages (FO +DTC),
(FO + TC), and, (FO + ATC) each satisfy the qfp normal form property (Defi-
nition 4.4).

We now put Fact 4.1 in a more general setting. First, for any problem
whatsoever, O, we associate an operator of the same name:

Definition 4.2 (Operator Form of a Problem) Let ¢ and 7 be vocabularies,
and let © C STRUC][7] be any problem. Let I be any first-order interpretation
with [ : STRUC[¢] — STRUC[r]. Then ©[I] is a well-formed formula in the
language (FO + ©) with the semantics:

A0l & I(A)co.

3Dahlhaus states his result for quantifier-free interpretations, but he actually constructs
a quantifier-free projection. We conjecture that for any “well behaved” complexity class,
problems complete for quantifier-free interpretations are also complete for quantifier-free pro-
jections, cf. Conjecture 7 in §6.
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Thus for all the iterated multiplication problems [[(M) that we have been
discussing, we have a corresponding operator, also written [[(A4). Note that
these operators are a generalization of the “monoidal quantifiers” of [BIS].

As an example, let us look at the operator form of the GAP problem, cf.
Example 3.5. Suppose we have a formula ¢(z1,22) with free variables z1,zs
and we want to express the existence of a y-path from s to {. We construct
the interpretation I = A, .,{p, s,t). Then GAP[I] is a formula in the language
(FO + GAP) whose meaning is that there is a ¢-path from s to ¢.

Adding the operator © to first-order logic corresponds to having full access
to the power of the problem ©. This justifies the following,

Definition 4.3 (First-Order Turing Reductions) Given problems S and T we
will say that S is first-order Turing reducible to T' (S <¢ T)iff S € (FO+1T).

See Theorem 8.1 of [BIS] where four other conditions are given that are
equivalent to S <P T, including the condition that S has DLOGTIME uniform
circuits that are AC? circuits except that they may also include T' gates.

Let C be a complexity class that is closed under first-order Turing reduc-
tions. It follows immediately from Definition 4.3 that problem © is complete for
complexity class C via first-order Turing reductions if and only if C = (FO+0),
cf. Proposition 4.8.

Now if the problem © is complete for C = (FO+©) via a lower-level reduction
such as fop or qfp this means that we do not need the full power of arbitrary
applications of © in (FO + ©). In other words, a normal form theorem for
(FO + ©) applies:

Definition 4.4 We say that the language (FO + ©) has the fop Normal Form
Property iff every formula ¢ € (FO + ©) is equivalent to a formula 1, where,

¥ = ol

where « is a first-order projection (cf. Equation 1). If « is a quantifier-free
projection then we say that (FO + ©) has the ¢fp Normal Form Property.

As an example, we prove the following.

Proposition 4.5 Let Fy be the field with two elements. The language (FO +
[I(M.(F3))) has the qfp Normal Form property.

Proof By induction on the structure of ¢ € (FO+ [[(M,(F2))) we prove that
v = II(Ma(F2))[a,0)] (2)

where (a,0) is a quantifier-free projection.

The most interesting parts of the proof are the following three cases of the
induction. In each case we may assume inductively that % is in the form of
Equation 2.
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(¢ = —¢): Here we want to add 1 to the (0,0) entry of the product. This can
be done by incrementing the dimension n by 1 and carrying along a 1 in
the (n,n) entry of the product so that it can be added to other entries as
needed. (Of course, in the present formulation, increasing » by 1 can only
be done by increasing n all the way to n?. cf. Remark 3.9.)

(¢ = (Yy)¥): Here we have n matrix products, and we want to assert that all
of them have entry (0,0) equal to 1. Thus, we pre and post multiply each
product with the matrix Fy ¢ which has a single non-zero entry in position
(0,0) and then we multiply the resulting » products together. (This is the
same as zeroing out all but the first row of each first matrix and all but
the first column of each last matrix, cf. o, below.) Clearly the (0,0)t®
entry of the result is 1 iff ¢ holds.

(¢ = II(Mn(F2))(%)): In this last case, ¢ has three free variables: ¢(z,1,7)
represents a product whose (0,0) entry is 1 iff entry (¢,7) of matrix = of
the product to be done is 1. Our inductive assumption is that ¢ is of the
form,

"/)(xvivj) = H(MH(FQ))KO‘(:EIJIJI;wvivj)v(_»]
where (@,0) is a quantifier-free projection. Note that the product is over
the variables z’,7', j', but the additional variables z,:,j also occur freely
in a.
We project the input onto a product of n3 x n® matrices A,, z =0,...,n—
1. The upper left n x n corner of A, will consist of the matrix given by
the formula ¥ (z,1, j).

This is achieved as follows. First let E, be the product of n n® x n?

matrices whose entries consist of n? n x n matrices along the diagonal,
computing ¥(z,4,7). In symbols,

n—1
E, = HF’W" where
z'=0
Fow(n®i+mnj+i',n*i+nj+j) = al@,i,jz,ij))

Thus, entry (n%i + nj,n% +nj) of E, is 1 iff ¢(z,4,5) holds.
To complete the construction, we get A, = L * FE, * R where L, R are
the matrices that move all the required entries to the upper n x n corner.
Explicitly,

L(a,b) liffa <n&nlb& n?a <b<n(a+1)

R(a,b) = 1iffb<n & n®|(a—bn)

We have presented the proof for the above three cases by describing the ma-
trices informally rather than writing out the necessary quantifier-free formulas.

16



Our experience is that writing out these formulas doesn’t really help to get the
idea across. However, because it might help, we next write an explicit formula
for the second case: ¢ = (Vy)i. We hope that the reader will write down just
enough of the other formulas to convince herself that it can be done in a straight
forward way.

We assume that 1 is in the form of Equation 2, namely,

v = (VYI(Ma(F2))[(a(,i,5;9),0)]

where « is a quantifier-free projection in which the variable ‘y’ occurs freely.
The following is a quantifier-free projection, o/, that puts ¢ into the required
form:

al(:l;l?x?vz.lvz.?vjlvj?) = [iz:jZZOAO‘(vaZ‘lv]’l;ml)
/\($2 750\/7;1 :0) /\(ZEQ #1’1’1\/]'1 :0)]
Note, that all we are doing is stringing together the n products,

H(Mn(F2))(O£(IE,Z,],y)), y=01,...,n-1

For each of these products we zero out all but the first row of the first matrix
and all but the first column of the last matrix in order to only save the (0,0)
entry of the product.

We comment that BIT has not yet been considered in this proof. In fact
what we have shown is that everything in (FO(wo BIT) + M, (F3)) is a qfp of
II(M,(F>)). Thus it remains to show that BIT € (FO(wo BIT) + [[(M,(F3))).
But this follows because BIT € (FO(wo BIT) + DTC) [Imm87]; and,

(FO(wo BIT) + DTC) C  (FO(wo BIT) + [[(M,(F3)))

This last inclusion is obvious because DTC is applicable only when the number
of paths under consideration is either 1 or 0, and [J(M,(F>)) gives the parity
of the number of paths. |

The following corollary is immediate from Proposition 4.5:

Corollary 4.6 Let ®L be the class of problems, S, of the form: for some NL
machine, M,

S = {ZE ’ M has an odd number of accepting paths on input a:}

Then the class (FO + [[(Mn(F2))) is equal to ®L. Furthermore, [[(M,(F2))
is complete for &L via quantifier-free projections.

The following lemma was proved in [Imm&87], (except that there (FO + TC)
was written as (FO + pos TC) because we didn’t yet know that this was equal
to (FO + TC)). The proof is by induction on the structure of the formula ¢, in
order to show that it can be massaged into the form of Definition 4.4. Fact 4.1
is then an immediate corollary.
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Lemma 4.7 Each of the languages (FO+DTC), (FO+TC), and, (FO +ATC)
satisfy the ¢fp normal form property. Furthermore, (FO + DTC) = L, (FO +
TC) =NL, and, (FO + ATC) =P.

The following proposition summarizes the above discussion.

Proposition 4.8 Let © be a problem and C o complexity class that is closed
under first-order Turing reductions. Then

1. © is <¥-complete for C if and only if C = (FO + 0).,

2. O is <epp-complete for C if and only if C = (FO 4+ ©) and (FO + ©) has
the fop normal form property, cf. Definition 4.4.

3. © is < p-complete for C if and only if C = (FO + ©) and (FO + ©) has
the gfp normal form property, cf. Definition 4.4.

5 Completeness Proofs

We next show that the iterated multiplication problems that we have been dis-
cussing remain complete for their complexity classes via first-order projections.
The first theorem is a refinement of the result from [Coo085] that iterated Boolean
matrix multiplication is complete for NL* via NC* reductions.

Theorem 5.1 [Iterated Boolean matriz multiplication is complete for NL via
quantifier-free projections.

Proof First observe that [J(M,(bool)) € NL. This can be seen as follows:
The matrices A;, ¢ = 1,...,n represent a graph with n + 1 levels. The edges
from level 4 — 1 to level ¢ are given by the adjacency matrix A;. Entry (c1,cz)
of Hz A; is a one iff there is a path from vertex ¢; level 0 to vertex c¢s in level n.

By Fact 4.1 the GAP problem is complete for NLi via quantifier-free projec-
tions. Example 3.5 gives a quantifier-free projection from GAP to [[(M,(bool)).
It follows by the transitivity of <., (Lemma 3.7) that [[(M,(bool)) is complete
for NL via quantifier-free projections. |

Theorem 5.2 Iterated multiplication of elements of S, is complete for L via
first-order projections.

Proof 1In [CM] it is shown that this problem is complete for L via NC'
reductions. By modifying Cook and McKenzie’s argument we will show that
1GAP <., [1(Sn). The theorem then follows from Fact 4.1.

Let G be an instance of 1GAP, i.e. a directed graph with at most one
edge leaving any vertex, no edges entering 0 and no edges leaving m. We will
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consider G as an undirected graph. Note that G € 1GAP iff 0 and m are in
the same undirected connected component of G. Furthermore, in this case this
component is acyclic.

Give each edge of G two labels — one for each adjacent vertex. Consider
the following set of permutations on these labels: for each vertex v take a cycle
of all edges adjacent to v, p, = (eyfy ---); for each e, flip the two labels of e,
e = (egey). Now let g be the product of all the p’s times all the ¢’s,

ma = [[ro- I] o (3)

veV ecE

Let e, be an edge label from G. It is not hard to see that the sequence
e, mG(€z), m5(€x), ... is a depth first traversal of the connected component of
G containing . (This is Proposition 1 in [CM].) It follows that for any graph
G, G € 1GAP iff for some 7, 77, maps the edge leaving 0 to an edge entering
m.

Note that in this form we do not yet have a many-one reduction because
we are asking n questions to [](S,) — one for each value of r — instead of a
single question. This problem is solvable as follows: We modify G by attaching
a tail of length n to m. More precisely, let G = ({0,...,n — 1}, E) and let
G ={{0,...,2n — 1}, E'), where

E' = {(2a,2b)|(a,b) € E} U {(2n —2,1),(1,3),(3,5),...,(2n — 3,2n — 1)}

Let e be a label of the unique edge leaving 0. Observe that a vertex v has
low order bit one iff v is on the tail. It follows that G € 1GAP iff the low order
bit of 7%&(eo) is 1.

To complete the proof we must show that the permutation 7¢ is a first-order
projection of G. For an edge e = (a,b), we will code the edge label e, as the
pair (a,b). According to the definition of 7 in Equation 3, mg should map
(a,b) to (c,a), where (a,c) is the next edge after (a,b). In order to make this a
first-order projection we change the definition slightly,

(ah) = (b+1,a) if F'(a,b+1)V E'(b+1,0a)
T B (a,b+1) otherwise

Thus 7' maps possible edge labels cyclically around a vertex until it finds an
actual edge which it then takes. One effect of this change is that it now takes
about n? steps to traverse all the edges in G. Finally, as desired, we have that

(G € 1GAP) & ((Hw’)(0,0)[[O]]:l)

To complete the proof of Theorem 5.2 there are two details that we must
now take care of. Namely, we assumed that the input graph G has outdegree
one and then we considered its undirected version. In fact, we can build two
qfps I, and I, with the following properties for any H,
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a. (H € 1GAP) iff (I,(H) € 1GAP) iff (I,(H) € GAP).

b. (I,(I,(H)) is an undirected graph and (I,(I,(H)) € UGAP) iff (H €
1GAP)

Here UGAP is the undirected version of GAP. Thus we can take G = Iy (I(G)))
in the above proof, where Gy is the input graph.

The constructions of I, and I are easy. In I, we walk through the whole
graph counting the number of edges out of each vertex and essentially die if
there are two edges leaving some vertex. In the following, a is a vertex. We
cycle through all the vertices b and increment the counter c if an edge (a,b) is
discovered. Then, once all these tests are passed we connect to a copy of Gy.

afabe,d't'd) = c#ZmA[p =b+1Ad =ahc=c #mA-E(a,b)
VY =b+1Ad =ahc=0Ac =1AE(a,b)
Vb=mAb =0Ad'=a+1A =0A(c=0V—E(a,b))
Va'=0AY = =mAa=b=mA(c=0V-E(a,b))]
Vic=d =mAb=b =mAa#mAad #0A E(a,d))

For I, we make the graph undirected by adding a second coordinate — a
counter:

Blab,a't’) = (V'=b+1AE(a,d'))V(b=0b+1AE(a,a))
Vie=ad' =mA(b=0b'+1Vd =b+1)))

Theorem 5.3 The problem [[(Ss), that is, iterated multiplication of elements
of Ss, is complete for NC' wia first-order projections. The same is true for

11(M3(bool)) and T](Ms(F2)).

Proof This follows from Barrington’s Theorem [Bar| together with a few
observations about uniformity from [BIS]. In particular, Proposition 6.4 in
[BIS] says that [[(Ss) is complete for NC' via DLOGTIME reductions. From
[BIS] we also know that DLOGTIME is contained in FO.

An examination of the proof in [BIS]| shows that the DLOGTIME reduction
is in fact a projection: Each choice of which element of S5 to take depends on
a single bit of the input. Furthermore, determining which bit it depends on is
a DLOGTIME and thus first-order computation.

We note that Barrington’s construction and thus this proof goes through
for any finite monoid such as [J(Ms(bool)) or [[(M3(F2)) that contains a non-
solvable group. See also [BC| where it is shown that any “algebraic NC”
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circuit over some ring R can be written as an iterated multiplication problem
over M3(R). In particular, since NC' = boolean NC', and boolean algebra
embeds in F, the result from [BC] gives an alternate proof that [[(Ms(F2)) is
projection complete for NCE |

Define fop(DET) to be the closure of DET under first-order projections.
Recall that DET* is the closure of DET under NC' reductions. It is obvious
that fop(DET) C DET* but it remains open whether or not these two classes
are equal. (See Conjecture 1 in the list of open problems and conjectures in the
next section.) We prove the following:

Theorem 5.4 The problem [[(M,(Z)), that is, iterated integer matriz multi-
plication is complete for fop(DET) vie first-order projections.

Proof It suffices to write DET as a first-order projection of [[(M,(Z)). Ac-
tually Berkowitz [Ber| has already done all of the hard work for us. Let A be
an n x n integer matrix. Berkowitz showed how to write the coefficients, p;, of
the characteristic polynomial,

P(A) = poA™ + -+ paiA+pa = det(4 - )

in the form

Po

j4i n
. - H Ct .
. t=1

Dn

Here each C; is an (n +2 —t) x (n + 1 — t) matrix which as we will see is a
product of n first-order projections of the initial matrix.
More explicitly, the matrix C; is given as follows:

-1 0 0 0
Q¢ -1 0 0
Ct _ —Rt . St At -1 0
—Rt - Mt . St —Rt - St At 0
: : : .o=1
—R,- M. S, —R MRS, o o ay
where the matrices Sy, R:, and M; are the following submatrices of A:
R, = ( Qtt+1 0 Gin )
A1, AQi4+1,04+1  *° Att+l,n
St — E Mt — . . .
Qn,t Q41 Tt An n
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Define D; to be the (n + 1) x (n + 1) matrix given by C; in the upper left
corner, extended by 0’s to fill it out. Now, the determinant of A is entry (n+1,1)
of the product []" ; D;. It thus suffices to show that the D¢’s can be written
uniformly as iterated products of fops of A. This may be obvious to the reader.
If not, observe that we can first compute all the powers of M; that we need by
multiplying the “diagonal” matrices:

M, 0 ... 0 M, 0 ... 0 M, 0 ... O
0o I ... 0 0 My ... 0 0o M, ... 0
. . . * . . . . ke x . . . .
0 0 ... I 0 0o ... I 0 0o ... M,

Next, to get the relevant coordinates: R;M{S;, we multiply on the left and
right by the matrices:

L 0 ... 0 R 0 ... 0
0O L ... 0 0 R ... O
0 0 ... L 0 0 ... R

where L is the square matrix whose first row is R; and whose other rows are
zero; and R is the square matrix with first column S; and the other columns
Z€ro.

So now we have a diagonal matrix containing all the coefficients of D;. Next
by increasing the dimension an additional factor of n? we can put any of these
coefficients anywhere we want them: first by copying the diagonal entries into all
relevant columns and then performing the relevant elementary row operations.

Note that the computational power needed to determine for each entry
whether it is 0 or 1 or a particular entry of A requires at most addition on
coordinate numbers. Thus the whole set of iterated products is a first-order
projection as claimed. |

6 Conclusions and Conjectures

We have defined first-order projections and shown that natural iterated mul-
tiplication problems are complete for various low-level complexity classes via
these reductions. We feel that the reductions are sufficiently weak, and preserve
enough of the algebraic nature of these problems to permit solutions to some of
the problems listed below.

Remark 6.1 (Does the Coding Matter?) When dealing with very low-level
reductions we have to explicitly define the coding of the problem. Our intuitive
feeling when we started this work was that the coding does not matter very much
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as long as it is sensibly done. However, upon further reflection, we found that
the coding really can matter in some cases. An example from the literature is
Theorem 4.2 from [HIM] which says that there are P-complete and NP-complete
sets via logspace reductions that — because of the coding — are not complete via
one-way logspace reductions. Closer to home, we were unable to prove Theorem
5.2 the way we had originally encoded it: With the coding R(z,i,7), meaning
that permutation = maps i to j, it is not at all clear how to show that [[(X,)
is complete for L via many-one reductions. However, this was easy once we
decided to recode by looking at separate bits of w(i), rather than forcing the very
simple reduction to produce the correct j.

In some sense the issues of complexity and coding are orthogonal. Once you
have proved that a problem Sy is complete for some complexity class, C, via fops,
you have exposed the essence of C as being identical to that of So. However, by
contrast, another problem Sy that is complete for C via say logspace reductions
may fail to be complete for C via fops because of the encoding, or perhaps for
other reasons. From our point of view, this may not matter. What is important
is that the complezity class has been tightly captured: for any problem T, T is
in C if and only if T <,,, So. Some of the problems below suggest possible ways
of exploiting this sort of situation.

Remark 6.2 (fop’s versus qfp’s) Because of the simple form of projections,
the difference between fops and qfps is neither more nor less than the numeric
predicates such as BIT that are available in the language. Thus, in the presence
of the numeric predicates: BIT, PLUS, PLUS MOD 2 OF THE ODD NUM-
BERED BITS, all of the results of §5 go through for q¢fps. On the other hand,
it is not clear that the relation <., remains transitive in the presence of these
numeric predicates. We have thus made the choice in this paper to stick to fops
as our extremely low-level reduction of choice. Our reason is pragmatic: fops
are much easier to handle than qfps and they should be low-level enmough for
anyone.

What is now needed is an expanded theory of fops. In particular we would
love to see some proofs that no fop exists between certain interesting pairs of
problems.

Conjectures, and Open Problems:

1. We conjecture that fop(DET) = DET* = log(DET). (This last class is the
set of problems many-one, logspace reducible to DET.) This amounts to
proving a gfp normal form theorem for (FO + [[(M,(Z))), cf. Definition
4.4. Note that the difficulty of proving this has to do with separating indi-
vidual bits of an n-bit entry of some matrix. A typical case is how to write
the formula (Fy)[[(Mn(Z))(0(¥))[¢, 4, 7] in the form [[(MA(Z)) ()], 5, 7']-
The first formula says that for some y, the r*® bit of the (4,5)*" entry of a
product of matrices is 1. The question is then how to write this existential
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statement as an arithmetic expression.

Note also that this is intimately connected with a similar kind of bit
separation that is important in Toda’s theorem, [Tod89]. A solution to this
problem would give a simplified and generalized version of that theorem.
See [GKT] for related work.

2. TI(Sn) %sp [1(S5): This is true iff NC! is strictly contained in L.
3. TI(Z) <w, [1(Ss): This is true iff [[(Z) € NC*.

4. TI(S5) <wp [1(Z): This would imply that NC' is contained in polynomial-
time uniform ThC®.

5. We conjecture that DET is complete for ThC' and thus that DET* is
equal to ThC'. This would nicely linearize the containments of Figure 1.

6. We conjecture that the integer permanent problem is not a first-order
projection of the integer determinant problem, in symbols, PERM £,,,
DET. This is true iff PERM ¢ fop([[(M.(Z))). Thus this result would
imply among other things that NL does not contain #P, cf. [vzG, Cail.

7. We conjecture that a low-level version of the “isomorphism conjecture”
[BH], [You] should hold: For the complexity classes C = NL, P, NP, all
problems complete for C via first-order projections are logspace isomorphic.*

8. It would be very nice to consider “more algebraic” versions of the reduc-
tions we are using, i.e. perhaps some versions of these reductions that are
actually homomorphisms would suffice. This would allow more algebraic
theory to be brought to bear in deciding when such reductions exist.

9. In a similar vein, it might be fruitful to restrict our attention to groups
rather than monoids. This can presumably be done for the monoids of ma-
trices by restricting attention to the special linear groups — the submonoid
of invertible matrices with determinant one.

10. We would like to add the following monoids to our chart between problems
[1(My,(bool)) and [[(Mn(Z)): (1) M,(F,), for fixed p, and, (2) Mp(F;),
for p < n. It is obvious that (1) <u., (2) <wp [[(Mn(Z)). It is also
interesting to note that Chinese remaindering plus (2) gives [[(M.(Z)),
in symbols: [[(Z) + (2) = [[(Mn(Z)). We do not know whether any of
the containments between these classes are strict.

11. We would like to know whether or not [[(Mp,(bool)) <., [[(Mn(F2)), cf.
Corollary 4.6.

4Very recently this conjecture has been proved, in fact, all problems complete for such C
via fops are first-order isomorphic, [ABI].
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We hope that first-order projections become a useful tool for applying al-
gebraic methods to prove complexity theoretic lower bounds. For example,
suppose that T is complete for a complexity class C via first-order projections
and let S be any problem. Then S is a member of C if and only if S <., T.
Furthermore, a proof that there is no k-ary first-order projection from S to T
is a lower bound on the complexity of S.

Let us make this last statement more precise. First, generalize the notion
of k-ary projection to be a map from structures of size n to structures of size
O[n*], where the new universe is a bounded union of k-tuples. Now, suppose
that T is complete for linear time via linear first-order projections. It should
follow that S is a k-ary first-order projection of T iff S is doable in time n*.
For this reason we feel that first-order projections are a promising approach for
obtaining non-trivial lower bounds.
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