Languages That Capture Complexity Classes*

Neil Immerman'

Introduction

We present in this paper a series of languages adequate for expressing exactly
those properties checkable in a series of computational complexity classes. For
example, we show that a property of graphs (respectively groups, binary strings,
etc.) is in polynomial time if and only if it is expressible in the first order
language of graphs (respectively groups, binary strings, etc.) together with a
least fixed point operator. As another example, a property is in logspace if and
only if it is expressible in first order logic together with a deterministic transitive
closure operator.

The roots of our approach to complexity theory go back to 1974 when Fagin
showed that the NP properties are exactly those expressible in second order
existential sentences. It follows that second order logic expresses exactly those
properties which are in the polynomial time hierarchy. We show that adding
suitable transitive closure operators to second order logic results in languages
capturing polynomial space and exponential time, respectively.

The existence of such natural languages for each important complexity class
sheds a new light on complexity theory. These languages reaffirm the impor-
tance of the complexity classes as much more than machine dependent issues.
Furthermore a whole new approach is suggested. Upper bounds (algorithms)
can be produced by expressing the property of interest in one of our languages.
Lower bounds may be demonstrated by showing that such expression is impos-
sible.

For example, from the above we know that P = NP if and only if every
second order property is already expressible using first order logic plus least
fixed point. Similarly nondeterministic logspace is different from P just if there
is some sentence using the fixed point operator which cannot be expressed with
a single application of transitive closure.

*SIAM J. of Computing 16:4 (1987), 760-778. A preliminary version of this paper appeared
as [17].

tResearch supported by an NSF postdoctoral fellowship. Current address: Computer
Science Dept., UMass, Amherst, MA 01003.

In previous work [Im81], [Im82b], we showed that the complexity of a prop-
erty is related to the number of variables and quantifiers in a uniform sequence
of sentences, @1, s ..., where each ¢, expresses the property for structures of
size n. Our present formulation is more pleasing because it considers single
sentences (in more powerful languages).

The first order expressible properties at first seemed too weak to correspond
to any natural complexity class. However we found that a property is expressible
by a sequence of first order sentences, @1, s ..., where each ¢, has a bounded
number of quantifiers if and only if this property is recognized by a similar
sequence of polynomial size boolean circuits of bounded depth. It follows that
the results of Furst, Saxe, and Sipser, [FSS81], and Sipser, [Si83], translate
precisely into a proof that certain properties are not expressible in any first
order language.

In this paper we also introduce a reduction between problems that is new to
complexity theory. First order translations, as the name implies, are fixed first
order sentences which translate one kind of structure into another. This is a very
natural way to get a reduction, and at the same time it is very restrictive. It
seems plausible to prove that such reductions do not exist between certain prob-
lems. We present problems which are complete for logspace, nondeterministic
logspace, polynomial time, etc., via first order translations.

This paper is organized as follows: Section 1 introduces the complexity
classes we will be considering. Section 2 discusses first order logic. Sections
3, 4 and 5 introduce the languages under consideration. Section 6 considers the
relationship between first order logic and polynomial size, bounded depth cir-
cuits. The present (lack of) knowledge concerning the separation of our various
languages is discussed.

1 Complexity Classes and Complete Problems

In this section we define those complexity classess which we will capture with
languages in the following sections. We list complete problems for some of the
classes. In later sections we will show how to express these complete problems in
the appropriate languages; and, we will also show that the problems are complete
via first order translations. More information about complexity classes may be
found in [AHUT4].

Consider the following well known sequence of containments:

LCNLCYS,LCPCNPCY,P

Here L is deterministic logspace and NL is nondeterministic logspace. ¥,L =
Usre; e L is the logspace hierarchy. ,P = (J,-; P is the polynomial time
hierarchy. Most knowledgable people suspect that all of the classes in the above
containment are distinct, but it is not known that they are not all equal.

We begin our list of complete problems with the graph accessibility problem:

GAP = {G|3 a path in G from vy to v,_1}
Theorem 1.1 (Sa73) . GAP is logspace complete for NL.

We will see later that GAP is complete for NL in a much stronger sense.
The GAP problem may be weakened to a deterministic logspace problem by
only considering those graphs which have at most one edge leaving any vertex:

1GAP = {G|G has outdegree 1 and 3 a path in G from vy t0 v,_1}
Theorem 1.2 (HIM78) . 1GAP is one-way logspace complete for L.

A problem which lies between 1GAP and GAP in complexity is

UGAP = {G|G undirected and 3 a path in G from vy t0 v, 1}

Let BPL (bounded probability, logspace) be the set of problems, S, such that
there exists a logspace coin-flipping machine, M, and if w € S then Prob(M
accepts w) > 2/3, while if w ¢ S then Prob(M accepts w) < 1/3. It follows
from the next theorem that UGAP is in BPL. Thus UGAP is probably easier
than GAP.

Theorem 1.3 (AKLL79) . If r is a random walk of length 2|E|(|V] + 1) in
an undirected connected graph G then the probability that r includes all vertices
in G is greater than or equal to one half.

Lewis and Papadimitriou [LP80] define symmetric machines to be nondeter-
ministic turing machines whose next move relation on instantaneous descriptions
is symmetric. That is if a symmetric machine can move from configuration A
to configuration B then it is also allowed to move from B to A. Let Sym-L be
the class of problems accepted by symmetric logspace machines.

Theorem 1.4 (LP80) . UGAP is logspace complete for Sym-L.

John Reif [Re84] extended the notion of symmetric machines to allow al-
ternation. Essentially an alternating symmetric machine has a symmetric next
move relation except where it alternates between existential and universal states.
Let ¥.Sym-L = ;- ; xSym-L be the symmetric logspace hierarchy. Reif
showed that several interesting properties, including planarity for graphs of
bounded valence, are in the symmetric logspace hierarchy. It follows that they
are also in BPL.

Reif also showed that BPL is contained in O[logn] time and n°!!! processors
on a probabilistic hardware modification machine (HMM).

Figure 1: An alternating graph with two universal nodes: a,c.

Theorem 1.5 (Re84) .
Y.Sym-L C BPL C Prob-HMM-TIME[logn],PROCn°M]

One may also consider harder versions of the GAP problem. Let an alternat-
ing graph G = (V, E, A) be a directed graph whose vertices are labelled universal
or existential. A C V is the set of universal vertices. Alternating graphs have
a different notion of accessibility. Let APATH(x,y) be the smallest relation on
vertices of G such that:

1. APATH(x,x)
2. Ifx is existential and for some edge (z, z) APATH(z,y) holds, then APATH(x,y).

3. If x is universal, there is at least one edge leaving x, and for all edges (z, z)
APATH(z,y) holds, then APATH(x,y).

See Figure 1.1 where APATH(a,b) holds, but APATH(c,b) does not. Let
AGAP = {G|APAT Hg(vo,vn—1)}

It is not hard to see that AGAP is the alternating version of GAP, and thus
is complete for ASPACE[log(n)]. Recalling that this class is equal to P, [CKS81],
we have

Theorem 1.6 (Im81) . AGAP is logspace complete for P.:

INote that the AGAP problem is easily seen to be equivalent to the monotone circuit value
problem shown to be complete for P in [Go77].

2 First Order Logic

In this section we introduce the necessary notions from logic. The reader is
refered to [En72] for more background material.

A finite structure with vocabulary 7 = (R;...R;,ci...c,) is a tuple, S =
({0,1,...,n — 1}, Ry...Rg,c1...c;-), consisting of a universe U = {0,...,n — 1}
and relations R;...Rj on U corresponding to the relation symbols R,...R; of T,
and constants ¢;...c, from U corresponding to the constant symbols ¢;...c, from
T.

For example, if 79 = (E(-,-)) consists of a single binary relation symbol then
a structure G = ({0..n — 1}, E) with vocabulary 7y is a graph on n vertices.
Similarly if m = (M(-)) consists of a single monadic relation symbol then a
structure S = ({0...n — 1}, M) with vocabulary 71 is a binary string of length n.

If 7 is a vocabulary, let

STRUCT(7) = {G|G is a structure with vocabulary 7}

We will think of a problem as a set of structures of some vocabulary 7. Of
course it suffices to only consider problems on binary strings, but it is more
interesting to be able to talk about other vocabularies, e.g. graph problems, as
well.

Let the relation s(x,y) be the successor relation on the naturals, i.e. s(z,y)
holds iff z + 1 = y. Throughout this paper we will assume that s is a logical
relation symbol denoting the successor relation. We will also assume that all
structures under consideration have at least two elements. Furthermore the
constant symbols 0 and m will always refer to the first and last elements of the
universe, respectively. 2

We now define the first order language L£(7) to be the set of formulas built
up from the relation and constant symbols of 7 and the logical relation symbols
and constant symbols: =,s,0,m, using logical connectives: A,V,—, variables:
z,Y, 2, ..., and quantifiers: V, 3.

If ¢ € L£(7) let MOD(p) be the set of finite models of ¢:

MOD(p) ={G € STRUCT(7)|G ¢}
Let FO be the set of all first order expressible problems.
FO = {S|(37)(Fp € L(1))S=MOD(p)}

The following result is well known, [Fa74, AU79, Im81]; but a new proof of
the strictness of the containment follows from Corollary 6.3.

Theorem 2.1 FO is strictly contained in L.

2 As we will see the availability of a successor or ordering relation seems crucial to simulate
computation. The last two assumptions are nonstandard and unnecessary. However they are
convenient because they make some proofs neater. Otherwise we would have to modify many
formulas ¢ to the less appealing form: (Vz)(Vy)(z = y A ¢') V (Fz)(Fy)(z # y A o(z/0,y/m)).

3 First Order Logic Plus Transitive Closure

In view of Theorem 2.1 we wish to strengthen first order logic so that we may
express properties of complexity at least logspace . Let ¢(21...2%, y1...yx) be any
formula. It represents a binary relation on k-tuples. We add to our language the
operator T'C where T'C[yp] denotes the reflexive, transitive closure of the relation
¢. Let (FO 4 TC) be the set of properties expressible using first order logic
plus the operator T'C'. Let (FO + pos T'C') be the set of properties expressible
using only positive applications of T'C, i.e. not within any negation signs. It is
easy to see for example that GAP € (FO + pos TC):

GAP =TC[E(z,y)](0,m)

Theorem 3.1 NL = (FO + pos TC)

Proof It is easy to see that NL contains (FO + pos TC). If A(z,y) can be
checked in NL, then so can TC[A(z,y)]: simply guess an A path. Going the
other way we are given a nondeterministic logspace turing machine, M, accepting
a set, S, of structures of a certain vocabulary 7. We must produce a sentence 1
in (FO +TC) such that

S ={G e STRUCT(7)|G [¥}

The first idea needed to write ¢ is that an instantaneous description (ID)
of M is of size O[logn]| and can be coded with finitely many variables ranging
from 0 to n — 1.

For example, suppose that M accepts a graph problem, i.e. the vocabulary,
T = (E(-,-)), consists of a single binary relation symbol. Suppose also that
M uses k - log(n) bits of work tape for problems of size n. Input to M con-
sists of n? bits — the adjacency matrix for E. An ID for M is a 2k + 3-tuple:
{(g,71,72, w1, h1...wk, hr). Here ¢ codes M’s state and variables 71,72 code the
input head position. Note that the input head is looking at a 1 or 0 according
as E(r1,72) holds or does not hold in the input structure. Finally w;...wy code
the k - log(n) bits of M’s work tape. One h; is equal to j where the work head

is pointing to the jth bit of w;; the rest of the h;’s are n — 1.

The second idea is that using 7C' we can compute the jth bit of w;. Let
ON(w,j) mean that j < logn and bit j of w is on. Starting with the successor
relation s we can use T'C to express addition and then use T'C' again to tell if a
certain bit in a variable is on:

Lemma 3.2 The following predicates are expressible in (FO + pos TC').
1. PLUS(z,y,2) = “c+y=2"
2. ON(w,j)

Proof Using s we can say that there is an edge from (z,y) to (u,v) ifu=2-1
andv=y+1:
a(z,y,u,v) = (s(u,2) A s(y,v))

Using transitive closure we then get:
PLUS(z,y,2) =TCla)(z,y,0,2)
Now define § as follows:
B(wy, j1, w2, j2) = (F2(PLUS(wa, w3, 2) A (w1 = 2V 5(z,w1))) A 5(j2, 1))
Let ODD(z) abbreviate 3z3y(PLUS(z, z,y) A s(y, 2)). It follows that
ON(w,j) = 32(0DD(z) ATC[B)(w,], 2,0))
|

Once we can tell what the work head is looking at we can write the predicate
NEXT(ID,,IDy) meaning that I Dy follows from 1D, in one move of M.? (Note
that the successor relation is used not only to code n bits into a single variable,
but also to say that the read head moves one space to the left or right. Any
input structure is given to a turing machine in some order, and it may search
the structure in that order.)

Using one more positive application of T'C' we can express PATH(ID,,ID;)
meaning that there is a computation of M starting at I.D, and leading to ID,.
Let ¢ = PATH(IDi,IDf) where ID; and IDs are M’s initial and final ID’s
respectively. Then ¢ € (FO+pos TC) and an input structure, G, of the correct
vocabulary satisfies ¢ if and only if M accepts G. This proves Theorem 3.1. Il

The sentence ¢y = PATH(ID;,1Dy) in the above proof has an interesting
form. It is written with several positive applications of T'C’, but we show in the
next theorem that these may be merged into one. Thus for each problem C in
NL there is a 2k-ary first order formula ¢ such that a structure G is a member
of C iff @ satisfies TC[¢](0,m). This suggests that GAP is complete for NL
via an extremely weak kind of reduction. We call these new reductions first
order translations and we discuss them right after we show that ¢ can indeed
be written in this simple form.

Theorem 3.3 Let ¢ € (FO + pos TC). Then g is equivalent to a formula of
the form]
TC[HY(u1,. .., up,v1,...,0)](0,m)

where v is first order and 0 (resp.) is the constant symbol 0 (resp. m)
repeated k times.

3This is a standard constructions. See [Fa74, Im81, Im82a, Im82b].

Proof By induction on the complexity of ¢. There are five cases:

1. The formula ¢ is atomic or the negation of an atomic formula. In this
case let u,v be variables not occuring in ¢. Then ¢ — T'C[p(u,v)](0,m).

2. ¢ =TCY(Z,9)|(g,7). We wish to replace g,7 with 0,/m. Put

,0(81,151,@,82,152,7])5 [81:0/\t1:UAfZOASZIUAtQImAgIQ]
Vst =0Ati=mAsy=0Ats =mAY(z,7)]
V[si=0Ati=mAZ=TAss=to=mAf=nm]

The variables ¢, s split the p-path in three stages: (st = 00): Set z to ¢
and go to next stage. (st = Om): Take a 9 step and stay in this stage.
When you reach 7 go to next stage. (st = mm): Set T = 7 and stop.
Thus as desired:

P = TC[p(Slatlaja527t27y_)]((_)7 777,) :

3. ¢ = 3zTCla(4,v;2)](0,m). Here the notation means that the transitive
closure is taken over the relation a(%,v) and the variable z occurs free in
a. Put

X(ﬂ7$17,ﬁ7$2)

<
)
&
=
8
>
8
[
=
N
<
=
[l
3
>
S]]
[l
S
>
=
[V
[l
2

Notice that y allows a guess of z on the first step and thus,

¢ < TCO[x(4,z1,7,22)](0,m) .

4. ¢ = V2T Cla(t,v;2)](0,7). In this case we simulate the Vz by searching
through all z’s in order using s. I'm not sure whether the result holds if
s is not available. Put

v(t,T1,7,T2) = [ﬂ # mAa(t, 0 z1) Az = :1:2] v [ﬂ = MmAD = (_)/\5(:61,1‘2)]
Thus ¢ < TCv(a,z1,7,22)](0,7) .

5. ¢ = TC[TCy(z,7;a,v)](0,7m)](0,m). In this case the formula ¢ has
free variables z, 9y, %, v. The inner transitive closure is on Z, g, treating the
other variables as parameters. The outer transitive closure is on %, 7. We
combine these two TC’s into a single transitive closure on § defined as
follows:

8(z,u1,v1,9, U2, V2)

We claim that ¢ « TC[6(z,u1, 01,7, U2,702)](0,m). This holds because a
6 path consists exactly of a series of ¥(-, -; u, v) paths from 0 to 7 with u,v
fixed. At the end of any such path we know that T'C[¢(z, y;u,v)](0,m)
holds. The 6 path may now appropriately step from (1, @,) to (0,7, w),
i.e. reach v and begin trying to move from v to w.

Note that the cases of disjunction and conjunction follow easily from cases 3
and 4 respectively. |

Definition 3.4 Let 71 and 12 be vocabularies where 7o = (R, ... R.) and R; is
an a;-ary relation symbol. Let k be a constant. An interpretation, o, of L(72)
in L(1) is a sequence of r + 1 formulas:

U(:El....Ik), Ei(azll...wlk...waik) 1=1...7
from L(7m) such that the sentence Az1 ...z, (U(Z)) is valid.

Such an interpretation o translates any structure G € STRUCT[m] to a
structure ¢(G) € STRUCT[m] defined as follows:

Universe(o(G)) = {(z1,...,zx) € G* | G = U(2)}
R = {(z1,...,74,) | G Zi(71,...,7a,)}

See [EnT72] for a discussion of interpretations between theories. See also [LGTT]
for a proof that SAT is NP complete via ‘elementary reductions’ — essentially
the same thing as our first order translations.

Definition 3.5 Given two problems: S C STRUCT|m] and T C STRUCT[1s],
a first order translation of S to T is an interpretation, o, of L(72) in L(11) such
that:

GeS & o(G)eT

As our first example we prove:

Corollary 3.6 GAP is complete for NL via first order translations.

Proof Let S C STRUCT[r1] be any problem in NL. By theorems 3.1 and 3.3
there is a constant k and a formula y(z1,...,2Zk,¥1,...,yx) € £(71) such that
given A € STRUCT|[r1] we have

AeS e AETCH](0,m)
Let 79 = (E(,)). Let 0 = (U,X) be an interpretation of £(72) in L£(71) where

U(Z) = (21 =1), L(Z,9) = 7(Z,7). Then o is a first order translation of S to
GAP. |

The first order translation is an extremely weak kind of reduction and it is
clearly appropriate for comparing the power of logical languages. It follows from
Theorem 6.2 that first order translations are a uniform version of constant depth
reductions, cf. [CSV84]. It would seem that projection reductions, [SV85], are
even weaker. However an examination of the proof of Theorem 3.3 reveals that
not only have we removed all but one occurrence of TC, but we have removed
all the quantifiers as well. In fact we have proved the following stronger version
of Theorem 3.3.

Theorem 3.7 Let ¢ € (FO+ pos TC). Then ¢ is equivalent to a formula of
the form TC[v](0,m) where v is a quantifier free formula in disjunctive normal
form:

I
v = \/ a; A B; where:
i=1

1. EBach o; is a conjunction of the logical atomic relations, s,=, and their
negations.

2. Each B; is atomic or negated atomic.

3. Fori # j o; and a; are mutually exclusive.

Call a first order translation o = (U, X,...,%;) a projection translation if
each of its formulas is in the form of v in the above theorem. It follows that

Corollary 3.8 GAP is complete for NL via projection translations.

Note that projection translations are a uniform version of the projection
reductions of [SV85].

We close this section with a discussion of the complexity class (FO + TC).
We mistakenly claimed in [Im83] that the equality ¥,L = (FO + TC) could
be derived simply by closing both sides of the equation of Theorem 3.1 under
negation. Unfortunately this is wrong, and we now suspect that the two classes
are distinct. We can prove the following:

Theorem 3.9

U =kl € (FO+10C)
k=1

Proof Let M be a YL turing machine and let .4 be an input structure to
M. Let the predicates EPATHy (Z,3) (resp. APATHy(Z,7)) mean that z
and g are ID’s of M such that there is a computation path of M each of whose
ID’s is existential (resp. universal) except for § which is universal or final (resp.
existential or final). It is immediate from Theorem 3.1 that EPATH and APATH

10

are expressible in (FO + pos T'C'). Let ID; and ID; be M’s initial and final
ID’s. Then M accepts A if and only if A satisfies the following sentence:

(3IDyVID,3IDs ...QID,)[EPATH(ID;,ID;) A

[~APATH(IDy,1Dy)V [EPATH(IDy,IDs) A ... AIDj, = IDy]...

Note that the above proof requires no nesting of TC’s and =TC’s which is
why we suspect that £.L # (FO 4+ TC).
4 Other Transitive Closure Operators

We next employ other operators not quite as strong as 7'C' to capture weaker
complexity classes. For example, let STC be the symmetric transitive closure
operator. Thus if ¢(Z,7) is a first order relation on k-tuples, then STC(yp) is
the symmetric, transitive closure of ¢.

STC(p) = TClp(z,y) V (y,z)]

The following theorem, whose proof is similar to the proof of Theorem 3.1,
shows that STC captures the power of symmetric log space:

Theorem 4.1
1. Sym-L = (FO + pos STC)
2. UGAP is complete via first order translations for Sym-L

We can also add a deterministic version of transitive closure which we call
DTC. Given a first order relation ¢(Z,7) let

That is ¢4(Z,7) is true just if 7 is the unique descendent of Z. Now define:
DTC(p) =TC(pa)

Note that (FO + pos DT'C) is closed under negation. Thus:

Theorem 4.2

1. L= (FO+ DTC)

2. 1GAP is complete for L via first order translations.

11

To prove Theorem 4.1 (resp. 4.2) we must check that the proofs of Theorem
3.1, Lemma 3.2, and Theorem 3.3 go through when we replace TC by STC
(resp. DTC). Notice that the occurrences of TC in the proof of Lemma 3.2 are
of the form T'C[v](3,¢) where for every tuple Z there is at most one § such that
v(z,y) and furthermore there is no § such that v(Z,4). It follows that

TCy](5,t) = DTC[y](5,) = STC[Y](5,1)

Thus Lemma 3.2 still holds with STC or DTC replacing TC as needed. See
[LP82] for a more detailed discussion of when nondeterministic (TC) compu-
tations or deterministic (DTC) computations may be replaced by symmetric
(STC) computations.

To finish the proof of part 1 of Theorems 4.1 and 4.2 we follow the proof of
Theorem 3.1. We can express NEXT(ID,,ID;) using ON and no additional
uses of TC. Finally to express PATH from NEXT one additional use of the
STC for Theorem 4.1 or DTC for Theorem 4.2 suffices.

To prove part 2 of Theorems 4.1 and 4.2 we observe that Theorem 3.3 holds
when TC is replace by STC or DTC. First consider STC. The reader should
check that the theorem and proof remain true if we replace TC everywhere by
STC. A typical example is case 4. Here ¢ = VzSTC[a(a, v; 2)](0,m). We let

v((,21,70,22) = [0 # MA@, v;21) Az = 32| V[a=m AT =0A s(z1,22)]

and find that
¢ < STCv(u,z1,7,x2)](00,m) .

To prove this last equivalence suppose that ¢ holds. Then for all z there is a
symmetric (-, -, z) path p, from 0 to m. It follows that

(p[) X 0)7 <(ﬁl, 0)7(0’ 1)>a (pl X 1)7 RN ((ﬁ’l,,m - 1)7(()’ m)>7 (pm X m)

is a v path from 00 to mm. Conversely, any minimal v path from 00 to mm
must include the edges,

((m,0),(0,1)), ((m,1),(0,2)},...., ((m,m — 1), (0, m))

in that order. Furthermore the part of the path between any consecutive pair of
the above edges will have constant second component. But this just says that
for all z, STC[a(, v; 2)[00,mm]], i.e. ¢ holds.

In the DTC case we must modify the construction of the proof of The-
orem 3.3 so that a deterministic path is not transformed into a nondeter-
ministic path. The most interesting case is the existential quantifier: ¢ =
32 DTCla(u,v;2)](0,m). Here instead of letting the path finder guess the cor-
rect z we force the path to try all x’s and go to m when a correct one is found.
We use the fact that there is a path in an n* vertex graph if and only if there is
such a path of length at most n* — 1. Let arity(z;) = arity(w;) = arity(a). In

12

the following z is a counter used to cut off a cycling a-path and w is used to find
the a-edge leaving w if one exists. We will abuse notation and write ‘s(z1, 22)’
to mean that Z» is the successor of z; in the lexicographical ordering induced
by the successor relation s. Let

=
=
[l
2
3V
[l
=l
[V
[l
3
>
&=
[V
[l
2

X’(ﬂ,21,7111,:81,17,22,1172,:102) = =
VI[a#mAs(z1,22) N2 =MAT=2Z =Wy =0
V{gEmAs(z,z) ANz ZMAwL =mMAT=2=ws =0
\/[ﬂ;émA£U2=$1/\S(z1,52)/\’u_)2=(_)/\ 1

\Y [’E#ﬁl/\wg =21 N2y =21 ;ém/\s(u‘)l, _2)
Then
¢ < DTC[x](0,m) .
This completes the proofs of Theorems 4.1 and 4.2. |

In spite of an over optimistic claim in [Im83] we are not sure whether
Y,.Sym-L = (FO + STC) but we suspect that equality does not hold. We
can prove the following:

Theorem 4.3
Y.Sym-L C (FO+ STC) C BPL

Proof The first inclusion follows as in the proof of Theorem 3.9. The second
inclusion follows from Theorem 1.3 and standard techniques, (see for example
[Re84]). Once we know that the predicate «(Z,7) is in BPL, we can test if
a(z,y) holds with exponentially low probablity of error. Then we can take a
random « walk and use Theorem 1.3 to see that STC[a(Z,¥)] is also testable
in BPL.

The penultimate operator we add in this section is least fixed point, LF P.
Given a first order operator on relations:

9(R)[Z] = Q121.--Qr2x M (T, Z, R)

we say that ¢ is monotoneif Ry C Ry implies p(R;) C ¢(Rs3). For a monotone
@ define:
LFP(p)=min{R|p(R) = R}

It is well known that LF P(yp) exists and is computable in polynomial time
in the size of the structure involved.

Example 4.4 The least fized point operator is a way of formalizing inductive
definitions of new relations. Recall the AGAP property discussed in Section 1.
Consider the following monotone operator:

T(R)zy)= (v=)V|(3)(B(2,2) AR(z))
A=A(@) V (¥2)(~E(,2) V R(z,)))]

13

It is easy to see that
LFP(T)= APATH

and in fact:
Theorem 4.5 (Im82a,Va82) . P =(FO+ LFP)

Instead of using LFP we introduce a variant of it that is more in keeping with
DTC,STC, and TC. Suppose that ¢(z,y) and «(z) are given formulas where
arity(z) = arity(y) = k. For a given structure A these formulas define an
alternating graph G, , whose universe consists of k-tuples from 4, whose edge
relation is the set of pairs of k-tuples for which ¢ holds in .4, and whose universal
nodes are those k-tuples satisfying a. We define the alternating transitive closure
operator (ATC) to be the operator whose value on the pair ¢(z,9y),a(z) is
APATHg, . We can define ATC more precisely in terms of LFP as follows.
Refering to example 4.4, let

P(p,, R)[e,y] = (2 =1)V [32)(e(2,2) A R(2,1))
A=a(2) v (¥2)(¢(2,2) V R(z,9))]

Definition 4.6 ATC[p,a] = LFP(I'(p,))
We conclude this section with
Theorem 4.7

1. P = (FO + ATC)

2. AGAP is complete for P via first order translations.

Proof This follows as in the proofs of Theorems 3.1, 4.1 and 4.2, recalling
that ASPACE[log n] = P, [CKS81]. The construction of NEXT(ID,,ID;) in
the proof of Theorem 3.1 works without change, noting that ATC is at least as
powerful as TC. Writing the formula a(z) meaning that ID x is in a universal
state is trivial. The ASPACE[log n] machine M accepts a structure A iff A |
ATC(NEXT,a)(ID;, IDy).

To prove part 2 we just note that Theorem 3.3 remains true with ATC
substituted for TC. |

5 Second Order Logic

In second order logic we have first order logic plus the ability to quantify over
relations on the universe. The following theorem of Fagin was our original
motivation for this line of research:

14

Theorem 5.1 (Fa74) . NP = (2"?0 existential)

Fagin’s theorem says that a property is recognizable in NP iff it is expressible
by a second order existential formula. Note that we no longer need “s” as
a logical symbol because in second order logic we can say, “There exists a
binary relation which is a total ordering on the universe.” Closing both sides of
Theorem 5.1 under negation gives us that a problem is in the polynomial time
hierarchy iff it is expresible in second order logic.

Theorem 5.2 (St77) . TP = (27?0)

Fagin’s original result used 2k-ary relations to encode the O[n2*] bits of an
entire NTIM E[n*] computation. Thus he showed:

NTIME[n*] C (2™0 existential, arity 2k) C NP

Lynch [Ly82] points out that in the presence of addition as a new logical
relation on the universe, the second order existential sentences can guess merely
the n* moves and piece together the whole computation in arity k. Thus, he
shows:

Theorem 5.3 (Ly82) . NTIMEn*] C (20 ezistential with PLUS, arity k)
Corollary 5.4

U STIME[R*] = (2790 with PLUS, arity k)

c=1

Proof Let S € X.TTM E[n*]. It follows that
S={A| IwnVws... Q1w 1T(A,w)}

where wy, ..., w._1 are bounded in length by |.A|* and T(A,w) isan NTIM E(]A[*)
property if ¢ is odd and a CONTIM E(|A|*) property if ¢ is even. It follows
from Theorem 5.3 that T is expressible as a second order existential, arity k
formula: ¥ = IR.p(R.) if ¢ is odd, (or if ¢ is even, ¥ = VR.¢(R.)). Finally we
can replace each w; of length at most n* by a relation R; on A of arity k. Thus

S={A| AE3IRVR,...Q.R}
Conversely, let ¢ be a second order arity k formula,
e =3AR1VRy... Q. RY

where 9 is first order. B
In particular ¢ = (3z1... Quxe)M (R, z) where M is a constant size quanti-
fier free formula. It follows that we can test in ¥, ,7IM E[n*] whether an input

15

A satisfies 9. Thisis done by guessing the R’s and x’s in the appropriate existen-
tial or universal state. It remains to check the truth of a constant size quantifier
free sentence. This can easily be done in time linear in [{A, Ry,..., Rc)|. |

Note that in the above results the relation “PLUS” need only be added when
kis 1 or 2, otherwise it is definable.

Asin the previous section we can add closure operators to second order logic
in order to express properties which seem computationally more difficult than
the polynomial time hierarchy. If ¢(R, S) is a sentence expressing a binary su-
per relation on k-tuples of relations R and S, then TC(yp), STC(yp), DTC(y)
express the transitive closure, symmetric transitive closure, deterministic tran-
sitive closure, respectively, of . It is not hard to show:

Theorem 5.5 For k=1,2,...

1. DSPACE[n*] = (290 arity k, + DTC)

2. Sym — SPACE[n*] = (240 arity k, + pos STC)

3. NSPACE[n*] = (240 arity k, + pos TC)
proof A k-ary relation R over an n element universe consists of n* bits. It is an
easy exercise to code an O[n*] space instantaneous description with a set of k-ary
relations, X ... X, and to write the first order sentence om(X1... X, V1. Y0)
meaning that ID Y follows from X in one move of turing machine M. One apli-

cation of the appropriate transitive closure operator expresses an entire compu-
tation. [

The following follows immediately:
Corollary 5.6 PSPACE = (20 + TC) = (2?0 + STC) = (20 + DTC)

In similar fashion we can add a second order ATC operator. Recalling that
ASPACE[n* = |J2, DTIME[c¢""] we discover

Theorem 5.7 For k = 1,2,...

| DTIME[™] = (270 arity k + ATC)

c=1

6 Lower Bounds
A lower bound by Furst, Saxe and Sipser has interesting consequences for us.

(See [FSS81] and also [Aj83] and [Ya85].) The PARITY problem is to determine
whether the n inputs to a boolean circuit include an even number which are on.

16

Theorem 6.1 (FSS81) . PARITY cannot be computed by a sequence of poly-
nomial size, bounded depth circuits.

Theorem 5.1 interests us greatly because of the following relation between
bounded depth polynomial size circuits and first order sentences:

Theorem 6.2 Given a problem S and an integer d > 1 the following are equiv-
alent:

1. S is recognized by a sequence of depth d+1, polynomial size circuits, with
bounded fan-in at the bottom level.

2. There exists a new logical relation R C N® and o first order formula
@ inwhich R occurs such that ¢ expresses S. The formula ¢ contains d
alternating blocks of quantifiers.

Proof (1 = 2): We may assume that the similarity type of S is 7 = (M (-))
consisting of a single monadic predicate. Thus to a first order formula an input
of size n is a structure A = ({0...n — 1}, M 4). To a boolean circuit the same
input is the string of n boolean variables ay ... a,, where (a; =1) < i € M4.

Suppose that (1) holds and that the circuits Cy,Ca,... accepting S have
depth d + 1 and size at most n* and that their bottom level has fan-in at most
k. For definiteness assume that the C,’s top gate is an ‘and’ gate and that
their bottom gate is an ‘or’ gate. The other cases are analagous. We may also
assume — by repeating portions of the circuit if necessary — that the fan-in at
all levels of C,, besides the bottom is n*¥. We may label each of the n* edges
leaving a gate by a k digit integer in n-ary, z122... 2. In this way each ‘or’
gate v at the bottom level has a label z11219... 21%221 ... 24k Each such gate
in C), is a disjunction ¢; V ... V ¢ of literals: a; or @;. Define the relation Q
as follows: Q(m, 211, 212, ..., 24k, ¥y, J) holds iff j=0 (resp. j=m) and literal a,
(resp. @) occurs in the gate with label z11212...24x in Cyn. I know that this
is a mouthful, but the point is that the logical relation Q codes all the circuits
C1,Cs,... . Define the sentence

Y= Vzr...2163%221--- 226 ... V241 .-+ zdkEIy(Q(m, zZ,Y, 0) A M(y)
VR(m,Z,y,m) A ~M(y))

It follows that for any structure A, A = 4 if and only if A € S.

What remains to be shown is that we can remove the quantifier 3y so that our
formula has d alternating blocks of quantifiers as required. Define the relation
R as follows: For all m,z if only y1,...yr— satisly Q(m,z,y,0) VQ(m, z,y,m),
then choose w1, ... w. distinct from these y;’s (note that we may assume that
k < n). Let

R(m,z,-,-) = Q(m, Z,-,-) U {(m, z,ws,j) | i=1...c;5 =0,m}

17

and put

a= V.. .Vyk([gﬂ FY Ayt FyYs Ao AY—1 Fyr A(R(m, Z,91,0) V R(m, Z,y1,m))
A...N(R(m, 2 yx,0) V R(m, Z, yk,m))] — [(ﬁR(m,Z,yl,O) A=M(y1))
V(=R(m,2,90,m) A M)V ...V (<R(m, 2,50, m) A M(3))])

Finally let
¢ =Vzi1... 2163201 ... 228 ... V241 - .. zae(@)

Then ¢ is as required.

¢

(2 = 1): The converse is simpler. Assume (2). Then the sentence ¢ must
be in the following form:

Y= Vzll e ZlkEIZZI 4% dedl .. .de(’}/(R, M, 2))

where <y is quantifier free. By replacing each universal (resp. existential) block
of quantifiers by an ‘and’ (resp. ‘or’) gate, we can rewrite ¢ as a circuit of
depth d and fan-in n* in which each bottom gate whose label is the d - k tuple ¢
is assigned the value y(R, M,¢). The formula (R, M, ¢) for a fixed assignment
of ¢ is a boolean combination of formulas of the form M(c;;), i.e. a constant
size boolean combination of literals independant of n. Each such formula can
be written in disjunctive normal form if @4 is 3 and conjunctive normal form if
it’s V. The resulting circuit is polynomial size and depth d 4 1 with the bottom
level of bounded fan-in as required. |

Note that the role of the new logical relation R in the above proof is to
translate a nonuniform sequence of circuits into a single first order formula. A
strong lower bound on the expressive power of first order logic follows easily
from Theorems 6.1 and 6.2.

Corollary 6.3 For any k and any logical relation R on N*,
PARITY ¢ (FO+ R)
Sipser also proved the following hierarchy result for bounded depth circuits:

Theorem 6.4 (Si83) For all d > 1 there is a problem Sq accepted by polyno-
mial size, depth d circuits; but not by polynomial size depth d circuits which
have bounded fan-in at the bottom level.

The problem S4 used by Sipser can be expressed by the first order formula
E'IElV:ZZQ e Qd:EdL(321, e ,:Ed)

over structures with a single relation L of arity d. A corollary of the above
theorem is a very strong hierarchy result for first order logic:

Corollary 6.5 For all d > 1, for all k, and for any logical relation R on N¥,
(FO,d+ 1 alternations) € (FO + R,d alternations)

18

7

Conclusions

We have shown that the important complexity classes, C, have corresponding
languages, £, such that C consists of exactly those properties expressible in
L. Thus questions of complexity can all be translated to expressibility issues.
Separating complexity classes is equivalent to showing that certain of the above
operators are more powerful than others. Efficient algorithms may be obtained
simply by describing a problem in one of our languages. We have also demon-
strated a basic connection between boolean circuits and first order logic.
Open questions and work to be done include the following:

1.

More precise bounds on the arity of formulas needed to express properties
of a given complexity are needed.

We have introduced first order translations as a new kind of reduction.
Many open questions arise. It seems possible to prove that first order
translations between certain problems cannot exist. Be careful however:
showing that there is no first order translation from SAT to 1GAP would
prove that NP # L.

More knowledge is needed concerning the increase in expressibility gained
by alternating applications of operators and negation. Let TT¢ be first
order logic in which k alternations of TC and negation are allowed, starting
with TC. Thus for example, ©¥¢ = (FO+ pos TC) = NL. We conjecture
the following:

c C
(a): T¢ £ xTC¢ £
c c
(b): £$TC £ RSTC £
From a proof of any of the proper containments in (a) or (b) it would

follow that L # P. Thus we would be satisfied with the more modest
hierarchy results without s as a logical symbol:

(c): BT (w.0. 5) £ TIC(wo. s) # ...
(d): 27T%%(w.o. s) ; 25T (w.0. s) ;
We have shown that
S, Sym-L C (FO + STC) C BPL

It would be fascinating to know whether or not either of the above con-
tainments is proper.

Of course everyone would like to see a proof that some second order prop-
erty is not expressible in first order plus least fixed point. This would
imply that P # NP.

19

6. Finally, we hope that attractive versions of the above languages will be de-
veloped for actual use as programming and/or database query languages.

Acknowledgements My ideas for this paper have been clarified during many
helpful discussions with colleagues. Thanks in particular to: Sam Buss, Steve
Lucas, John Reif, Adi Shamir, and Mike Sipser.

References

[1] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of
Computer Algorithms, Addison- Wesley, 1974.

[2] A.V. Aho and J.D. Ullman, “Universality of Data Retrieval Languages,”
Sizth Symp. on Principles of Programming Languages, 1979, (110-117).

[3] M. Ajtai, “X} Formulae on Finite Structures,” Annals of Pure and Applied
Logic 24, 1983, (1-48).

[4] Aleliunas, Karp, Lipton, Lovdz, and Rackoff, “Random Walks, Universal
Traversal Sequences, and the Complexity of Maze Problems,” 20th IEEE
FOCS Symp., 1979, (218-233).

[6] Ashok Chandra and David Harel, “Structure and Complexity of Relational
Queries,” 21st Symp. on Foundations of Computer Science, 1980, (333-
347). Also appeared in JCSS 25, 1982, (99-128).

[6] Ashok Chandra, Larry Stockmeyer, Dexter Kozen, “Alternation,” JACM,
28, No. 1, (1981), 114-133.

[7] Ashok Chandra, Larry Stockmeyer and Uzi Vishkin, “Constant Depth Re-
ducibility,” SIAM J. of Comp. 13, No. 2, 1984, (423-439).

[8] H. Enderton, A Mathematical Introduction to Logic, Academic Press, 1972.

[9] Ron Fagin, “Generalized First-Order Spectra and Polynomial-Time Recog-
nizable Sets,” in Complezity of Computation, (ed. R. Karp), SIAM-AMS
Proc. 7, 1974, (27-41).

[10] M. Furst, J.B. Saxe, and M. Sipser, “Parity, Circuits, and the Polynomial-
Time Hierarchy,” 22nd IEEE FOCS Symp., 1981, (260-270).

[11] L. Goldschlager, “The Monotone and Planar Circuit Value Problems are
Log Space Complete for P,” SIGACT News, 9, No. 2, 1977.

[12] Etienne Grandjean, “The Spectra of First-Order Sentences and Computa-
tional Complexity,” SIAM J. of Comp. 13, No. 2, 1984, (356-373).

20

[13] Juris Hartmanis, Neil Immerman, and Stephen Mahaney, “One-Way Log
Tape Reductions,” 19th IEEE FOCS Symposium, 1978, (65-72).

[14] Neil Immerman, “Number of Quantifiers is Better than Number of Tape
Cells,” JCSS 22, No. 3, June 1981, 65-72.

[15] Neil Immerman, “Upper and Lower Bounds for First Order Expressibility,”
JCSS 25, No. 1 (1982), 76-98.

[16] Neil Immerman, “Relational Queries Computable in Polynomial Time,”
14th ACM STOC Symp., (1982), 147-152.

[17] Neil Immerman, “Languages Which Capture Complexity Classes,” 15th
ACM STOC Symp., (1983) 347-354.

[18] Harry Lewis and Christos H. Papadimitriou, “Symmetric Space Bounded
Computation,” Theoret. Comp. Sci., bf 19, No. 2, 1982, (161-188).

[19] L. Lovédsz and P. Gacs, “Some Remarks on Generalized Spectra,” Zeitchr.
f. math, Logik und Grundlagen d. Math, Bd. 23, 1977, (547-554).

[20] James Lynch, “Complexity Classes and Theories of Finite Models,” Math.
Sys. Theory 15, 1982, (127-144).

[21] John Reif, “Symmetric Complementation,” JACM 31, No. 2, April, 1984,
(401-421).

[22] W. Savitch, “Maze Recognizing Automata and Nondeterministic Tape
Complexity,” JCSS 7, 1973, (389-403).

[23] Michael Sipser, “Borel Sets and Circuit Complexity,” 15th Symp. on Theory
of Computation, 1983, (61-69).

[24] Larry Stockmeyer, “The Polynomial-Time Hierarchy,” Theoretical Comp.
Sei. 3, 1977,(1-22).

[25] S. Skyum and L.G. Valiant, “A Complexity Theory Based on Boolean
Algebra,” JACM, 32, No. 2, April, 1985, (484-502).

[26] Larry Stockmeyer and Uzi Vishkin, “Simulation of Parallel Random Access
Machines by Circuits,” SIAM J. of Comp. 13, No. 2, 1984, (409-422).

[27] G. Turdn, “On the Definability of Properties of Finite Graphs.”

[28] L.G. Valiant, “Reducibility By Algebraic Projections,” L’Enseignement
mathématique, T. XXVIII, 3-4, 1982, (253-268).

[29] M. Vardi, “Complexity of Relational Query Languages,” 14th Symposium
on Theory of Computation, 1982, (137-146).

21

[30] Andrew Chi-Chih Yao,“Separating the Polynomial-Time Hierarchy by Or-
acles,” 26th IEEE Symp. on Foundations of Comp. Sci., 1985, 1-10.

22

