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ABSTRACT In this paper we ask the question, “What must be added to
first-order logic plus least-fixed point to obtain exactly the polynomial-time
properties of unordered graphs?” We consider the languages £ consisting
of first-order logic restricted to & variables and Ci consisting of £ plus
“counting quantifiers”. We give efficient canonization algorithms for graphs
characterized by Cy or L. It follows from known results that all trees and
almost all graphs are characterized by Cs.

This paper appeared in Complezity Theory Retrospective, Alan Selman, ed.,
Springer-Verlag (1990), 59-81.

1.1 Introduction

In this paper we present a new and different approach to the graph canon-
ization and isomorphism problems. Our approach involves a combination
of complexity theory with mathematical logic. We consider first-order lan-
guages for describing graphs. We define what it means for a language to
characterize a set of graphs (Definition 1.4.2). We next define the languages
Ly, (resp. Cr) consisting of the formulas of first-order logic in which only k&
variables occur (resp. Ly plus ‘counting quantifiers’). We then study which
sets of graphs are characterized by certain L4’s and Cp’s. It follows by a
result of Babai and Kucera [4] that the language C2 characterizes almost
all graphs. We also show that Cy characterizes all trees. In Section 1.9 we
give a simple O[n* logn] step algorithm to test if two graphs G' and H on
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n vertices agree on all sentences in Ly, or Cg. If G is characterized by £y
(or Cx), a variant of this algorithm computes a canonical labeling for G in
the same time bound.

This line of research has two main goals. First, finding a language appro-
priate for graph canonization is a basic problem, central to the first author’s
work on descriptive computational complexity. We will explain this setting
in the next section.

A canonization algorithm for a set of graphs, S, gives a unique ordering
(canonical labeling) to each isomorphism class from S. Thus two graphs
from S are isomorphic if and only if they are identical in the canonical
ordering. The second goal of this work is to describe a simple and general
class of canonization algorithms. We hope that variants of these algorithms
will be powerful enough to provide simple canonical forms for all graphs;
and do so without resorting to the the high powered group theory needed
in the present, best graph isomorphism algorithms [27, 3].

1.2 Descriptive Complexity

In this section we discuss an alternate view of complexity in which the
complexity of the descriptions of problems is measured. This approach has
provided new insights and techniques to help us understand the standard
complexity notions: time, memory space, parallel time, number of proces-
sors. The motivations for the present paper come from Descriptive Com-
plexity. We can only sketch this area here. The interested reader should
consult [24] for a more extensive survey.

Given a property, S, one can discuss the computational complexity of
checking whether or not an input satisfies S. One can also ask, “What
is the complexity of expressing the property S?” It is natural that these
two questions are related. However, it is startling how closely tied they are
when the second question refers to expressing the property in first-order
logic. We will now describe the first-order languages in detail. Next we will
state some facts relating descriptive and computational complexity.

FIRST-ORDER LOGIC

In this paper we will confine our attention to graphs and properties of
graphs. Thus when we mention complexity classes P, NP, etc. we will really
be refering to those problems of ordered graphs that are contained in P, NP,
etc. (If you want to know why the word “ordered” was included in the
previous sentence, please read on. One of the main concerns of this paper
is how to remove the need to order the vertices of graphs.)

For our purposes, a graph will be defined as a finite logical structure,
G = (V,E). V is the universe (the vertices); and E is a binary relation
on V (the edges). As an example, the undirected graph, G1 = (W4, E1),
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FIGURE 1.1. An Undirected Graph

pictured in Figure 1 has vertex set V3 = {0,1,2,3,4}, and edge relation
E, = {(0,3),(0,4),(1,2),(1,3),...,(3,2),(3,4)} consisting of 12 pairs cor-
responding to the six undirected edges. By convention, we will assume that
all structures referred to in this paper have universe, {0,1,...,n — 1} for
some natural number n.

The first-order language of graph theory is built up in the usual way
from the variables, z1,zs,..., the relations symbols, E and =, the logi-
cal connectives, A,V,,—, and the quantifiers, V and 3. The quantifiers
range over the vertices of the graph in question. For example consider the
following first-order sentence:

Y= V:ny[E(a:,y) — E(y,z) Az # y]

@ says that G is undirected and loop free. Unless we specifically say other-
wise, we will assume that all graphs, G, in this paper satisfy ¢, in symbols:
G E .

It is useful to consider an apparently® more general set of structures.
The first-order language of colored graphs consists of the addition of a
countable set of unary relations {Cy,C5,...} to the first-order language
of graphs. Define a colored graph to be a graph that interprets these new
unary relations so that all but finitely many of the predicates are false at
each vertex. These unary relations may be thought of as colorings of the
vertices. (A vertex of a colored graph may satisfy zero, one, or several of
the color relations. However, we will say that two vertices are the same
color iff they satisfy the same set of color relations. Thus, by increasing
the number of color relations we may assume that each vertex satisfies a
unique color relation.)

8 Colorings can be simulated in uncolored graphs by attaching gadgets. For
example, a colored graph G with colors green and yellow can be modelled as a
graph G' with some auxilliary vertices so that in G' each vertex v from G is now
connected to either a triangle, or a square, or a pentagon, or a hexagon, according
as v is green, yellow, green and yellow, neither green nor yellow. All mention of
color predicates in this paper can be removed in this way.
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RESULTS FROM DESCRIPTIVE COMPLEXITY

The ordering 0 < 1 < --- < n — 1 of the vertices of a graph is irrelevant to
a “graph property”. Unfortunately however, it is impossible to present an
unordered graph to a computer. The vertices and edges must be presented
in some order. Furthermore, many algorithms compute graph properties
by visiting the vertices of the graph in some order which depends on this
arbitrary ordering.

Let FO(<) denote the first-order language of ordered graphs. This lan-
guage includes the logical relation < which must be interpreted as the usual
ordering on the vertices, V = {0,1,...,n — 1}. We will see in Fact 1.2.8
that FO(<) is contained in CRAM][1] — the set of properties that can be
checked by a concurrent, parallel, random access machine in constant time,
using polynomially many processors.

In order to express a richer class of problems we consider uniform* se-
quences of first-order sentences, {‘Pi}ieNv where the sentence ¢, expresses
the property in question for graphs with at most n vertices.

Let FO(<)[t(n)] — VAR[v(n)] be the set of problems expressible by a
uniform sequence of first-order sentences such that the n'® sentence has
length O[t(n)] and uses at most v(n) distinct variables. The following fact
says that the set of polynomial-time recognizable properties of ordered
graphs is equal to the set of properties expressible by uniform sequences
of first-order sentences of polynomial length using a bounded number of
distinct variables.

Fact 1.2.1 ([18])
P = D FO(<)[n*] - VAR[k]
k=1

The Least Fixed Point (LFP) operator has long been used by logicians
to formalize the power to define new relations by induction, cf. [28]. In [19]
and in [31] it is shown that the uniform sequence of formulas in Fact 1.2.1
can be represented by a single use of LFP applied to a first-order formula.
Thus,

Fact 1.2.2

P = FO(L,LFP) = [j FO(<)[n*] - VAR[K]

“The uniformity in question can be purely syntactical, i.e. the n'* sentences
of a FO[i(n)] property consists of a fixed block of quantifiers repeated ¢(n) times
followed by a fixed quantifier-free formula. Uniformity is discussed extensively in
[6]. In this paper the reader may think of uniform as meaning that the map from
n to p, is easily computable, e.g. in logspace.
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Example 1.2.3 The monotone circuit value problem is an example of a
complete problem for P which we will use to illustrate Fact 1.2.2, [13].
Instances of this problem consist of boolean circuits with only “and” and
“or” gates and a unique output gate whose value as determined by the
inputs is one.

We can code the monotone circuit value problem as a colored, directed
graph with colors 7', A, R as follows: inputs are colored True if they are on;
other vertices are colored And if they are “and” gates; otherwise they are
“or” gates. The unique output gate is colored Root. The obvious inductive
definition of circuit value can be written in (FO + LFP) as follows:

W(Via) = T(2) V[ @)(BEy) AV ()

A (A(z) — (Vy)(BE(z,y) — V(y)))]

The intuitive meaning of V(z) is that the value of node z is one. Thus
V() is true if  is an input that is on, or if  is an “or” gate and there
exists a gate y such that V(y) and y is an input to =, or if  is an “and”
gate having at least one input, and all of its inputs, y, satisfy V(y).

Fix a graph, C. The formula ¢(V, ) induces an operator ¢ from unary
relations on the vertices of C' to unary relations on the vertices of C as
follows:

vo(R) = {2 | CEY(R,2)}
Furthermore, the correct Value relation on the circuit C' is the least fixed
point of ¥ ¢, i.e. the smallest unary relation V' such that ¥c(V) = V. Use
the notation (LFP ¢(V,z)) to denote this least fixed point.

Let (3'z)a (there exists a unique x such that «) be an abbreviation for
the formula,

(3z)(a(z) A (Vy)(aly) — y = z))

The circuit value problem can now be expressed as follows:
(Blw)(R(w)) A (Fw)(R(w) A (LFP$(V, 2))(w))
O

A particular kind of inductive operator that is worth studying on its own
is the transitive closure operator (TC) introduced in [20]. Let ¢(z,y) be
any binary relation on k-tuples. Then (TC ¢(Z, 7)) denotes the reflexive,
transitive closure of ¢. The following was proved in [20] with the finishing
touch proved in [21].

Fact 1.2.4

FO(<,TC) = NSPACE[log 7]
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Example 1.2.5 Consider the following complete problem for NSPACE[log n].
The GAP problem consists of the set of directed graphs having a unique
vertex colored S and a unique vertex colored T and such that there is a
path from the S vertex to the 1" vertex. It is obvious how to express GAP
in (FO + TC):

(3e)(S(2)) A (F2)(T(2)) A (3st)(S(s) AT(2) A (TC E(z,3))(2, 1))
O

It is interesting to examine the relationship between the number of vari-
ables needed to describe a problem, and the computational complexity of
the problem. Let FO[t(n)]— VARJ[v] be the restriction of FO[t(n)] to sen-
tences with at most v distinct variables. Then the following bounds can be
derived from the proof of Fact 1.2.1 in [18]:

Fact 1.2.6 [18]
DTIMEn*] C FO(L)[n*]-VAR[k + 3] € DTIME[n****]

Thus the DTIME[n*] properties of ordered graphs are roughly the prop-
erties expressible by first-order sentences with k variables and length n*.
Obviously this is very rough. A closer relationship between machine com-
plexity and first-order expressibility is obtained if one takes into account
the built in parallelism of quantifiers.

Let CRAM[t(n)]-PROC[p(n)] be the set of problems accepted by a concurrent-
read, concurrent-write, parallel random access machine (CRAM) in paral-
lel time O[t(n)] using O[p(n)] processors. In order to get a precise rela-
tionship with the CRAM model when ¢(n) < logn it was necessary to
add another logical relation to FO. Since variables range over the universe
{0,1,...,n — 1} they may be thought of as logn bit numbers. Let the re-
lations BIT(z,y) be true just if the z*® bit in the binary expansion of y is
a one. In [22] it is shown that FO(<, BIT)[t(n)]— VARJ[OI1]] is exactly the
set of properties checkable by a CRAM in parallel time O[¢t(n)] using poly-
nomially many processors. (In fact, FO(<,BIT)[¢(n)]— VAR[v] corresponds
to CRAM-TIME[¢(n)] using roughly n¥ processors.)

Fact 1.2.7 For all t(n),
FO(<, BIT)[t(n)]-VAR[O[1]] = CRAM][t(n)]-PROC[nC1]

In particular, we have that the first-order properties are those checkable
in constant time by a CRAM using polynomially many processors,

Fact 1.2.8

FO(<,BIT) = CRAM][1]-PROC[nCY]



1. Describing Graphs: a First-Order Approach to Graph Canonization 7

1.3 Properties of (Unordered) Graphs

Facts 1.2.2 and 1.2.4 give natural languages expressing respectively the
polynomial-time and nondeterministic logspace properties of ordered graphs.
When the ordering is not present, it is possible to prove nearly optimal up-
per and lower bounds on the number of quantifiers and variables needed to
express various properties in first-order logic.

For example, in [18] the graphs Yj, and Ny are constructed. These graphs
have the property that Y has a complete subgraph on k vertices, but Ny
does not. However using Ehrenfeucht-Fraisse games (cf. Section 1.6) one can
show that Y; and N, agree on all sentences with k— 1 variables but without
ordering. It thus follows that k variables are necessary and sufficient to
express the existence of a complete subgraph of size k. If these bounds
applied to the languages with ordering they would imply that P # NP.

In [17] there is a similar construction of a sequence of pairs of graphs
which differ on a polynomial-time complete property, but agree on all
sentences of poly-logarithmic length without ordering. If this result went
through with the ordering it would follow that NC # P, and in particular
that NSPACE(log n] is not equal to P.

The reason these arguments do not go through with ordering is as follows.
For any constant ¢, there is a very simple formula® with ordering, a.(z),
that holds just for z equal to the ¢t vertex. It follows that whenever two
graphs agree on all simple sentences with ordering, they are equal.

It is of great interest to understand the role of ordering and if possible
to replace the ordering with a more benign construction. Furthermore,
the most basic problem on which to study the role of ordering is graph
isomorphism. If two graphs differ on any property they are certainly not
isomorphic!.

Let a graph property be an order independent property of ordered graphs.
One can ask the question,

Question 1.3.1 Is there a natural language for the polynomial-time graph
properties?

Gurevich has conjectured that the answer to Question 1.3.1 is, “No,”
[14]. An affirmative answer to this question would imply a similar answer
to the more basic,

Question 1.3.2 Is there a recursively enumerable listing of all polynomial-
time graph properties?

Questions 1.3.1 and 1.3.2 are important in various settings. It is well

®More precisely, the formula has 3 variables and length O[logn].
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known that graphs are the most general logical structures.® Thus these
questions are equivalent to the corresponding questions concerning rela-
tional databases: i.e. give a database query language for expressing exactly
the polynomial-time queries that are independent of the arbitrary ordering
of tuples, cf. [9]. We believe that the answers to Questions 1.3.1 and 1.3.2
are both, “Yes,” and we ask the more practical,

Question 1.3.3 What must we add to first-order logic after taking out
the ordering so that Fact 1.2.2 remains true? Put another way, describe a
language L that expresses exactly the polynomial-time graph properties.

The ordering relation is crucial for simulating computation: a Turing ma-
chine will be given an input graph in some order. It will visit the vertices
of the graph using this ordering; and it is difficult to see how to simu-
late an arbitrary computation without reference to this ordering. It is well
known that first-order logic without ordering is not strong enough to ex-
press computation. Let EVEN be the set of graphs with an even number
of vertices. We will show in Proposition 1.6.4 that the property EVEN
requires n variables for graphs with n vertices. (For a property to be ex-
pressible in FO+LFP a necessary condition is that it is expressible in a
constant number of variables independent of n.)

In view of Proposition 1.6.4, it is natural to add the ability to count to
first-order logic without ordering. This is formalized in Section 1.7, where
we define the languages Cj, of first-order logic restricted to k distinct vari-
ables, plus “counting quantifiers”. We show in Corollary 1.8.5 that the very
simple language Cy suffices to give unique descriptions and thus efficient
canonical forms for almost all graphs.

For a long time we suspected that first-order logic plus least fixed point
and counting was enough to express all polynomial-time graph properties.
It would have immediately followed that for each polynomial-time graph
property @ there would be a fixed k& such that for all n, the property
Q restricted to graphs of size n is expressible in Cg. In particular, if our
suspicion were right, then for every set of graphs S admitting a polynomial-
time graph isomorphism algorithm, there would exist a fixed k such that Cy
characterizes S (to be defined later). This implies that for any two graphs
G and H from S, if G and H are Cj equivalent (i.e. G and H agree on
all sentences from Cj) then they are isomorphic. For example, the sets
of graphs of bounded color class size (defined below) admit polynomial-
time graph isomorphism algorithms. We show in Proposition 1.5.3 that the
language C3 characterizes graphs of color class size 3. However, the following
recent result shows in a strong way that no C; characterizes the graphs of

®More precisely, every first-order language may be interpreted in the first-
order theory of graphs. We would like to know to whom this is due, and where
it appears in print.
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color class size 4. Thus our suspicion was wrong: first-order logic plus least
fixed point and counting does not express all the polynomial-time graph
properties.

Fact 1.3.4 ([8]) There exists a sequence of pairs of non-isomorphic graphs
{Gn, H,} such that G,, and H, have O[n] vertices, color class size 4, and
admit linear time and logspace canonization algorithms. However, G, and
H,, are C,, equivalent.

1.4 Characterization of Graphs

Throughout this paper we will be considering various languages for describ-
ing colored graphs. We are interested in knowing when a language suffices
to characterize a particular graph, or class of graphs. Some of the following
definitions and notation are adapted from [25].

Definition 1.4.1 For a given language £ we say that the graphs G and H
are L-equivalent (G =, H) iff for all sentences ¢ € £,

GEy © HEyp.

A partial veluation over a graph G = (V,E) is a partial function u :
{z1...} — V. The domain of u is denoted du. Call a (k-)configuration
over G, H a pair (u,v) where u is a partial valuation over G and v is a
partial valuation over H such that du = 9v(C {z1,...zx}). If (u,v) is a
k-configuration over G and H, we say that G,v and H,v are L-equivalent
(G,u =, H,v) iff for all formula ¢ € £, with free variables from z1,...,zs,

GuEy & HulFgp.
O

Using the concept of £-equivalence, we can now define what it means for
the language £ to characterize a set of graphs.

Definition 1.4.2 We say that £ k-characterizes G iff for all graphs H, and
for all k-configurations (u,v) over G, H, if G,u and H,v are L-equivalent
then there is an isomorphism from G to H extending the correspondence
given by (u,v). In symbols,

(Gu=r Hv) = (3fdvou')(f:G> H).

We say that £ characterizes G iff £ 1-characterizes G, for all colorings G
of G. For a set of graphs S, we say that £ characterizes S iff for all G € S,
L characterizes G. O
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Proposition 1.4.3 Let GRAPHS be the set of all finite, colored graphs,
and let FO be the first-order language of colored graphs. Then FO charac-
terizes GRAPHS.

Proof Let G € GRAPHS have n vertices, and let w be a partial valuation
over G. For simplicity, suppose that du = {z1,..., 2}, and u(z1),...,u(zk)
are all distinct. Let ¢1,...,9, be a numbering of G’s vertices so that
g; = u(xz;), for 1 <4 < k. Let r be a subscript greater than that of any
color relation holding in G. It is simple to write a first-order formula, x..,
with n+1—k quantifiers that says (a) there exist zx11 ...z, such that the
x;’s are all distinct; (b) any other vertex is equal to one of the z,’s; (c) each
pair (z;,z;) has an edge or not exactly as the edge (g;,g;) occurs or not
in G; and finally (d) for each z;, i < n, and each Cj, j < r, Cj(z;) holds
exactly if C;(g;) holds in G. Let H be any graph, and let 7 be greater than
the index of any color relation holding in H. Let v be any valuation over
H such that H,v satisfies y,. Let v’ be an extension of v to a valuation
over H with v’ = {z;...x,}, making the quantifier-free part of x, true.
Then clearly f : g; — v’(z;) is the desired isomorphism. O

Proposition 1.4.3 leads to an inefficient graph canonization algorithm. In
the next section, we consider languages weaker than full first-order logic,
in order to obtain efficient algorithms.

1.5 The Language L

Define L5 to be the set of first-order formulas, ¢, such that the quantified
variables in ¢ are a subset of x1,22,...,2z,. Note that variables in first-
order formulas are similar to variables in programs: they can be reused
(i.e. requantified). For example consider the following sentence in L.

’g/) = V$1E|$Q (E($1,$2)/\E|$1 [ﬂE(wl,wg)])

The sentence, 1, says that every vertex is adjacent to some vertex which is
itself not adjacent to every vertex. As an example, the graph from Figure 1
satisfies ¥. Note that the outermost quantifier, Va1, refers only to the free
occurrence of z; within its scope.

In this section we will consider the question, “Which graphs are charac-
terized by L?” Define a color class to be the set of vertices which satisfy
a particular set of color relations and no others. The color class size of a
graph is defined to be the cardinality of the largest color class.

Proposition 1.5.1 Lo characterizes the colored graphs with color class
size one.
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Proof This is clear. In £5 we can assert that each color class is of size
at most one, e.g. Vz1Vas (B(z1) A B(z2) — x1 = z2). We can also say
which edges exist, e.g. the blue vertex is connected to the red vertex. Thus
if graph G has color class size one, and if G,¢g =, H,h then there is an
isomorphism f: G — H. Since f preserves colors, f(g) = h. O

Next we consider the much more powerful language £3. In this language
we can express the existence of paths.

Proposition 1.5.2 For any natural number r, the formula P.(x1,z2), mean-
ing that there is a path of length at most r from 1 to x2, can be written in
Ls.

Proof By induction. Py(z1,z2) is E(z1,22) V 1 = 2. Inductively,
PS_H(QZl,QZz) = E|$3 (Ps(asl,azg) /\Pt(xg,xz))

Note that a maximum of 3 distinct variables is used. 0

We will see in Section 1.6 that there are graphs with color class size 2
that cannot be distinguished by a sentence in £5. The ability of L3 to talk
about path lengths makes it slightly less trivial:

Proposition 1.5.3 L3 characterizes graphs of color class size at most
three.

Proof Let G and H be colored graphs, let g and & be vertices of G and H,
and suppose that G, g =, H, h. We will build an isomorphism f: G — H,
such that f(g) = h.

We first refine the colorings of the vertices of G and H to correspond to
L3 types. For A, B € {G, H}, vertices a € A and b € B will have the same
Ly-refined color iff they satisfy the same L formulas, i.e.

{vele | AE I} ={velr | BEy}T.

The following lemma says that we may assume that the color types of G
and H are already refined.

Lemma 1.5.4 Let the finite, colored graphs G and H be Ly, equivalent and
let G' and H' be the Ly color refinements of G and H. Then G' and H'
are Ly equivalent.

"The notation o® denotes the formula a with the term ¢ substituted for the
variable z.
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Proof Since G and H are finite, each refined color class C! is determined
by the conjunction v¢; € L, of a finite set of formulas. That is for all 7, G’
and H' both satisfy
Vo1(Ci(@1) < ¥i) -

Note that 9; has z; as its free variable. Thus any occurrence of C}(z;) may
be replaced by the equivalent ;. Similarly any occurrence of Cj(z;),j =
2,...,k may be replaced by .’ where 7; is a permutation of {z1,...,zs}
sending z1 to z,;. Now for any formula a € £3(C1,C5,...) we may replace
each occurrence of Cl(z;) by %.° to obtain an equivalent formula o/ €
L3(Cy,...C). |

By the above lemma we may assume that the color classes of G and H
correspond exactly to the L3 types of the vertices. Let R and B be two
colors and consider the edges between red and blue verticesin G or H. Note
that this is a regular bipartite graph because we can express in L3 that a
red vertex has 0,1, 2, or all blue vertices as neighbors. Note also that for
color classes of size at most 3, the only regular bipartite graphs representing
nontrivial relationships between vertices are the 1:1 correspondence graphs
and their complements. Let us then change such bipartite graphs as follows:
replace the complete bipartite graph by its complement, and replace the
graphs of degree two whose complements are 1:1 correspondence graphs by
these complements. Note that when we perform these changes on G and
H the new graphs are still £3 equivalent, and they are isomorphic now iff
they were before.

Let the color valence of a graph be the maximum number of edges from
any vertex to vertices of a fixed color. We have reduced the problem to
constructing an isomorphism between L3-equivalent graphs G and H when
these graphs have color valence one. We construct the isomorphism f as
follows: Begin by letting f(g) = h. Next, while there is a vertex ¢; in the
domain of f with a (unique) neighbor g, of color C; not yet in the domain
of f, do the following. Let hy be the neighbor of f(g1) of color C;, and let
f(g2) = ho.

We claim that the function f constructed above is an isomorphism from
G to H. If not, then it must be the case that there is a loop of a certain
color sequence in one of the graphs but not the other. For example, suppose
that we chose g1,92,...,9; and hy, ha,..., h; so that g1 and hy are color
C1, and for ¢ < 7, ¢giy1 and h;qq are the unique neighbors of ¢g; and h,,
respectively, of color Cj ;. However, suppose now that the neighbor of h;
of color C is hy, but that g; is not a neighbor of g;. In this case there is a
certain easily describable loop in H but not in G. That means that G and
H disagree on the following £3 formula:

(C1($1) A sz(CQ(xz)/\E($1,$2)/\3$3(03($3)/\E(l:g,i:g)/\

A Bza(Ca(zz) A Bz, z2) A ... /\szi(Cj(a:i)/\E(aci,:zzl))...)>
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Since G =;, H they must agree on the above formula. Therefore f is an
isomorphism as claimed. m]

In the next section we describe some games that may be used to prove
lower bounds on the expressibility of the £;’s. We will show as an example
using these games that £9 does not suffice to characterize graphs of color
class size 2. Recently it has been shown (cf. Fact 1.3.4) that no fixed Ly
suffices to characterize the graphs of color class size 4.

1.6 Lower Bounds

In this section we will show that L, is not expressive enough to characterize
graphs efficiently. We will use the combinatorial games of Ehrenfeucht and
Fraisse [10, 12] as modified for £ (see [18, 7, 29]). All of the results in this
section could be proved by induction on the complexity of the sentences in
question; but, we find that the games offer more intuitive arguments.

Let G and H be two graphs, and let £ be a natural number. Define the
Ly game on G and H as follows. There are two players, and there are k
pairs of pebbles, g1, h1,..., gk, hr. On each move, Player I picks up any of
the pebbles and he places it on a vertex of one of the graphs. (Say he picks
up g;. He must then place it on a vertex from G.) Player II then picks up
the corresponding pebble, (If Player I chose g; then she must choose h;),
and places it on a vertex of the appropriate graph (H in this case).

Let p;(r) be the vertex on which pebble p; is sitting just after move
r. Then we say Player I wins the game at move r if the map that takes
gi(r) to hi(r),i=1,...,k, is not an isomorphism of the induced & vertex
subgraphs. Note that if the graphs are colored then an isomorphism must
preserve color as well as edges. Thus Player II has a winning strategy for
the £ game just if she can always find matching points to preserve the
isomorphism. Player I is trying to point out a difference between the two
graphs and Player II is trying to keep them looking the same.

As an example consider the £» game on the graphs G and H shown in
Figure 2.

Suppose that Player I’s first move is to place g; on a red vertex in G.
Player II may answer by putting h; on either of the red vertices in H.
Now suppose Player I puts hs on an adjacent yellow vertex in H. Player
IT has a response because in G, ¢1(1) also has an adjacent yellow vertex.
The reader should convince himself or herself that in fact Player II has
a winning strategy for the £5 game on the given G' and H. The relevant
theorem concerning the relationship between this game and the matter at
hand is:

Fact 1.6.1 [18, Theorem C.1] Let (u,v) be a k-configuration over G, H.
Player II has a winning strategy for the Ly game on (u,v) if and only if
G,u=g, H,v.
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G H

FIGURE 1.2. The £ Game

Note that we have the following
Corollary 1.6.2 Ly does not characterize graphs of color class size 2.

We will prove in Section 1.9 that testing whether G =, H can be done
in time O[n* log n]. Furthermore, if L), characterizes a set S of graphs, then
canonical forms for the graphs in S may be computed in this same time
bound.

It is interesting to note that not only does no £, characterize all graphs,
but almost all graphs are indistinguishable in L. Thus if two graphs of size
n > k are chosen at random they will almost certainly be Ly equivalent,
but not isomorphic.

Fact 1.6.3 [18],cf [11] Fiz k and let Pr,(G =, H) be the probability that
two randomly chosen graphs of size n are Ly equivalent. Then

lim [Prn(G = H)} =1
n—oo

Not only does L not characterize most graphs, it is not strong enough
to express counting:

Proposition 1.6.4 Let EVEN be the set of graphs with an even number
of vertices. This property is not expressible in L, for graphs with n or more
vertices. Furthermore, L, does not characterize the set of totally discon-
nected graph on n vertices.

Proof Let D, be the uncolored graph with n vertices and no edges. We
claim that D,, =, Dp4+1. The following is a winning strategy for Player
IT in the n-pebble game on D,, and D,;. Player I’s moves are answered
preserving distinctness. That is, if Player I places pebble 2 on a vertex
already occupied by pebble j, then Player II does the same. If Player I
places pebble ¢ on a vertex not occupied by any other pebbles, then Player
IT does the same. This is possible, because there are n vertices, and only
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n — 1 other pebbles. Since there are no edges, the resulting maps are always
isomorphisms. a

In the next section we increase the expressive power of the £¢’s by adding
the ability to count.

1.7 Counting Quantifiers

In this section we add counting quantifiers to the languages Ly, thus ob-
taining the new languages Cy. For each positive integer, ¢, we include the
quantifier, (i z). The meaning of “(317z1)p(z1)”, for example, is that
there exist at least 17 vertices such that ¢. We will sometimes also use the
quantifiers, (3% z), meaning that there exists exactly ¢ a’s:

(Fiz)p(z) = (Fiz)e(z) A ~(Fi+ 1z)p(z)

Example 1.7.1 As our first example, note that the following sentence in
C» characterizes the graph D,, of Proposition 1.6.4:

@nz)(z=z) A (V2)(vy)(~E(z,9)).
O

Note that every sentence in Cj is equivalent to an ordinary first-order
sentence with perhaps many more variables and quantifiers. We will see
that testing Cj equivalence is no harder than testing £ equivalence — the
idea is that to test the truth of V& or 3z we have to consider all possible
2’s anyway, and it doesn’t cost more to count them. In Corollary 1.9.7
we show that Cj equivalence can be tested in time O[n* logn]. Similarly,
graphs characterized by Cy can be given canonical labelings in the same
time.

The following notation is useful.

Definition 1.7.2 Let ¥ be a set of finite graphs. Define var(X,n) (resp.
ve(X,m)) to be the minimum k such that £ (resp. Cr) characterizes the
graphs in ¥ with at most n vertices. Let var(n) = var(GRAPHS,n) and
ve(n) = ve(GRAPHS,n). When var(2,n) or ve(X,n) is bounded, we write
var(¥) = max,var(X,n), and v¢(X) = max,ve(X, n). o

For example, by combining various results obtained so far we know that
var(GRAPHS, n) = n + 1, var(CC1) = 2, and var(CC2) = var(CC3) = 3.
Here we are letting C'Ck be the set of color class k& graphs.

We will now examine C, attempting to compute vc(S) for various sets
of graphs, S. A modification of the £, game provides a combinatorial tool
for analyzing the expressive power of Cx. Given a pair of graphs define the
Cr game on G and H as follows: Just like the £, game we have two players
and k pairs of pebbles. Now however each move has two steps.
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1. Player I picks up a pebble (say g¢;). He then chooses a set, A, of
vertices from one of the graphs (in this case G). Now Player II must
answer with a set, B, of vertices from the other graph. B must have
the same cardinality as A.

2. Player I places h; on some vertex b € B. Player II answers by placing
g; on some a € A.

The definition for winning is as before. Note that what is going on in the
two step move is that Player I is asserting that there exist |A| vertices in G
with a certain property. Player II answers that there are the same number
of such vertices in H. A straight forward extension of the proof of Fact 3.1
shows that this game does indeed capture expressibility in Cp.

Theorem 1.7.3 Let (u,v) be a k-configuration over G, H. Player II has a
winning strategy for the Ci, game on (u,v) if and only if G,u =¢, H,v.

Consider the following example of the C; game.

Proposition 1.7.4 Player II has o win for the Co game on the graphs
pictured in Figure 2. Thus ve(C'C2) > 2.

Proof Player II's winning strategy is as follows: She matches the first
vertex chosen by Player I with any vertex of the same color. Now suppose
that at any point in the game, the first pair of pebbles are placed on vertices
¢1 and A1, both vertices of the same color, say red. Suppose that Player I’s
next move involves the other pair of pebbles. There is a 1:1 correspondence
between the vertices in G and H as follows:

91 — hy
blue vertex adjacent to ¢; — blue vertex adjacent to h;
yellow vertex adjacent to g; — yellow vertex adjacent to hy

red vertex not adjacent to ¢; — red vertex not adjacent to hp
yellow vertex not adjacent to g; — yellow vertex not adjacent to hq
blue vertex not adjacent to g1 +— blue vertex not adjacent to Ay

If Player I chooses a set A, then Player II chooses the set B to be the
corresponding set of vertices under the above map. Whichever vertex Player
I then picks from B, Player II will choose the corresponding vertex in A.
Thus the chosen pair of vertices will be the same color and either both
adjacent, or both not adjacent to the other chosen pair. Thus Player II can
always preserve the partial isomorphism. a

1.8 Vertex Refinement Corresponds to Cs

It turns out that the expressive power of Cs is characterized by the well
known method of vertex refinement (see [2, 16]). Let G = (V, E,C4,...,C,)
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be a colored graph in which every vertex statisfies exactly one color relation.
Let f:V — {1...n} be given by f(v) =i iff v € C;. We then define f’,
the refinement of f as follows: The new color of each vertex, v, is defined
to be the following tuple:

(f(w),n1,...,np)

where n; is the number of vertices of color ¢ that v is adjacent to. We sort
these new colors lexicographically and assign f’(v) to be the number of
the new color class which v inhabits. Thus two vertices are in the same
new color class just if they were in the same old color class, and they were
adjacent to the same number of vertices of each color. We keep refining the
coloring until at some level f*) = f(*+1) We let f = f*) and call f the
stable refinement of f.

The equivalence of stable colorings and Cy equivalence is summed up by
the following

Theorem 1.8.1 Given a colored graph, G = (V, E,Cy,...,C}), with two
vertices, g1 and go, the following are equivalent:

1. f(g1) = f(g2)
2. For all (z1) € C2, G = ¢(91) iff G E ¢(g2)-

3. Player II wins the Co game on two copies of G, with pebble pair num-
ber 1 initially placed on g1 and g» respectively.

Proof By induction on r we show that the following are equivalent:

L f7(g1) = £ (g2)
2. For all ¢(z1) € Cs of quantifier depth 7, G = ¢(g91) i G = ¢(g2).

3. Player II wins the » move Cy game on two copies of G, with pebble
pair number 1 initially placed on g; and g, respectively.

The base case is by definition. f(®(g1) = f(g1) = f(g2) iff g1 and go
satisfy the same initial color predicate. This is true if and only if ¢; and
g2 satisfy all the same quantifier free formulas. This in turn is true if and
only if the map sending ¢; to g2 is a partial isomorphism. This last is the
definition of Player IT winning the 0 move game.

Assume that the equivalence holds for all g; and g» and for all » < m.

(-1 = =2) : Suppose that f(™(g;) # f(™(gs). There are two cases.
If f(m=Y(g;) # f™~V(gy) then by the inductive assumption there is a
quantifier depth m — 1 formula ¢ € C2 on which g; and g differ. Otherwise
it must be that ¢g; and g have a different number of neighbors of some
=1 color class i. Let N be the maximum of these two numbers. By
induction two vertices are in the same f(™~1) color class iff they agree on
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all quantifier depth m—1 Cs formulas. Since quantifier depth m —1 formulas
are closed under conjunction and the graphs in question are finite there is
a depth m — 1 9; € Ca such that for all g € G,

g =i & GE®@W)»

It follows that ¢; and ¢, differ on the formula:
(ANz2)(E (21, 22) A iz;) -

(2 = =3) : Suppose that G |F ¢§! but G | —pg?, for some ¢ € Cy
of quantifier depth m. If ¢ is a conjunction then g; and go must differ
on at least one of the conjuncts, so we may assume that ¢ is of the form
(INz2)9(x2). On the first move of the game Player I chooses the N vertices
v such that 9 (v)zl. Whatever Player 11 chooses as B there will be at least
one vertex vy such that G' = =3 (v2)gt. Player I puts his pebble number 2
on this v9. Player II must respond with some v; € A. The vertices vy, v2
now differ on a quantifier depth m — 1 formula. Thus by induction Player
IT loses the remaining m — 1 move game.

(1 = 3) : Suppose that f(™)(g;) = f(™(ga). It follows that g; and gs
have the same number of neighbors of each f(~1) color. Thus a 1:1 cor-
respondence exists between the vertices in the first copy of G and those in
the second preserving both the property of being adjacent to g; and the
fim=1 color. (Note that since we are considering two copies of the same
graph, if both copies have the same number of red neighbors of ¢g; then they
also both have the same number of red non-neighbors of g;.) It follows that
Player II can assure that after the first move the pair of vertices chosen
will be in the same f(™~1) color class. Thus by the induction hypothesis
Player II has a win for the remaining m — 1 move game. |

ALL TREES AND ALMOST ALL GRAPHS

Theorem 1.8.1 combined with some facts about stable colorings provide us
with several corollaries concerning graphs characterized by Cy. First, it is
well known that the set of finite trees is characterized by stable coloring
[1]. Thus:

Corollary 1.8.2 Let TREES be the set of finite trees. Then ve(TREES)
= 2.

It is interesting to compare Corollary 1.8.2 with the more complicated
situation in which counting is not present:

Fact 1.8.3 [25] Let T}, be the set of finite trees such that each node has at
most k children, and let Sy be the subset of Ty in which each non-leaf has
exactly k children. Then,
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1.
2 ifk=1
var(Tp) =¢ 3 if2<k<3
k ifk>3
2.
9 ifl<k<?
var(S) =< 3 if3<k<6

[k/2] if k> 6

Babai and Kucera have proved the following result about stable colorings
of random graphs:

Fact 1.8.4 [}] There exists a constant o < 1 such that if G is chosen
randomly from the set of all labeled graphs on n vertices then

Prob{G has two vertices of the same stable color} < a™ .

Corollary 1.8.5 Almost all finite graphs are characterized by Cs.

It is easy to see that Fact 1.8.4 fails for regular graphs: all regular graphs
of degree d on n vertices are Cy equivalent. More recently, Kucera has given
alinear algorithm for canonization of regular graphs of a given, fixed degree
[26]. It follows from his results that:

Corollary 1.8.6 For all d, and sufficiently large n, C3 characterizes more
than 1 — O[1/n] of the regular graphs of degree d on n vertices.

1.9 Equivalence and Canonization Algorithms

The stable coloring of a graph is computable in O[|E|logn] steps [16]. We
present the algorithm for completeness.

Algorithm 1.9.1 1. Place indices 1,...,r of initial color classes on list L.
2. While L # () do begin
3. For each vertex v adjacent to some color classes in L,
record how many neighbors of each such color class v has.
4. Sort these records to form new color classes.
5. Replace L with indices of all but the largest piece of each old class.

Theorem 1.9.2 Algorithm 1.9.1 computes the vertex refinement of a graph
G. It can be implemented to run in O[|E|logn] time on a RAM.
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Proof If we implement line 4 as a bucket sort then the amount of work in
performing an iteration of the while loop is proportional to the number of
edges traversed. Note that each time an edge is traversed, the color class of
it’s head is at most half of its previous size. Thus O[|E|log n] steps suffice.
O

Corollary 1.9.3 We can test if G =¢, H in O[|E|logn] steps, where |E|
is the number of edges in G.

Proof We compute the stable coloring of GUH. G and H are C; equivalent
iff each color class has the same number of vertices from each graph. O

As promised, we show how to modify the above algorithm to compute
canonical labelings of graphs characterized by Ca.

Theorem 1.9.4 Let S be a set of finite graphs characterized by Co. Then
canonical labelings for S are computable in O[|E|logn] steps.

Proof We modify Algorithm 1.9.1 as follows: When a stable coloring is
reached, if each vertex has a unique stable color, then a canonical labeling
is determined. Otherwise, let C; be the first color class of size greater than
one, and let g be a vertex of color C;. Make ¢g a new color, Cyeqp, add Creqy
to L and continue the refinement.

Suppose that G,g =¢, H,h. Let G’ and H' be the result of coloring
g and h ‘new’. Since C» characterizes S, G' and H' are isomorphic. It
follows that Cy equivalent graphs will result in the same canonical labeling.
Furthermore, the analysis of the revised algorithm is unchanged. O

We will next present the algorithm to test Cr4+1 equivalence for k£ > 2.
Define stable colorings of k tuples as follows: Initially we give each k tuple of
vertices from G a color according to its isomorphism type. That is (g1 ... gx)
has the same initial color as (hq ... hy), just if the map o : g; — h;, @ =
1...k is an isomorphism.

We next form the new color of (g1 ... gx) as the tuple:

<f(91---gk)»SORT{<f(9,92---7gk)7f(91,9793,---791c)»---af(917---79k1,9)> ‘ g€ G}>

That is the new color of a k-tuple is formed from the old color, as well as
from considering, for each vertex g, the old color of the & k-tuples resulting
from the substitution of ¢ into each possible place.

Theorem 1.9.5 A stable coloring of k tuples in an n vertex graph may be
computed in O[k*n*+1logn] steps.
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Proof This is a generalization of Algorithm 1.9.1. We must refine the
coloring for each color class, B;, of k-tuples. Each such refinement takes
O[kn] steps for each k-tuple in B;. Each of the n* k-tuples will have its
color class treated at most log(n*) times. ]

Theorem 1.9.6 Let G be a graph whose k—1 tuples of vertices are colored.
Let §,h € G*~1. The following are equivalent.

— =

1. f(g) = f(h)
2. For all p(z1... 25 1) € Cr, G = 0(7) iff G = ¢(h)

8. Player II wins the Ci, game on two copies of G with pebbles 1... k—1
initially placed on g1 ...gr—1 and hy ... hy_1 respectively.

Proof The proof is similar to that of Theorem 1.8.1. i

Corollary 1.9.7 Cj, equivalence may be tested in O[n* logn] steps. (If k
is allowed to vary with n this becomes O[k*n*logn].) Similarly, if S is
characterized by Cy, then canonical labelings for S may be computed in the
same time bound.

1.10 Conclusions

We have begun a study of which sets of graphs are characterized by the
languages L and C. For such sets of graphs we have given simple and effi-
cient canonization algorithms. General directions for further study include
the following:

1. There are many interesting questions concerning the values var(S)
and vc(S) for various classes of graphs S. In particular it would be
very interesting to determine vc(Planar Graphs) and ve(Genus k)
graphs.

2. Question 1.3.3 in its new form, “What must we add to first-order logic
with fixed point and counting in order to obtain all polynomial-time
graph properties” deserves considerable further study, cf. [8].

3. Fact 1.3.4 implies that (FO + LFP + counting) does not even in-
clude all of DSPACE[logn]. It would be very interesting, and per-
haps more tractable to answer question 2 for other classes such as
NSPACE]log n].

Acknowledgements: Thanks to Steven Lindell for suggesting some improve-
ments to this paper.
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