
Effectively-Propositional Reasoning about Reachability
in Linked Data Structures ?

Shachar Itzhaky1, Anindya Banerjee2, Neil Immerman3, Aleksandar Nanevski2, and
Mooly Sagiv1

1 Tel Aviv University, Tel Aviv, Israel
2 IMDEA Software Institute, Madrid, Spain

3 University of Massachusetts, Amherst, USA

Abstract. This paper proposes a novel method of harnessing existing SAT solvers
to verify reachability properties of programs that manipulate linked-list data struc-
tures. Such properties are essential for proving program termination, correctness
of data structure invariants, and other safety properties. Our solution is complete,
i.e., a SAT solver produces a counterexample whenever a program does not satisfy
its specification. This result is surprising since even first-order theorem provers
usually cannot deal with reachability in a complete way, because doing so re-
quires reasoning about transitive closure.
Our result is based on the following ideas: (1) Programmers must write asser-
tions in a restricted logic without quantifier alternation or function symbols. (2)
The correctness of many programs can be expressed in such restricted logics,
although we explain the tradeoffs. (3) Recent results in descriptive complexity
can be utilized to show that every program that manipulates potentially cyclic,
singly- and doubly-linked lists and that is annotated with assertions written in
this restricted logic, can be verified with a SAT solver.
We implemented a tool atop Z3 and used it to show the correctness of several
linked list programs.

1 Introduction

This paper shows that it is possible to reason about reachability between dynamically al-
located memory locations in potentially cyclic, singly-linked and doubly-linked lists us-
ing effectively-propositional reasoning. We present a novel method that can harness ex-
isting SAT solvers to verify reachability properties of programs that manipulate linked-
list data structures, and to produce a concrete counterexample whenever a program does
not satisfy its specification. This result is surprising because the natural specification of
such programs involves quantifiers, inductive definitions and transitive closure, thus
? Itzhaky and Sagiv were funded by the European Research Council under the European

Union’s Seventh Framework Program (FP7/2007-2013) / ERC grant agreement no. [321174-
VSSC] and by a grant from the Israel Science Foundation (652/11). Banerjee and Nanevski
were partially supported by by Spanish MINECO projects TIN2009-14599-C03-02 Desafios,
TIN2010-20639 Paran10, TIN2012-39391-C04-01 Strongsoft, EU NoE Project 256980 Nes-
sos, AMAROUT grant PCOFUND-GA-2008-229599, and Ramon y Cajal grant RYC-2010-
0743. Immerman was partially supported by NSF grant CCF 1115448.

precluding first-order, automatic theorem provers from dealing with reachability in a
complete way.

state
database-update //

query

��

state

query

��
qstate

query-update // qstate

Fig. 1. The view update problem. Queries
are expressed by formulas in a rich logic
with transitive closure, but query-update is
expressed essentially propositionally.

Two central observations underpin
our method. (i) In programs that manip-
ulate singly- and doubly-linked lists it
is possible to express the ‘next’ pointer
in terms of the reachability relation be-
tween list elements. This permits direct
use of recent results in descriptive com-
plexity [10]: we can maintain reachabil-
ity with respect to heap mutation in a pre-
cise manner. Moreover, we can axioma-
tize reachability using quantifier free for-
mulas. (ii) In order to handle statements
which traverse the heap, we allow veri-
fication conditions (VCs) with ∀∗∃∗ for-

mulas so that they can be discharged by SAT solvers (as we explain shortly). However,
we allow the programmer to only write assertions in a restricted fragment of FOL that
disallows formulas with quantifier alternations but allows reflexive transitive closure.
The main reason is that invariants occur both in the antecedent and in the consequent of
the VC for loops; thus the assertion language has to be closed under negation.

The appeal to descriptive complexity stems from the fact that recently it has been
applied to the view-update problem in databases. This problem has a pleasant parallel to
the heap reachability update problem we are considering. In the view-update problem,
the logical complexity of updating a query wrt. database modifications is lower than
computing the query for the updated database from scratch (depicted in Fig. 1). Indeed,
the latter uses formulas with transitive closure, while the former uses quantifier-free
formulas without transitive closure. In our setting, we compute reachability relations
instead of queries. We exploit the fact that the logical complexity of adapting the (old)
reachability relation to the updated heap is lower than computing the new reachability
relation from scratch. The solution we employ is similar to the use of dynamic graph
algorithms for solving the view-update problem, where directed paths between nodes
are updated when edges are added/removed (e.g., see [5]), except that our solution is
geared towards verification of heap-manipulating programs with linked data structures.

Main Results

– We define AFR, a new logic for expressing properties of programs, that is an alterna-
tion free sub-fragment of FOTC (i.e., first-order logic with transitive closure): alternation
between universal and existential quantifiers in formulas is disallowed. A distinguishing
feature of AFR is that it allows relation symbols but does not allow direct application of
function symbols. Atomic formulas of AFR may denote reachability relations between
memory locations via pointers such as next and prev fields in linked lists, or any other
relations without transitive closure.
– We empirically show that loop invariants in many programs manipulating singly- and
doubly-linked lists can be specified using AFR formulas.

2

– We show that the effect of many procedures manipulating singly- and doubly-linked
lists can be specified using AFR formulas. This result may require that the memory that
the procedure manipulates be “owned” by its formal parameters.
– We show direct use of existing results in dynamic complexity [10] to prove that AFR

formulas are closed under weakest preconditions for statements which destructively up-
date memory (e.g., x .next := y).
– For statements that traverse the heap (e.g., x := y .next), AFR formulas are not closed
under weakest preconditions. For these cases we show that weakest preconditions are
expressible in the AER logic which generalizes AFR by permitting existential quan-
tification inside universal quantification. AER formulas are decidable for validity since
their negation has the form ∃∗∀∗, and fits in the Bernays-Schönfinkel fragment which
is decidable for satisfiability [19]. In fact, they can be checked with a SAT solver by
replacing existential quantifiers with constants, and universal quantifications by con-
junctions over the constants. Indeed, Z3 [4] is complete for these formulas.
– We report on experiments with a tool that checks correctness of several, commonly
used heap-manipulating structured programs, and that uses Z3 as back-end. The tool
can determine whether or not program annotations (pre- and postconditions, loop in-
variants) are AFR formulas, and can check both safety and equivalence of procedures.
The tool is sound and also complete in the sense that it generates concrete counterex-
amples for programs violating the VCs.

This paper is accompanied by a technical report containing further examples and
proofs.

2 Overview

2.1 Programming with Restricted Invariants

In this paper we require that the specified invariants are AFR formulas. That is, they only
use reflexive transitive closure but do not explicitly use function symbols and quantifier
alternations.

Definition 1. Let t1, t2, . . . tn be logical variables or constant symbols. We define four
types of atomic propositions: (i) t1 = t2 denoting equality, (ii) r(t1, t2, . . . , tn) denot-
ing the application of relation symbol r of arity n , and (iii) t1〈f ∗〉t2 denoting the exis-
tence of k ≥ 0 such that f k (t1) = t2, where f 0(t1)

def
= t1, and f k+1(t1)

def
= f (f k (t1)).

We say that t1〈f ∗〉t2 is a reachability constraint between t1 and t2 via the function f .
Quantifier-free formulas (QFR) are Boolean combinations of such formulas without
quantifiers. Alternation-free formulas (AFR) are Boolean combinations of such for-
mulas with additional quantifiers of the form ∀∗:ϕ or ∃∗:ϕ where ϕ is a QFR formula.
Forall-Exists Formulas (AER) formulas are Boolean combinations of such formulas
with additional quantifiers of the form ∀∗∃∗:ϕ where ϕ is a QFR formula. In particular,
QFR ⊂ AFR ⊂ AER.

Fig. 2 presents a Java program for in-situ reversal of a linked list. Every node of
the list has a next field that points to its successor node in the list. Thus, we can model
next as a function that maps a node in the list to its successor. For simplicity we assume

3

that the program manipulates the entire heap, that is, the heap consists of just the nodes
in the linked list. To describe the heap that is reachable from the formal parameter h ,
where h points to the head of the input list, we use the formula ∀α : h〈next∗〉α.

We also assume, until Section 5, that the heap is acyclic, i.e., the formula ac below
is a precondition of reverse.

ac
def
= ∀α, β : α〈next∗〉β ∧ β〈next∗〉α→ α = β (1)

I0
def
= ac ∧ ∀α : h〈next∗〉α

I3
def
= ac ∧ ∀α, β 6= null :

{
α〈next∗〉β ⇔ β〈next∗0〉α d〈next∗〉α
c〈next∗〉α ∧ (α〈next∗〉β ⇔ α〈next∗0〉β) ¬d〈next∗〉α

}
I9 = ac ∧ ∀α : d〈next∗〉α ∧ (∀α, β : α〈next∗〉β ⇔ β〈next∗0〉α)

Table 1. AFR invariants for reverse. Note that next, next0 are function symbols while
α〈next∗〉β, α〈next∗0〉β are atomic propositions on the reachability via directed paths
from α to β consisting of next, next0 edges.

Node reverse(Node h) {
0: Node c = h;
1: Node d = null;
2: while 3: (c != null) {

4: Node t = c.next;
5: c.next = null;
6: c.next = d;
7: d = c;
8: c = t;

}
9: return d;

}

Fig. 2. A simple Java program that re-
verses a list in-situ.

Table 1 shows the invariants I0, I3
and I9 that describe a precondition, a
loop invariant, and a postcondition of
reverse. They are expressed in AFR

which permits use of function sym-
bols (e.g. next) in formulas only to ex-
press reachability (cf. next∗); moreover,
quantifier alternation is not permitted.

The notation
{

f b
g ¬b

}
is shorthand for

the conditional (b ∧ f) ∨ (¬b ∧ g).
Note that I3 and I9 refer to next0,

the value of next at procedure entry.
The postcondition I9 says that reverse
preserves acyclicity of the list and up-
dates next so that, upon procedure ter-
mination, the links of the original list

have been reversed. It also says that all the nodes are reachable from d in the reversed
list. I3 says that at loop entry c is non-null and moreover, the original list is partially
reversed. That is, any node reachable from d is connected in reverse wrt. the input list,
whereas any node not reachable from d is reachable from c and belongs to the part of
the list that has not yet been reversed. Observe that I3 and I9 only refer to next∗ and
never to next alone. A more natural way to express I9 would be

I ′9
def
= ac ∧ ∀α : d〈next∗〉α ∧ (∀α, β : next(α) = β ⇔ next0(β) = α) (2)

But this formula is not in AFR because it explicitly refers to function symbols next and
next0 outside a reachability constraint.

4

2.2 Inverting Reachability Constraints

A crucial step in moving from arbitrary FOTC formulas to AFR formulas is eliminating
explicit uses of functions such as next. While this may be difficult for a general graph,
we show that this can be done for programs that manipulate (potentially cyclic) singly-
and doubly-linked lists. In this section, we informally demonstrate this elimination for
acyclic lists. We observe that if next is acyclic, we can construct next+ from next∗ by

α〈next+〉β ⇔ α〈next∗〉β ∧ α 6= β (3)

Also, since next is a function, the set of nodes reachable from a node α is totally or-
dered by next∗. Therefore, next(α) is the minimal node in this order that is not α. The
minimality is expressed using extra universal quantification in

next(α) = β ⇔ α〈next+〉β ∧ ∀γ : α〈next+〉γ → β〈next∗〉γ (4)

This inversion shows that next can be expressed using AFR formulas. However,
caution must be practiced when using the elimination above, because it may introduce
alternations (see [2]). Nevertheless our experiments demonstrate that in a number of
commonly occurring examples, the alternation can be removed or otherwise avoided,
yielding an equivalent AFR formula.

2.3 Generating AER Verification Conditions

Given a program annotated with loop invariants and procedure specifications, it is pos-
sible to automatically generate VCs to check that the invariants are satisfied by all pro-
gram executions (e.g., see [8]). For example, the VC of reverse asserts that every ex-
ecution which starts in a state satisfying I0 satisfies I3 and that I3 is indeed inductive.
That is, if it holds on the loop entry and if the loop is executed, I3 remains true after the
execution. Finally, the VC asserts that I3 and the negation of the loop condition implies
the postcondition I9.

For simplicity, we do not handle deallocation operations here. Since our logic ex-
presses reachability it does not depend on a particular memory abstraction, and can
handle both garbage collection and programs with explicit deallocation.

Unfortunately showing validity of formulas with transitive closure and quantifier
alternations, i.e., nesting existential inside universal quantifiers or vice versa is very
difficult for first-order theorem provers: existing decision procedures cannot handle
such formulas, because even the simplest use of transitive closure leads to undecid-
ability [11].

In this paper we show that for programs with AFR assertions manipulating singly-
and doubly-linked lists, the generated VCs are effectively propositional. However, AFR

formulas are not powerful enough to describe the VCs of programs with AFR invari-
ants. The main reason is that the semantics of accessing heap fields, e.g., x := y .next
requires one level of alternation. Therefore, we slightly generalize AFR and generate
VCs that have the form ∀∗∃∗ :ϕ where ϕ is a quantifier-free formula which does not
contain function symbols in terms but may contain reachability and relation symbols.
Validity of formulas in this class, AER, are decidable since their negations have the

5

form ∃∗∀∗:ϕ, that is, they belong to the Bernays-Schönfinkel class of formulas [19]. In
fact, the formulas can be checked with a SAT solver by replacing existential quantifiers
with distinct Skolem constants, and then grounding all universally quantified variables
by all combinations of constants. Indeed, Z3 handles these formulas in a precise manner
without the need to perform this transformation.

We show that AER formulas are closed under weakest preconditions (wp), i.e.,
for every statement S and postcondition Q expressed as AER formula, it must be
the case that wp(S ,Q) is expressed as an AER formula. To show this closure prop-
erty of AER formulas, we rely on recent results in descriptive complexity which prove
that for singly-linked data structures edge mutations are expressible without quantifica-
tions [10]. Specifically, this means that updates to the reachability relation, wrt. pointer
removals and additions, can be expressed using quantifier-free formulas. We note, how-
ever, that our applications to program verification go beyond descriptive complexity in
several major ways: (i) Programs can create fresh nodes as a result of dynamic alloca-
tion statements of the form x := new. (ii) A heap field read, x := y .next , does not
mutate the heap but can affect the truth value of reachability constraints. (iii) Calls to li-
braries can mutate the heap in an unbounded way. (iv) In order to guarantee correctness
of loops and procedures, the verification is conducted modularly using AFR invariants,
pre- and postconditions. For example, to verify the correctness of a code which includes
a procedure call, we assert that the states at the call satisfy the procedure’s precondi-
tion expressed as an AFR formula and assert that after the call the state satisfies the
procedure’s postcondition specified by an AFR formula.

Handling Destructive Updates. We first handle the case of statements that assign null
to pointer fields and so remove directed paths. For example, statement 5 in the reverse
program is modeled by

wp(c.next := null,Q)
def
=

c 6= null
∧ Q [α〈next∗〉β ∧ (¬α〈next∗〉c ∨ β〈next∗〉c)/α〈next∗〉β]

(5)
The assignment removes the outgoing edge from the node pointed to by c. This is
a simplified condition that also uses the fact that the manipulated list is acyclic. An
operation of the form c.next := null deletes an existing path between nodes α and
β if the path goes through a (non-null) node c. This situation can be expressed by
the formula α〈next∗〉c ∧ ¬β〈next∗〉c. So the negation of this formula conjoined with
α〈next∗〉β must hold in the precondition so that α〈next∗〉β holds in the postcondition.
Notice that this rule drastically differs from the standard McCarthy axiom [16], which
directly assigns a new value to the heap:

wp′(c.next := null,Q)
def
= Q [next[c 7→ null]/next]

We forbid the use of this rule for it uses a function (next) and relies on “recom-
puting” reachability constraints in Q by using the transitive closure of next[c 7→ null].
Instead, we directly update the effect on the reachability relation α〈next∗〉β by substi-
tuting it with a quantifier-free formula shown in (5). A similar definition exists for wp
for statements like c.next := d that add edges, as we show later in Table 3.

6

Surprisingly, the semantics of field dereference statement t := c.next is a bit more
subtle despite the fact that such a statement does not modify the heap. However, a wp
for field dereference can also be given in AER (see Section 3), thus enabling verification
with a SAT solver in a complete way.

As shown by Hesse [10], a QFR definition of the effect on reachability can be also
done for cyclic data structures with a single pointer field. However, for programs with
reachability over more than one field in general DAGs, quantifiers are required [6].

2.4 Decidability of AER

Reachability constraints written as α〈next∗〉β are not directly expressible in FOL. How-
ever, AER formulas can be reduced to first-order ∀∗∃∗ formulas without function sym-
bols (which are decidable; see Section 2.3) in the following fashion: Introduce a new
binary relation symbol n̂∗ with the intended meaning that n̂∗(α, β) ⇔ α〈next∗〉β.
Even though n̂∗ is an uninterpreted relation, we will consistently maintain the fact that
it models reachability. Every formula ϕ is translated into

ϕ′
def
= ϕ[n̂∗(t1, t2)/t1〈next∗〉t2]

For example, the acyclicity relation shown in (1) is translated into:

âc
def
= ∀α, β : n̂∗(α, β) ∧ n̂∗(β, α)→ α = β (6)

We add the consistency rule ΓlinOrd shown in Table 2, which requires that n̂∗ is a
total order. In Section 3 and in [2] we prove that the translated formula ΓlinOrd → ϕ′

is valid if and only if the original formula ϕ is valid. The proof constructs real models
from “simulated” FO models using the reachability inversion (4).

ΓlinOrd
def
= ∀α, β : n̂∗(α, β) ∧ n̂∗(β, α)↔ α = β ∧
∀α, β, γ : n̂∗(α, β) ∧ n̂∗(β, γ)→ n̂∗(α, γ) ∧
∀α, β, γ : n̂∗(α, β) ∧ n̂∗(α, γ)→ (n̂∗(β, γ) ∨ n̂∗(γ, β))

Table 2. ΓlinOrd says all points reachable from a given point are linearly ordered.

2.5 Expressivity of AFR

Although AFR is a relatively weak logic, it can express interesting properties of lists.
Typical predicates that express disjointness of two lists and sharing of tails are express-
ible in AFR. For example, for two singly-linked lists with headers h, k , disjoint(h, k)⇔
∀α : α 6= null→ ¬(h〈next∗〉α ∧ k〈next∗〉α).

Another capability still within the power of AFR is to relax the earlier assumption
that the program manipulates the whole memory. We describe a summary of reverse
on arbitrary acyclic linked lists in a heap that may contain other linked data structures.
Realistic programs obey ownership requirements, e.g., the head h of the list owns the
input list which means that it is impossible to reach one of the list nodes without passing
through h . That is,

∀α, β : α 6= null→ (h〈next∗〉α ∧ β〈next∗〉α)→ h〈next∗〉β (7)

7

This requirement is conjoined to the precondition, ac, of reverse. Its postcondition
is the conjunction of ac, the fact that h0 and d reach the same nodes, (i.e., ∀α :
h0〈next∗0〉α⇔ d〈next∗〉α) and

∀α, β : α〈next∗〉β ⇔

β〈next∗0〉α ∧ β 6= null h0〈next∗0〉α ∧ h0〈next∗0〉β
α〈next∗0〉β ¬h0〈next∗0〉α ∧ ¬h0〈next∗0〉β
false h0〈next∗0〉α ∧ ¬h0〈next∗0〉β
α〈next∗0〉h0 ∧ β = h0 ¬h0〈next∗0〉α ∧ h0〈next∗0〉β

 (8)

Here, the bracketed formula should be read as a four-way case, i.e., as disjunction
of the formulas h0〈next∗0〉α ∧ h0〈next∗0〉β ∧ β〈next∗0〉α ∧ β 6= null; ¬h0〈next∗0〉α ∧
¬h0〈next∗0〉β ∧ α〈next∗0〉β; h0〈next∗0〉α ∧ ¬h0〈next∗0〉β ∧ false; and, ¬h0〈next∗0〉α ∧
h0〈next∗0〉β ∧ α〈next∗0〉h0 ∧ β = h0. Intuitively, this summary distinguishes between
the following four cases: (i) both the source (α) and the target (β) are in the reversed
list (ii) both source and target are outside of the reversed list (iii) the source is in the
reversed list and the target is not, and (iv) the source is outside and the target is in the
reversed list. Cases (i)–(iii) are self-explanatory. For (iv) reachability can occur when
there exists a path from α to h0 = β. Formula (8) is in AFR. In terms of [21], this
means that we assume that the procedure is cutpoint free. We can also generate an AFR

summary for a program with fixed number of cutpoints, as is done in Section 5.
The general case of unbounded number of cutpoints requires a formula that is out-

side AFR. A non-AFR formula also arises when we want to express that a program
manipulates two lists of equal length; such a formula requires an inductive definition.
See [2] for examples of these formulas.

3 Weakest Preconditions of Atomic Heap Manipulating
Statements

In this section we show how to express the weakest liberal preconditions of atomic heap
manipulating statements using AER formulas, for programs that manipulate acyclic
singly-linked lists. Table 3 shows standard wp computation rules (top part) and the cor-
responding rules for field update, field read and dynamic allocation (bottom part). The
correctness of the rule for destructive field update is according to Hesse’s thesis [10].

Field Dereference. The rationale behind the formula for wp(x := y .next,Q) is that if
y has a successor, then the formula Q should be satisfied when x is replaced by this
successor. The natural way to specify this is using the Hoare assignment rule

wp′(x := y .next,Q)
def
= Q [next(y)/x]

However, this rule uses the function next and does not directly express reachability.
Instead we will construct a relation rnext such that rnext(α, β) ⇔ next(α) = β and then
use universal quantifications to “access” the value

wp′′(x := y .next,Q)
def
= ∀α : rnext(y , α)→ Q [α/x]

8

wp(skip,Q)
def
= Q

wp(x := y ,Q)
def
= Q [y/x]

wp(S1 ; S2,Q)
def
= wp(S1,wp(S2,Q))

wp(if B then S1 else S2,Q)
def
= [[B]] ∧ wp(S1,Q) ∨
¬[[B]] ∧ wp(S2,Q)

wp(while B {I } do S ,Q)
def
= I

wp(x .next := null,Q)
def
= Q [α〈next∗〉β ∧ (¬α〈next∗〉x ∨ β〈next∗〉x)/α〈next∗〉β]

wp(x .next := y ,Q)
def
= ¬y〈next∗〉x∧

Q [α〈next∗〉β ∨ (α〈next∗〉x ∧ y〈next∗〉β)/α〈next∗〉β]
wp(x := new,Q)

def
= ∀α :

(∧
p∈Pvar∪{null} ¬p〈next∗〉α

)
→ Q [α/x]

Pnext+
def
= s〈next∗〉t ∧ s 6= t

Pnext
def
= Pnext+ ∧ ∀γ : Pnext+ [γ/t]→ γ〈next∗〉t

wp(x := y .next,Q)
def
= ∀α : Pnext[y/s, α/t]→ Q [α/x]

Table 3. Rules for computing weakest liberal preconditions for procedures annotated
with loop invariants and postconditions. I denotes the loop invariant, [[B]] is the AFR

formula for program conditions and Q is the postcondition expressed as an AFR for-
mula. The top frame shows the standard wp rules for While-language, the bottom frame
contains our additions for heap updates, memory allocation, and dereference.

Since next is acyclic, we can express rnext in terms of next∗ as follows. First we
observe that next(α) 6= α. Also, since next is a function, the set of nodes reachable
from α is totally ordered by next∗. Therefore, similarly to Section 2.2, we can express
rnext(α, β) as the minimal node β in this order where β 6= α. Expressing minimality
“costs” one extra universal quantification.

In Table 3, formula Pnext expresses rnext in terms of next∗: Pnext holds if and only if
there is a path of length 1 between s and t (source and target). Thus, Pnext[y/s, α/t] is
satisfied exactly when α = next(y). If y does not have a successor, then Pnext[y/s, α/t]
can only be true if α = null, hence Q should be satisfied when x is replaced by null,
which is in line with the concrete semantics. A central lemma in [2] shows that the
formula Pnext correctly defines next as a relation.

Dynamic allocation. The rule wp(x := new,Q) expresses the semantic uncertainty
caused by the behavior of the memory allocator. We want to be compatible with any
run-time memory management, so we do not enforce a concrete allocation policy, but
require that the allocated node meets some reasonable specifications, namely, that it is
different from all values stored in program variables, and that it is unreachable from
any other node allocated previously (Note: for programs with explicit free(), this
assumption relies on the absence of dangling pointers, which can be verified by intro-
ducing appropriate assertions; this is, however, beyond the scope of this paper).

9

4 Generating an AER Verification Condition

Table 4 provides the standard rules for computing VCs using weakest liberal precon-
ditions. An auxiliary function VCaux is used for defining the set of side conditions for
the loops occurring in the program. These rules are standard and their soundness and
relative completeness have been discussed elsewhere (e.g. see [8]).

We assume that the effect, [[B]], of the condition B used in the conditional and the
while loop, is defined by an AFR formula. We also assume that all loop invariants I , the
precondition P , and postcondition Q are AFR formulas. The rule for while loop is split
into two parts: in the wp we take just the loop invariant, where VCaux asserts that loop
invariants are inductive and implies the postcondition for each loop.

The rules may generate exponential formulas. Another solution can be implemented
either using the method of Flanagan and Saxe [7] or by using a set of symbols for every
program point.

VCaux(S ,Q)
def
= ∅ (for any atomic command S)

VCaux(S1;S2,Q)
def
= VCaux(S1,wp(S2,Q)) ∪ VCaux(S2,Q)

VCaux(if B then S1 else S2,Q)
def
= VCaux(S1,Q) ∪ VCaux(S2,Q)

VCaux(while B {I } do S ,Q)
def
= VCaux(S , I) ∪

{I ∧ [[B]]→ wp(S , I), I ∧ ¬[[B]]→ Q}
VCgen({P}S{Q})

def
= P → wp(S ,Q) ∧

∧
VCaux(S ,Q)

Table 4. Standard rules for computing VCs using weakest liberal preconditions for
procedures annotated with loop invariants and pre/postconditions.

Notice that Table 4 only uses weakest liberal preconditions in a positive context
without negations. Therefore, the following proposition (proof in [2]) holds.

Proposition 1 (VCs in AER). For every program S whose precondition P , postcon-
dition Q , branch conditions, loop conditions, and loop invariants are all expressed as
AFR formulas, VCgen({P}S{Q}) is in AER.

Optimization remark. The size of the VC can be significantly reduced if instead of syn-
tactic substitution, we introduce a new vocabulary for each substituted atomic formula,
axiomatizing its meaning as a separate formula. For example, Q [P(α, β)/α〈next∗〉β]
(where P is some formula with free variables α, β), can be written more compactly as
Q [r1(α, β)/α〈next∗〉β] ∧ ∀α, β : r1(α, β) ⇔ P(α, β), where r1 is a fresh relational
symbol. When Q contains many applications of 〈next∗〉 and P is large, this may save
a lot of formula space; roughly, it reduces the order of the VC size from quadratic to
linear. Our original implementation employed this optimization, which is also nice for
finding bugs — when the program violates the invariants the SAT solver produces a
counterexample with the concrete states at every program point. The approach of [7] is
also applicable in this case.

10

5 Extensions

Doubly-linked List and Nested Lists. To verify a program that manipulates a doubly-
linked list, all that needs to be done is to duplicate the analysis we did for next, for
a second pointer field prev. As long as the only atomic formulas used in assertions
are α〈next∗〉β and α〈prev∗〉β (and not, for example, α〈(next|prev)∗〉β), providing the
substitutions for atomic formulas in Table 3 would not get us outside of the class AER.
In particular, we have verified the doubly-linked list property:

∀α, β : h〈next∗〉α ∧ h〈next∗〉β → (α〈next∗〉β ⇔ β〈prev∗〉α).
In fact we can verify nested lists and, in general, lists with arbitrary number of pointer
fields as long as reachability constraints are expressed using only one function symbol
at a time, like in the case of next and prev above.

Cycles. For data structures with a single pointer, the acyclicity restriction may be lifted
by using an alternative formulation that keeps and maintains more auxiliary informa-
tion [10, 13]. Instead of keeping track of just next∗, we instrument the edge addition
operation with a check: if the added edge is about to close a cycle, then instead of
adding the edge, we keep it in a separate set M of “cycle-inducing” edges. Two prop-
erties of lists now come into play: (1) The number of cycles reachable from program
variables, and hence the size of M , is bounded by the number of program variables;
(2) Any path (simple or otherwise) in the heap may utilize at most one of those edges,
because once a path enters a cycle, there is no way out. In all assertions, therefore, we
replace α〈next∗〉β with: α〈next∗〉β ∨

∨
〈u,v〉∈M (α〈next∗〉u ∧ v〈next∗〉β). Notice that it

is possible to construct this formula thanks to the bound on the size of M ; otherwise,
an existential quantifier would have been required in place of the disjunction.

More details and cases for cycles can be found in the Technical Report [2].

Bounded Sharing. Arbitrary sharing in data structures is hard, because even in lists,
any node of the list may be shared (that is, have more than one incoming edge). In
this case we have to use quantification since we do not know in advance which node
in the list is going to be a cutpoint for which other nodes. However, when the entire
heap consists solely of lists, the quantifier may be replaced with a disjunction if we
take into account that there is a bounded number of program variables, which can serve
as the heads of lists, and any two lists have at most one cutpoint. Such heaps when
viewed as graphs are much simpler than general DAGs, since one can define in advance
a set of constant symbols to hold the edges that induce the sharing; for example, if we
have one list through the nodes x → u1 → u2 and a second list through y → v1 →
v2, all distinct locations, then adding an edge u2 → v1 would create sharing, as the
nodes v1, v2 become accessible from both x and y . This technique is also covered by
Hesse [10].

6 Composing Procedure Summaries to Check Program
Equivalence

This section argues that AFR-postconditions of procedure summaries can be sequen-
tially composed and used to check if two pieces of code are equivalent, i.e., that they

11

produce the same output for a given input.

Illustrating reverse(reverse h) = h . Let next∗1 denote the reachability after running
the inner reverse, and let next∗2 denote the reachability after running the outer reverse.
We can express the equivalence of reverse(reverse h) and h using the following AFR

implication:

(∀α, β : α〈next∗1〉β ⇔ β〈next∗0〉α) ∧ (∀α, β : α〈next∗2〉β ⇔ β〈next∗1〉α)
→ ∀α, β : α〈next∗2〉β ⇔ α〈next∗0〉β

(9)

The second conjunct of the implication’s antecedent describes the effect of the inner
reverse on the initial state while the third conjunct describes the effect of the outer
reverse on the state resulting from the first. The consequent of the implication states
that the initial and final states are equivalent.

Illustrating filter(C , reverse(h)) = reverse(filter(C , h)). The program filter takes a
unary predicate C on nodes, and a list with head h , and returns a list with all nodes
satisfying C removed. The postcondition of filter is: ∀α, β : α〈next∗〉β ⇔ ¬C (α) ∧
¬C (β) ∧ α〈next∗0〉β. It says that β is reachable from α in the filtered list provided
neither α nor β satisfies C and β was reachable from α initially. We show ([2]) that the
equivalence of filter(C , reverse(h)) and reverse(filter(C , h)) can be expressed using
an AFR implication.

7 Experimental Results

7.1 Details

We have implemented a VC generator, according to Tables 3 and 4, in Python, and
PLY (Python Lex-Yacc) is employed at the front-end to parse While-language programs
annotated with AFR assertions. The tool verifies that invariants are in the class AFR and
have reachability constraints along a single field (of the form f ∗). The assertions may
refer to the store and heap at the entry to the procedure via x0, f0, etc. SMT-LIB v2 [1]
standard notation is used to format the VC and to invoke Z3. The validity of the VC
can be checked by providing its negation to Z3. If Z3 exhibits a satisfying assignment
then that serves as counterexample for the correctness of the assertions. If no satisfying
assignment exists, then the generated VC is valid, and therefore the program satisfies
the assertions.

The output model/counterexample (S-Expression), if one is generated, is then also
parsed, so that we have the truth table of next∗. This structure represents the state of
the program either at entry or at the beginning of a loop iteration: running the program
from this point will violate one or more invariants. To provide feedback to the user, next
is recovered by computing (4), and then the pygraphviz tool is used to visualize and
present to the user a directed graph, whose vertices are nodes in the heap, and whose
edges are the next pointer fields.

We also implemented two procedures for generating VCs: the first one implements
the standard rules shown in Table 4 and a second one uses a separate set of relation and
constant symbols per program point as a way to reduce the size of the generated VC
formula. We only report data on the former since it exhibited better running times.

12

7.2 Verification Examples

We have written AFR loop invariants and procedure pre- and postconditions for 13
example procedures shown in Table 6. These are standard benchmarks and what they
do can be inferred either from their names or from Table 5. We are encouraged by
the fact that it was not difficult to express assertions in AFR for these procedures. The
annotated examples and the VC generation tool are publicly available from http://

www.cs.tau.ac.il/˜shachar/afwp.html.
For an example of the annotations used in the benchmarks, see Table 1, listing the

precondition, loop invariant, and postcondition of reverse.
As expected, Z3 is able to verify all the correct programs. Table 6 shows statistics

for size and complexity of the invariants and the running times for Z3.
To give some account of the programs’ sizes, we observe the program summary

specification given as pre- and postcondition, count the number of atomic formulas in
each of them, and note the depth of quantifier nesting; all our samples had only univer-
sal quantifiers. We did the same for each program’s loop invariant and for the generated
VCgen. Naturally, the size of the VC grows rapidly —approximately at a quadratic rate.
This can be observed in the result of the measurements for “SLL: merge”, where (i) the
size of the invariant and (ii) the number of if-branches and heap manipulating state-
ments, was larger than those in other examples. Still, the time required by Z3 to prove
that the VC is valid is short.

For comparison, the size of the formula generated by the alternative implementation,
using a separate set of symbols for each program location, was about 10 times shorter
— 239 atomic formulas. However, Z3 took a significantly longer time, at 1357ms. We
therefore preferred to use the first implementation.

Thanks to the fact that FOL-based tools, and in particular SAT solvers, permit mul-
tiple relation symbols we were able to express ordering properties in sorted lists, and so
verify order-aware programs such as “insert” and “merge”. This situation can be con-
trasted with tools like Mona ([12],[9]) which are based on monadic second-order logic,
where multiple relation symbols are disallowed.

Additionally, we made experiments in composing summaries of filter and reverse
(Section 6). In this case, we wrote the formulas manually and ran Z3 on them, to get a
proof of the validity of the equivalences.

SLL: insert — Adds a node into a sorted list, preserving order.
SLL: find — Locates the first item in the list with a given value.
SLL: last — Returns the last node of the list.
SLL: merge — Merges two sorted lists into one, preserving order.
SLL: swap — Exchanges the first and second element of a list.
DLL: fix — Directs the back-pointer of each node towards the previous

node, as required by data structure invariants.
DLL: splice — Splits a list into two well-formed doubly-linked lists.

Table 5. Description of some linked list manipulating programs verified by our tool.

13

Table 6. Implementation Benchmarks; P,Q
— program’s specification given as pre-
and post-condition, I — loop invariant, VC
— verification condition, # — number of
atomic formulas, ∀— quantifier nesting

The tests were conducted on a 1.7GHz Intel
Core i5 machine with 4GB of RAM, running
OS X 10.7.5. The version of Z3 used was 4.2,
compiled for 64-bit Intel architecture (using
gcc 4.2, LLVM). The solving time reported is
wall clock time of the execution of Z3.

Benchmark
Formula size Solving

P,Q I VC time
∀ # ∀ # ∀ (Z3)

SLL: reverse 2 2 11 2 133 3 57ms
SLL: filter 5 1 14 1 280 4 39ms
SLL: create 1 0 1 0 36 3 13ms
SLL: delete 5 0 12 1 152 3 23ms
SLL: deleteAll 3 2 7 2 106 3 32ms
SLL: insert 8 1 6 1 178 3 17ms
SLL: find 7 1 7 1 64 3 15ms
SLL: last 3 0 5 0 74 3 15ms
SLL: merge 14 2 31 2 2255 3 226ms
SLL: rotate 6 1 - - 73 3 22ms
SLL: swap 14 2 - - 965 5 26ms
DLL: fix 5 2 11 2 121 3 32ms
DLL: splice 10 2 - - 167 4 27ms

7.3 Buggy Examples

We also applied the tool to erroneous programs and programs with incorrect assertions.
The results, including run-time statistics and formula sizes, are reported in Table 7. In
addition, we measured the size of the model generated, by observing the size of the
generated domain—which reflects the number of nodes in the heap. As expected, Z3
was able to produce concrete counterexample of a small size. Since these are slight
variations of the correct programs, size and running time statistics are similar.

An example of generated output when a program fails to verify can be seen, for the
insert program, in Fig. 3. The tool reports, as part of its output, that counterexample
occurs when j = null and h.val = i .val = e.val .

Node insert(Node h, Node e) {
Node i = h, j = null;
while (i != null && e.val >= i.val) {

j = i; i = i.n;
}
if (j != null) { j.n = e; e.n = i; }
else { e.n = h; h = e; }
return h;

}

v v

v

next
ih

e

Fig. 3. Sample counterexample generated for a buggy version of insert . Here, the loop
invariant required that ∀α : (h〈next∗〉α ∧ ¬i〈next∗〉α) → α <val e (where <val is an
ordering on nodes according to their values), but the loop will execute one more time,
violating this.

14

Benchmark Nature of Defect
Formula size Solving C.e.

P,Q I VC time size
∀ # ∀ # ∀ (Z3) (|L|)

SLL: find null pointer dereference. 7 1 7 1 64 3 18ms 2
SLL: deleteAll Loop invariant in annotation is

too weak to prove the desired
property.

3 2 5 2 68 3 58ms 5

SLL: rotate Transient cycle introduced during
execution.

6 1 - - 109 3 25ms 3

SLL: insert Unhandled corner case when an
element with the same value al-
ready exists in the list — ordering
violated.

8 1 6 1 178 3 33ms 4

Table 7. Information about benchmarks that demonstrate detection of several kinds of
bugs in pointer programs. In addition to the previous measurements, the last column
lists the size of the generated counterexample in terms of the number of vertices, or
linked-list nodes.

8 Discussion

8.1 Related Work

Decidable Logic. The results in this paper show that reachability properties of programs
manipulating linked lists can be verified using a simple decidable logic AER. Many
recent decidable logics for reasoning about linked lists have been proposed [17, 22, 15,
3]. In comparison to these works we drastically restrict the way quantifiers are allowed
but permit arbitrary use of relations. Thus, strictly speaking our logic is incomparable
to the above logics. We show that relations are used even in programs like reverse to
write procedure summaries such as the one in (8) and for expressing numeric orders in
sorting programs.

Employing Theorem Provers. The seminal paper on program verification [18] provides
useful axioms for verifying reachability in linked data structures using theorem provers
and conjectures that these axioms are complete for describing reachability. Lev-Ami et
al. [14] show that no such axiomatization is possible. The current submission sidesteps
the above impossibility results by restricting first order quantifications and by using the
fact that Bernays-Schönfinkel formulas have finite model property.

Lahiri and Qadeer [13] provide rules for weakest of preconditions for programs with
circular linked lists. The formulas are similar to Hesse’s [10] but require that the pro-
grammer explicitly break the cycle. Our framework can be used both with and without
the help of the programmer. In practice it may be beneficial to require that the pro-
grammer breaks the cycle in certain cases in order to allow invariants which distinguish
between segments in the cycle.

15

Descriptive Complexity. Descriptive complexity was recently incorporated into the
TVLA shape analysis framework [20]. In this paper we pioneer the use of descrip-
tive complexity for guaranteeing that if the programmer writes AFR assertions and if
the program manipulates singly- and doubly-linked lists, then the VCs are guaranteed
to be expressible as AER formulas.

8.2 Conclusion

The results in this paper shed some light on the complexity of reasoning about pro-
grams that manipulate linked data structures such as singly- and doubly-linked lists.
The invariants in many of these programs can be expressed without quantifier alter-
nation. Alternations are introduced by unbounded cutpoints and reasoning about more
complicated directed acyclic graphs. Furthermore, for programs manipulating general
graphs higher order reasoning may be required.

References
1. SMTLIB: Satisfiability modulo theories library. http://smtlib.cs.uiowa.edu/docs.html.
2. Technical report. http://www.cs.tau.ac.il/˜shachar/dl/tr-2013.pdf.
3. A. Bouajjani, C. Dragoi, C. Enea, and M. Sighireanu. Accurate invariant checking for pro-

grams manipulating lists and arrays with infinite data. In ATVA, 2012.
4. L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, 2008.
5. C. Demetrescu and G. F. Italiano. Decremental all-pairs shortest paths. Encyclopedia of

Algorithms, 2008.
6. G. Dong and J. Su. Incremental maintenance of recursive views using relational calculus/sql.

SIGMOD Record, 29:44–51, 2000.
7. C. Flanagan and J. B. Saxe. Avoiding exponential explosion: generating compact verification

conditions. In POPL, 2001.
8. M. Frade and J. Pinto. Verification conditions for source-level imperative programs.

Computer Science Review, 5(3):252–277, 2011.
9. J. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund, B. Paige, T. Rauhe, and A. Sandholm.

Mona: Monadic second-order logic in practice. In TACAS, 1995.
10. W. Hesse. Dynamic computational complexity. PhD thesis, Dept. of Computer Science,

University of Massachusetts, Amherst, MA, 2003.
11. N. Immerman, A. M. Rabinovich, T. W. Reps, S. Sagiv, and G. Yorsh. The boundary between

decidability and undecidability for transitive-closure logics. In CSL, 2004.
12. H. Kautz and B. Selman. Knowledge compilation and theory approximation. J. ACM,

43(2):193–224, 1996.
13. S. K. Lahiri and S. Qadeer. Back to the future: revisiting precise program verification using

smt solvers. In POPL, 2008.
14. T. Lev-Ami, N. Immerman, T. W. Reps, M. Sagiv, S. Srivastava, and G. Yorsh. Simulating

reachability using first-order logic with applications to verification of linked data structures.
Logical Methods in Computer Science, 5(2), 2009.

15. P. Madhusudan, G. Parlato, and X. Qiu. Decidable logics combining heap structures and
data. In POPL, 2011.

16. J. McCarthy. Towards a mathematical science of computation. In IFIP Congress, pages
21–28, 1962.

17. A. Møller and M. I. Schwartzbach. The pointer assertion logic engine. In PLDI, 2001.
18. G. Nelson. Verifying reachability invariants of linked structures. In POPL, 1983.
19. R. Piskac, L. M. de Moura, and N. Bjørner. Deciding effectively propositional logic using

dpll and substitution sets. J. Autom. Reasoning, 44(4):401–424, 2010.
20. T. W. Reps, M. Sagiv, and A. Loginov. Finite differencing of logical formulas for static

analysis. ACM Trans. Program. Lang. Syst., 32(6), 2010.
21. N. Rinetzky, J. Bauer, T. W. Reps, S. Sagiv, and R. Wilhelm. A semantics for procedure local

heaps and its abstractions. In POPL, 2005.
22. G. Yorsh, A. M. Rabinovich, M. Sagiv, A. Meyer, and A. Bouajjani. A logic of reachable

patterns in linked data-structures. J. Log. Algebr. Program., 73(1–2):111–142, 2007.

16

