
Salient Object Detection: A Discriminative Regional Feature

Integration Approach

Huaizu Jiang† Jingdong Wang‡ Zejian Yuan† Yang Wu§ Nanning Zheng† Shipeng Li‡

†Xi’an Jiaotong University ‡Microsoft Research Asia §Kyoto University

https://sites.google.com/site/jianghz88/saliency_drfi

Abstract

Salient object detection has been attracting a lot of
interest, and recently various heuristic computational
models have been designed. In this paper, we regard
saliency map computation as a regression problem. Our
method, which is based on multi-level image segmenta-
tion, uses the supervised learning approach to map the
regional feature vector to a saliency score, and finally
fuses the saliency scores across multiple levels, yielding
the saliency map. The contributions lie in two-fold.
One is that we show our approach, which integrates
the regional contrast, regional property and regional
backgroundness descriptors together to form the master
saliency map, is able to produce superior saliency maps
to existing algorithms most of which combine saliency
maps heuristically computed from different types of fea-
tures. The other is that we introduce a new regional fea-
ture vector, backgroundness, to characterize the back-
ground, which can be regarded as a counterpart of the
objectness descriptor [2]. The performance evaluation
on several popular benchmark data sets validates that
our approach outperforms existing state-of-the-arts.

1. Introduction

Visual saliency has been a fundamental problem in
neuroscience, psychology, neural systems, and com-
puter vision for a long time. It is originally a task of
predicting the eye-fixations on images, and recently has
been extended to identifying a region containing the
salient object, which is the focus of this paper. There
are various applications for salient object detection, in-
cluding object detection and recognition [25, 46], im-
age compression [21], image cropping [35], photo col-
lage [17, 47], dominant color detection [51, 52] and so
on.

The study on human visual systems suggests that
the saliency is related to uniqueness, rarity and sur-

prise of a scene, characterized by primitive features
like color, texture, shape, etc. Recently a lot of efforts
have been made to design various heuristic algorithms
to compute the saliency [1, 6, 11, 15, 18, 27, 31, 34, 38].

In this paper, we regard saliency estimation as a
regression problem, and learn a regressor that directly
maps the regional feature vector to a saliency score.
Our approach consists of three main steps. The first
one is multi-level segmentation, which decomposes the
image to multiple segmentations from a fine level to
a coarse one. Second, we conduct a region saliency
computation step with a random forest regressor that
maps the regional features to a saliency score. Last, a
saliency map is computed by fusing the saliency maps
across multiple levels of segmentations.

The key contributions lie in the second step, region
saliency computation. Unlike most existing algorithms
that compute saliency maps heuristically from various
features and combine them to get the saliency map,
which we call saliency integration, we learn a random
forest regressor that directly maps the feature vector
of each region to a saliency score, which we call dis-
criminative regional feature integration (DRFI). This
is a principle way in image classification [19], but rarely
studied in salient object detection. It turns out that the
learnt regressor is able to automatically pick discrimi-
native features rather than heuristically hand-crafting
special features for saliency. On the other hand, we
also introduce a new descriptor, called backgroundness,
to discriminate the background from the object, which
can be considered as a counterpart of the objectness
descriptor [2].

1.1. Related work

The following gives a review of salient object detec-
tion (segmentation) algorithms that are related to our
approach. A comprehensive survey of salient object
detection can be found from [9]. The review on visual
attention modeling [7] also includes some analysis on
salient object detection.
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The basis of most saliency detection algorithms can
date back to the feature integration theory [43] which
posits that different kinds of attention are responsi-
ble for binding various features into consciously ex-
perienced wholes. Later, a computational attention
model built on a biologically-plausible architecture is
proposed in [28] and completely implemented in [22].
It represents the input image from the color, intensity
and orientation channels, and computes three conspicu-
ity (saliency) maps using center-surround differences,
which are combined together to form the final master
saliency map.

Recently, a lot of research efforts have been made to
design various saliency features characterizing salient
objects or regions. Most works essentially follow
the center-surround difference (or contrast) framework.
The discriminant center-surround hypothesis is ana-
lyzed in [15, 16]. Color histograms, computed to repre-
sent the center and the surround, are used to evaluate
the center-surround dissimilarity [31]. An information
theory perspective is introduced to yield a sound math-
ematical formulation, computing the center-surround
divergence based on feature statistics [27].

The center-surround difference framework is also in-
vestigated to compute the saliency from region-based
image representation. In [23], the difference between
the color histogram of a region and its immediately
neighboring regions are used to evaluate the saliency
score. The global contrast based approach [11], com-
puting the saliency map by comparing each region with
others, aims to directly compute the global uniqueness.
Based on the regional contrast, element color unique-
ness and spatial distribution are introduced to evaluate
the saliency scores of regions [38]. The saliency map is
generated by propagating the saliency scores of regions
to the pixels.

Many other models are also proposed for saliency
computation. Center-bias, i.e. the salient object usu-
ally lies in the center of an image, is investigated
in [23, 50]. Object prior, such as connectivity prior [45],
concavity context [34], auto-context cue [48], and the
background prior [53] are also studied for saliency com-
putation. Example-based approaches, searching for
similar images of the input, are developed for salient
object detection [35, 49]. A graphical model is pro-
posed to fuse generic objectness and visual saliency to-
gether to detect objects [10]. A low rank matrix recov-
ery scheme is proposed for salient object detection [41].
A top-down approach via joint conditional random
fields and dictionary learning is introduced [54]. The
stereopsis is leveraged for saliency analysis [37]. Be-
sides, spectral analysis in the frequency domain is used
to detect salient regions [1, 20]

Additionally, there are several works directly check-
ing if an image window contains an object. The generic
objectness measure is defined by combining several im-
age cues to quantify the possibility that a window con-
tains an object [2]. A category independent object de-
tection cascade, which uses superpixel boundary inte-
gral, edge distribution and window symmetry to de-
scribe objectness, is learnt to rank a number of object
window candidates [39]. Salient object detection by
composition [13] checks if the content within an win-
dow can be composed by neighbor regions. A random
forest regression approach is adopted to directly regress
the object rectangle from the saliency map [50].

Eye fixation prediction, another visual saliency re-
search direction, also attracts a lot of interests [7, 24].
Recent developments include using isocentric curved-
ness and color [44], adopting image histogram [32],
quaternion-based spectral analysis [40], utilizing depth
cues [30], multitask sparsity pursuit [29], statistically
modeling [42], exploring patch rarities [6], combing
bottom-up and top-down features [5], task-specific vi-
sual attention [8] and so on. There are some other
saliency definitions, e.g. context-aware saliency detec-
tion [18] aiming to detect the image regions that rep-
resent the scene.

Our proposed approach differs from existing algo-
rithms on two points. In term of the saliency features,
we compute a contrast vector instead of a contrast
value used in the existing algorithms for a region. Par-
ticularly, a novel feature vector is introduced to charac-
terize the background. Our approach is also unique in
the learning strategy. In contrast to existing learning
algorithms that perform saliency integration by com-
bining saliency maps computed from different types of
features, e.g. [2, 10, 31], our approach learns to directly
integrate feature vectors to compute the saliency map.
The closely related approach [26] which also learns to
integrate the saliency features is a pixel-based algo-
rithm, while our approach is region-based that per-
forms multi-level estimation and can capture non-local
contrast. Moreover, we introduce a novel regional fea-
ture vector to characterize the background. Another
one [36] touches the discriminative feature integration
lightly without presenting a deep investigation and it
only considers the regional property descriptor. The
recent learning approach [33] aims to predict eye fixa-
tion, while our approach is for salient object detection
and moreover, we solve the problem by introducing and
exploring multi-level regional descriptors. The discrim-
inative feature fusion has also been studied in image
classification [14], which learns the adaptive weights
of features according to the classification task to bet-
ter distinguish one class from others. Our approach
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Figure 1. The framework of our proposed discriminative
regional feature integration (DRFI) approach.

integrates three types of regional features in a discrim-
inative strategy for the saliency regression on multiple
segmentations.

2. Image saliency computation

The pipeline of our approach consists of three main
steps: multi-level segmentation that decomposes an
image into regions, region saliency computation that
maps the features extracted from each region to a
saliency score, and multi-level saliency fusion that com-
bines the saliency maps over all the levels of segmenta-
tions to get the final saliency map. The whole process
is illustrated in Figure 1.

Multi-level segmentation. Given an image I, we
represent it by a set of M -level segmentations S =
{S1,S2, · · · ,SM}, where each segmentation Sm is a de-
composition of the image I and consists of Km regions.
S1 is the finest segmentation consisting of the largest
number of regions, and SM is the coarsest segmentation
consisting of the smallest number of regions.

We apply the graph-based image segmentation
approach [12] and compute the over-segmentation
S1 = {R1

1
, R1

2
, · · · , R1

K1
}. Other segmentations

{S2, · · · ,SM} are computed based on S1, and specifi-
cally Sm is computed by merging the regions in Sm−1.
The regions in Sm−1 are represented by a weighted
graph, which connects the spatially neighboring re-
gions. Pairs of regions are sequentially merged in the
order of decreasing the weights of edges (the similar-
ities of the corresponding regions) until the weight of
two regions is greater than the specified threshold (con-
trolled by the parameter k of the approach [12]. See
details in [12]).

Region saliency computation. Our algorithm com-
putes the saliency score for each region. It seems
that the separate computation ignores the relation of

neighboring regions. However, our algorithm essen-
tially takes into consideration of such relations be-
cause we conduct the region saliency computation on
multi-level segmentation. The spatial consistency of
saliency scores for neighboring regions is imposed since
the neighboring regions in the finer-level segmentation
may form a single region in the coarser level.

Our approach represents each region using three
types of features: regional contrast, regional property,
and regional backgroundness, which will be described
in Section 3. At present, we denote the feature as a
vector x. Then the feature x is passed into a random
forest regressor f , yielding a saliency score. The ran-
dom forest regressor is learnt from the regions of the
training images, and integrates the features together in
a discriminative strategy. The learning procedure will
be given in Section 4.

Multi-level saliency fusion. After conducting re-
gion saliency computation, each region Rm

n ∈ Sm has a
saliency value amn . For each level, we assign the saliency
value of each region to its contained pixels. As a re-
sult, we generate M saliency maps {A1,A2, · · · ,AM},
and then fuse them together, A = g(A1, · · · ,AM ), to
get the final saliency map A, where g is a combinator
function introduced in section 4.

3. Regional features

3.1. Regional contrast descriptor

A region is likely thought to be salient if it is dif-
ferent from its surrounding regions. Unlike most ex-
isting approaches that directly compute the contrast
values, e.g. the differences of region features like color
and texture, and then combine them together directly
forming a saliency score, our approach computes a con-
trast descriptor, which will be fed into a regressor to
automatically calculate the saliency score.

To compute the contrast descriptor, we describe
each region by a feature vector, including color and
texture features, denoted by v. The detailed descrip-
tion is given in Table 1. For a regionR ∈ Sm, we regard
its immediately neighboring regions as a single one and
compute the color and texture features vN to represent
the neighborhood. The regional contrast descriptor of
R is computed as the differences diff(vR,vN ) between
its features and the neighborhood features. Specifi-
cally, the difference of the histogram feature is com-
puted as the distribution divergence, and the differ-
ences of other features are computed as the absolute
elements differences of the vectors. As a result, we get
a 26-dimensional feature vector. The details of the re-
gional contrast descriptor are given in Table 1.



Table 1. Color and texture features describing the visual characteristics of a region which are used to compute the regional
feature vector. d(x1,x2) = (|x11 − x21|, · · · , |x1d − x2d|) where d is the number of elements in the vectors x1 and x2.

χ2(h1,h2) =
∑

b

i=1
2(h1i−h2i)

2

h1i+h2i

with b being the number of histogram bins. The last two columns denote the symbols for

regional contrast and backgroundness descriptors. (In the definition column, S corresponds to N for the regional contrast
descriptor and B for the regional backgroundness descriptor, respectively.)

Color and texture features Differences of features
Contrast Backgroundness

features dim definition dim

a1 the average RGB values 3 d(aR
1 , aS

1 ) 3 c1 ∼ c3 b1 ∼ b3
a2 the average L*a*b* values 3 d(aR

2 , aS
2 ) 3 c4 ∼ c6 b4 ∼ b6

r the absolute response of LM filters 15 d(rR, rS) 15 c7 ∼ c21 b7 ∼ b21
r the max response among the LM filters 1 d(rR, rS) 1 c22 b22
h1 the L*a*b* histogram 8× 16× 16 χ2(hR

1 ,hS
1 ) 1 c23 b23

h2 the hue histogram 8 χ2(hR
2 ,hS

2 ) 1 c24 b24
h3 the saturation histogram 8 χ2(hR

3 ,hS
3 ) 1 c25 b25

h4 the texton histogram 65 χ2(hR
4 ,hS

4 ) 1 c26 b26

3.2. Regional property descriptor

In addition to regional contrast, we consider the
generic properties of a region, including appearance
and geometric features. The two features are extracted
independently from each region like the feature extrac-
tion algorithm in image labeling [19]. The appearance
features attempt to describe the distribution of col-
ors and textures in a region, which can characterize
the common properties of the salient object and the
background. For example, the background usually has
homogeneous color distribution or similar texture pat-
tern. The geometric features include the size and po-
sition of a region that may be useful to describe the
spatial distribution of the salient object and the back-
ground. For instance, the salient object tends to be
placed near the center of the image while the back-
ground usually scatters over the entire image. In sum-
mary, we obtain a 34-dimensional regional property de-
scriptor. The details are given in Table 2.

3.3. Regional backgroundness descriptor

There exist a few algorithms attempting to make use
of the characteristics of the background (e.g. homoge-
neous color or textures) to heuristically determine if
one region is background, e.g. [53]. In contrast, our al-
gorithm extracts a set of features and adopts the super-
vised learning approach to determine the background
degree (accordingly the object degree) of a region.

It has been observed that the background identi-
fication depends on the whole image context. Image
regions with similar appearances might belong to the
background in one image but belong to the salient ob-
ject in some other ones. It is not enough to merely use
the property features to check if one region is in the
background or the salient object.

Therefore, we extract the pseudo-background region
and compute the backgroundness descriptor for each
region with the pseudo-background region as a refer-

ence. The pseudo-background region B is defined as
the 15-pixel wide narrow border region of the image.
To verify such a definition, we made a simple survey
on the MSRA-B data set with 5000 images and found
that 98% of pixels in the border area belongs to the
background. The backgroundness feature of the re-
gion R is then computed as the differences diff(vR,vB)
between its features vR and the features vB of the
pseudo-background region, resulting a 26-dimensional
feature vector. See details in Table 1.

4. Learning

Learning the regional saliency regressor. We aim
to learn the regional saliency estimator from a set of
training examples. The training examples include a set
of confident regionsR = {R1, R2, · · · , RQ} and the cor-
responding saliency scoresA = {a1, a2, · · · , aQ}, which
are collected from the multi-level segmentation over a
set of images with the ground truth annotation of the
salient objects. A region is considered to be confident
if the number of the pixels belonging to the salient ob-
ject or the background exceeds 80% of the number of
the pixels in the region, and its saliency score is set
as 1 or 0 accordingly. In experiments we find that few
regions of all the training examples, around 6%, are
unconfident and do not use them for training.

As aforementioned, each region is described by a
feature vector x, composed of the regional contrast, re-
gional property, and regional backgroundness descrip-
tors. We learn a random forest regressor f from the
training data X = {x1,x2, · · · ,xQ} and the saliency
scores A = {a1, a2, · · · , aQ}. Learning a saliency re-
gressor can automatically combine the features and dis-
cover the most discriminative ones. Figure 3 presents
the most important 20 features.

Learning the multi-level saliency fusor. Given
the multi-level saliency maps {A1,A2, · · · ,AM} for



Table 2. The regional property descriptor.
description notation dim description notation dim

the average normalized x coordinates p1 1 the average normalized y coordinates p2 1
the normalized perimeter p7 1 the 10th percentile of the normalized x coordinates p3 1
the aspect ratio of the bounding box p8 1 the 10th percentile of the normalized y coordinates p4 1
the variances of the RGB values p9 ∼ p11 3 the 90th percentile of the normalized x coordinates p5 1
the variances of the L*a*b* values p12 ∼ p14 3 the 90th percentile of the normalized y coordinates p6 1
the variances of the HSV values p15 ∼ p17 3 the variance of the response of the LM filters p18 ∼ p32 15
the normalized area p33 1 the normalized area of the neighbor regions p34 1

an image, our aim is to learn a combinator
g(A1,A2, · · · ,AM ) to fuse them together to form the
final saliency map A. Such a problem has been already
addressed in existing methods, such as the conditional
random field solution [31]. In our implementation, we

find that a linear combinator, A =
∑M

m=1
wmAm,

performs well by learning the weights using a least
square estimator, i.e. , minimizing the sum of the losses
(‖A−

∑M

m=1
wmAm‖2F ) over all the training images.

5. Experimental results

5.1. Setup

We evaluate the performance over several data sets
that are widely used in previous works, e.g. [9, 11, 23].

MSRA-B1. This data set [31] includes 5000 images,
originally containing labeled rectangles from nine users
drawing a bounding box around what they consider the
most salient object. There is a large variation among
images including natural scenes, animals, indoor, out-
door, etc. We manually segmented the salient object
(contour) within the user-drawn rectangle to obtain bi-
nary masks. The ASD data set [1] is a subset (binary
masks are provided) of the MSRA-B, and thus we no
longer make the evaluation on it.

SED2. This data set [3] contains two subsets: SED1
that has 100 images containing only one salient object
and SED2 that has 100 images containing two salient
objects. Pixel-wise ground truth annotation for the
salient objects in both SED1 and SED2 are provided.

SOD3. This data set is a collection of salient object
boundaries based on the Berkeley segmentation data
set. Seven subjects are asked to choose the salient ob-
ject(s) in 300 images. We generate the pixel-wise an-
notation of the salient objects based on the boundary
annotation. This data set contains many images with
multiple objects making it challenging.

iCoSeg4. This is a publicly available co-segmentation

1http://research.microsoft.com/en-us/um/people/jiansun/
SalientObject/salient object.htm

2http://www.wisdom.weizmann.ac.il/∼vision/
Seg Evaluation DB/index.html

3http://elderlab.yorku.ca/SOD/index.html
4http://chenlab.ece.cornell.edu/projects/touch-coseg

data set [4], including 38 groups of totally 643 images.
Each image is along with pixel-wise ground truth an-
notation, which may contain one or multiple salient
objects. In this paper, we use it to evaluate the perfor-
mance of salient object detection.

We randomly sample 2500 images from the MSRA-
B data set to train our model, 500 images as the vali-
dation data set, and the remaining 2000 images as the
testing data set. Rather than training a model for each
data set, we use the model trained from the MSRA-B
data set and test it over others. This is because other
data sets are too small to train reliable models. More
importantly, it can help test the adaptability to other
different data sets of the model trained from one data
set and avoid the model overfitted to a specific one.

We evaluate the performance using the measures
used in [9], including the PR (precision-recall) curve,
the ROC (receiver operating characteristic) curve and
the AUC (Area Under ROC Curve) score. Precision
corresponds to the percentage of salient pixels correctly
assigned, and recall is the fraction of detected salient
pixels belonging to the salient object in the ground
truth. The PR curve is created by varying the saliency
threshold that determines if a pixel is on the salient
object. The ROC curve can also be generated based
on true positive rates and false positive rates obtained
during the calculation of PR curve.

5.2. Empirical analysis

Parameter analysis. We show how the level number
of segmentations and the number of trees in the random
forest regressor influence the performance in Figure 2.
The quantitative results are obtained on the validation
subset of the MSRA-B data set.

One can see in Figure 2(a) that the AUC score of
the saliency maps increases when more levels of seg-
mentations are adopted. The reason is that there may
exist some confident regions that cover the most (even
whole) part of an object in more levels of segmenta-
tions. However, a larger number of segmentations in-
troduce more computational burden. Therefore, to bal-
ance the efficiency and the effectiveness, we set M to
15 segmentations in our experiments.
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Figure 2. The AUC scores of the saliency maps of the val-
idation set of MSRA-B using (a) different number of seg-
mentations and (b) different number of trees in the random
forest regressor.

As shown in Figure 2(b), the performance of our
approach with more trees in the random forest saliency
regressor is higher. The more trees there are, the less
variances are among the weak classifiers, and thus the
better performance can be achieved. We choose to use
200 trees to train the regressor to balance the efficiency
and the effectiveness. When growing a tree, a node will
be split until less than 5 training samples falling in it
(i.e. forming a leaf node).

Feature importance. Our approach uses a wide va-
riety of features. We empirically analyze the usefulness
of various features. In training a random forest regres-
sor, the feature importance can be estimated by adding
the gini impurity decreases for each individual feature
over all trees. Figure 3 shows the rank of the most
important 20 regional features. The feature rank indi-
cates that the backgroundness descriptor is the most
critical one in our feature set (occupies 10 out of top
20 features). The regional contrast descriptor is the
least important. The reason might be that it is a lo-
cal contrast descriptor and less important compared
with the regional backgroundness descriptor which is
in some sense non-local. In the property descriptor,
the geometric features are ranked higher as salient ob-
jects tend to lie in the center in most images.

Efficiency. It takes around 24h for training and 10s for
testing given a typical 400×300 image on a PC with an
Intel i5 CPU of 2.50GHz using our unoptimized MAT-
LAB code. The most time-consuming step is the fea-
ture extraction on the multi-level segmentation, which
can be accelerated using the parallel or GPU comput-
ing techniques as computation on each segmentation is
independent on others.

5.3. Performance comparison

We report both quantitative and qualitative com-
parisons of our approach with state-of-the-art ap-
proaches. To save the space, we only consider the top
four models ranked in the survey [9]: SVO [10], CA [18],
CBsal [23], and RC [11] and recently-developed meth-
ods: SF [38] and LRK [41] that are not covered in [9].
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Figure 3. The most important 20 regional features. See
Table 1 and Table 2 for the description of the features.

Quantitative comparison. The quantitative com-
parison is shown Figure 4. As can be seen, our ap-
proach (DRFI) achieves the best performance on the
MSRA-B and SED1 data sets in which each image con-
tains one single salient object. It improves by 2.77%
and 4.70% over the second best algorithms, and 3.06%
and 4.81% over the third best algorithms in terms of
AUC scores. Additionally, the PR and ROC curves
of our approach are consistently higher than others on
these two data sets. Figure 4(c), corresponding to the
SED2 data set, shows that the true positive rate of
our approach is not very good for the high false posi-
tive rate, or equivalently, the precision is not so good
for the high recall rate. Intuitively, our approach has
limited ability when discovering all the salient objects
within one image (higher recall). The reason might be
that the position and size of the two objects in SED2
are very different from the training set of MSRA-B,
where most of the images contain only one object. On
other two data sets, SOD and iCoSeg, where an image
may also contain one or multiple objects, our approach
shows the best performance. It improves by 5.87% and
2.03% over the second best algorithms, and 7.11% and
2.79% over the third best algorithms in terms of the
AUC scores. The improvement over state-of-the-arts
are substantial when considering their performance and
especially the adaptability of our model to different
data sets.

Qualitative comparison. We also provide the visual
comparison of different methods in Figure 5. As can
be seen, our approach (shown in Figure 5 (h)) can deal
well with the challenging cases where the background
is cluttered. For example, in the first two rows, other
approaches may be distracted by the textures on the
background while our method almost successfully high-
lights the whole salient object. It is also worth pointing
out that our approach performs well when the object
touches the image border, e.g. the third and fourth
rows in Figure 5, even though it violates the pseudo-
background assumption.
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Figure 4. Quantitative comparison of saliency maps produced by different approaches on different data sets. From left to
right: (a) the MSRA-B data set, (b) the SED1 data set, (c) the SED2 data set, (d) the SOD data set, and (e) the iCoSeg
data set. From top to bottom: the PR curves, the ROC curves, and the AUC scores.

(a) input (b) SVO [10] (c) CA [18] (d) CBsal [23] (e) RC [11] (f) SF [38] (g) LRK [41] (h) DRFI

Figure 5. Visual comparison of the saliency maps. Our method (DRFI) consistently generates better saliency maps.

6. Conclusions

In this paper, we address the salient object detection
problem using a discriminative regional feature integra-
tion approach. The success of our approach stems from
two key factors. One is that we learn to integrate a lot
of regional descriptors to compute the saliency scores,
rather than heuristically compute saliency maps from
different types of features and combine them to get the
saliency map. The other one is that we introduce the
novel backgroundness descriptor, which is proved to be
quite effective in our experiments. The groundtruth
annotation of MSRA-B data set and our MATLAB im-

plementation are available online.
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