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Abstract. We contribute three complementary mechanisms that increase
the security, efficiency, and transparency of blockchain systems. We eval-
uate the use of status report messages that, like canaries in a coal mine,
allow peers to detect both malicious miners and eclipse attacks almost
immediately. We outline a mechanism, using these reports, that allow
blockchain users to quantify the risk of a double-spend attack within
minutes, versus the several hours required by the current system.

We also devise a novel method of interactive set reconciliation for efficient
status reports and blocks. Our approach, called Graphene, couples a Bloom
filter with an IBLT, and reduces traffic overhead by about 45%.

As an alternative for Bitcoin’s inefficient and opaque peer-to-peer (p2p)
architecture, we also introduce Canary that separates the network’s data
and control planes. Peers submit transactions directly to miners, who
announce new blocks and transactions via distribution networks whose
topology they manage. We show that Canary’s tree-based topology reduces
traffic overhead by about 30% compared to the current architecture. When
Graphene is coupled with Canary, Bitcoin’s traffic overhead is reduced by
about 80%, while detecting eclipse attacks and increasing transparency.

1 Introduction

Blockchain-based currencies [20], such as Bitcoin, have seen widespread adoption
despite several limitations not present in traditional financial systems, such as
credit cards or cash. Transactions in these currencies allow merchants to accept
coin in exchange for real goods; however, once a transaction has been submitted
to the miners for validation, its status is opaque, at times for tens of minutes,
until the transaction is confirmed by its presence in a new block. After a merchant
releases goods, a customer can launch a double-spend attack [20] by publishing a
longer branch of the blockchain that does not contain the original transaction,
but one that moves the coin to a second account under her control. At that point,
the customer has both the goods and her coin to spend again. Furthermore,
well-known eclipse attacks [17] prevent a merchant from receiving fresh block
and transaction data, increasing his vulnerability to other defrauding attacks.
Currently, the only method by which a peer can detect eclipse attacks is by
determining if he is receiving fresh block data from most miners.
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Contributions. We contribute several complementary mechanisms to increase
Bitcoin’s security, efficiency, and transparency. Our proposed mechanisms work
together or are separately deployable, and are applicable to other blockchain-based
network protocols, such as Litecoin (https://litecoin.org) and Zerocash [23].

First, we propose a method for active mining pools to issue status reports
every few minutes stating the block they are mining on top of. These reports of
about 2–3 KB each, contain transaction IDs queued for a miner’s next block. We
then establish a mechanism using status reports for detecting eclipse attacks and
quantifying the risk of falling victim to a double-spend attack within minutes, a
determination that can take hours using the current network.

Second, we contribute an extremely efficient method of announcing new blocks
and status reports called Graphene. Our blocks are a fraction of the size of related
methods, such as Compact Blocks [7] and Xtreme Thinblocks [25]. For example, a
10 KB Compact Block can be encoded in 2.6 KB with Graphene. We use a novel
interactive combination of Bloom filters [4] and IBLTs [14], providing a solution
to the problem of set reconciliation that has applications beyond Bitcoin.

Finally, leveraging status reports, we introduce Canary, an alternative for
Bitcoin’s inefficient and opaque p2p architecture. Canary’s architecture separates
the network’s data and control planes. Peers submit transactions directly to
miners, who announce new blocks and transactions via distribution networks
whose topology they manage. Canary’s use of status reports allows for a structured
topology that reduces traffic overhead by about 30% compared to the current
network, yet also revealing malicious or uncooperative miners and full nodes. We
evaluate performance empirically via our detailed network simulation that uses
miner-managed trees of full nodes as a potential distribution network.

By coupling Graphene with Canary’s tree-based topology, we show that traffic
overhead is reduced by about 85% compared to today’s network of Compact
Blocks over a graph topology. Yet our approach has increased security as well.

We begin with an overview of the limitations of Bitcoin, and then we will
describe our contributions. We assume a familiarity with blockchains and Bitcoin’s
operation; a detailed overview of Bitcoin’s operation appears in Appendix A.

2 Limitations of Blockchains and Bitcoin’s Architecture

Tschorsch et al. [26], Bonneau et al. [5], and Croman et al. [8] offer summaries of
broad Bitcoin research issues. Among Bitcoin’s limitations are its opaque status
and network inefficiency. In this section, we review these issues and summarize
related work.

Opaque block and transaction status. Bitcoin provides no method of query-
ing the status of the network and its unconfirmed transactions. Therefore, it is
never clear whether none, some, or all of the miners plan to include a submitted
transaction in their next block. Similarly, when the blockchain is forked, there is
no method to query the miners to determine which of them are working on each
fork. Block updates can be infrequent at times: About 12% of new blocks are not
found within 20 minutes, twice the target discovery period of 10 minutes, and
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1% of blocks are not discovered within an hour. (Figure 10 in Appendix D shows
historical delays.) Thus, even if a node does not see a new block for up to an hour,
the delay does not necessarily imply that it is disconnected from the network.
Furthermore, transactions do not always appear in the next block. About 80% of
transactions pay at least 0.0001BTC in fees, but fail to receive initial confirmation
in the next block about 22% of the time, and fail to receive initial confirmation
within two blocks 15% of the time. (See Figure 11 in Appendix D.) We propose to
address these problems via status reports that increase transparency and security.
GHOST [24] is a cousin to our approach: it includes on-chain, orphaned blocks
in a calculation of a subtree’s proof-of-work; in our case, off-chain reports allow
for a quantifiable security estimate by merchants.

Network inefficiency. There are a variety of inefficiencies in Bitcoin, including
those due to low miner coordination [11,24]. At a lower level, Bitcoin’s overhead
is high due to its high-degree random graph for message propagation. The current
network protocol causes every inv message to be sent along every edge in the
p2p network, whenever a transaction or block is created. Since nodes have a
network degree of at least 8, the resulting communication overhead is significant
(as we show below). In reality, each peer needs to receive any particular inv for a
transaction or block ID only once; we show status reports create such efficiency.

Bitcoin is also inefficient in disseminating block data. A block announcement
must be validated using the transaction contents comprising the block. However,
it is likely that the majority of the peers have already received these transactions,
and they only need to discern them from those in their mempool. In principle,
a block announcement needs to include only the IDs of those transactions, and
accordingly, Corallo’s Compact Block design [7] — which has been recently
deployed — significantly reduces block size by including a transaction ID list at
the cost of increasing coordination to 3 roundtrip times. Xtreme Thinblocks [25],
an alternative protocol, works similarly to Compact Blocks but sends additional
information. Specifically, if an inv is sent for a block that is not in the receiver’s
mempool, the receiver sends a Bloom filter of her IDpool along with the request
for the missing block. As a result, Xtreme Thinblocks are larger than Compact
Blocks but require 2 roundtrip times. Relatedly, the community has discussed
in forums the use of IBLTs for reducing block announcements [2,22], but these
schemes have not been fully evaluated. We propose a novel approach that couples
a Bloom Filter and an IBLT, which we prove and demonstrate is smaller than
these recent works, while requiring just 2 round trip times for coordination.

3 Eclipse Detection via Status Reports

In this section, we use status reports as a basis to outline a novel method to
quantify the likelihood of eclipse, as well as double-spend attacks, and show that
our approach is resilient to fraudulent miners. In Section 4, we will introduce
an efficient method of relaying the reports, and in Section 5, we use our status
reports to design an efficient, tree-based network topology for Bitcoin.
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3.1 Quantifying Consensus of Each Block

Each block added to a blockchain is a vote towards consensus with regard to the
block’s ancestors. We propose an approach for peers to estimate quantitatively the
amount of consensus associated with a block in terms of existing miners. Because of
the possibility of latecomers, the Fischer, Lynch, and Paterson (FLP) impossibility
result [13] prevents Nakamoto’s algorithm from ever reaching consensus; the FLP
result similarly restricts our algorithms to estimates as well.

ALGORITHM 1: EstimateMiningPower(block B, d days)

1: Let P be the set of valid blocks published within d days prior to B
2: Let M be the set of miners attributable to blocks in P
3: Let p be the count of blocks in P
4: for m ∈M do
5: Let pm be the count of blocks from P attributable to miner m
6: πm = pm/p
7: end for
8: return π (i.e., a vector of all miners)

Algorithms 1 and 2 specify the method for estimating mining power and
quantifying consensus on block B. Let B be a block on the blockchain and M be
the set of recent miners (i.e., mining pools). For each miner m ∈M , its historic
mining power πm can be computed from the set of blocks they have discovered
and claimed prior to when B was announced in a window of d = 1 day back;
specifically 0 ≤ πm ≤ 1 is the proportion of blocks attributed to m out of the
total number of (valid) blocks published during that time (including branches).
Attribution can be verified by use of the coinbase private key, if necessary. Let
D(B) be the set of miners that have claimed blocks that are descendants from
B on any branch. No duplicates appear in D(B) since it is a set rather than a

sequence. We define the consensus associated with B as φ(B) =
∑D(B)

m πm, a
value between 0 and 1. As the depth of B increases, so will the summed consensus.

ALGORITHM 2: EstimateConsensus(block B, d days)

1: Let D(B) be the set of miners that issued valid blocks descendant from B
2: π = EstimateMiningPower(B, d)

3: φ =
∑D(B)

m πm

4: return φ

As a merchant computes this estimate, he can conservatively assume that
a set of miners with power q = 1 − φ(B) is pursuing an alternate chain and a
double-spend attack. An attacker with q > 50% of the mining power need not
conduct an eclipse attack because she can rewrite the entire blockchain [20]. If
φ(B) < 50% then a merchant has no assurance that the majority of mining
power is building on B, and should assume an eclipse attack is underway and
not release goods to consumers. Detection of this scenario is our primary goal
for this technique. Secondarily, given the depth z of the block, a merchant can
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also estimate the attacker’s probability of a successful double-spend attack using

Nakamoto’s equation [20]: 1−
∑z

k=0
1
k!e

(−zq
1−q )( zq

1−q )k
(
1− (q/1− q)z−k

)
.

As we discuss below in greater detail, using actual historical mining power
with Alg. 2, we found that only after a block is 7 deep is φ(B) > 50% typically,
and only after a depth of 12 is φ(B) near 100% (See Fig. 2). Accordingly, next
we develop and evaluate a method for miners to announce consensus earlier.

3.2 Confirming Mining Power with Status Reports

To drastically improve the speed at which a block reaches near 100% consensus,
miners can periodically release status reports.1 The reports are not added to the
blockchain, and peers need no more than a recent history of them. Their purpose
is to release fine-grained information from each active miner towards informing
consensus; and in Section 5, we show how they can be leveraged to reduce traffic.
Status reports consist of the list of transactions ID that a miner plans to include
in its next block, the ID of the preceding block, and a nonce. Together, these
values hash to a value v, which serves as a partial proof-of-work towards the
network target. If the miner’s report is not fraudulent, then the miner m’s power
πm can be added to Alg. 2 for quantifying a block’s consensus value.

ALGORITHM 3: CheckConsensus(block C, R1, R2, d days, threshold)

1: Let t0 denote arrival of C

2: Let t1 and t2 denote the arrival of report R1 (with nonce v1) and R2 (with nonce

v2), respectively, building on block C from miner m

3: π = EstimateMiningPower(C, t)

4: Hashes for R1 and R2, respectively: n1 = (t1 − t0)Hπm and n2 = (t2 − t1)Hπm

5: Prob(Vmin ≥ v1) =
(
1− v1−1

2256−1

)n1 and Prob(Vmin ≥ v2) =
(
1− v2−1

2256−1

)n2

6: if Prob(Vmin ≥ v1) ≥ threshold and Prob(Vmin ≥ v2) ≥ threshold then

7: Add πm as m’s mining power for estimating consensus of C

8: else

9: Discard status reports

10: end if

A primary concern is, How do we detect fraudulent reports? The lowest hash
value can be used to confirm quantitatively that the miner’s historic mining
power is being used, as follows. Each hash computed by a miner is a sample taken
randomly from a discrete uniform distribution that ranges between [0, 2256 − 1].
Using a miner’s historical mining power and v computed from her status report,
we can calculate the likelihood of her reporting a hash greater than or equal to v.

Let n be the number of samples drawn from a discrete random variable
V ∼ uniform(0, 2256 − 1). Let Vmin be the first order statistic (i.e., the smallest
value in the sample). It is well-known that for any discrete random variable, the
complementary cumulative distribution function of the first order statistic is [6]:

1 This broad idea has been discussed informally in forums by us and others (e.g., [3]),
but to our knowledge, algorithms have not been formally defined or evaluated.
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Fig. 1: The probability of a miner produc-
ing 2 status reports if diverting power.
Lines represent different thresholds for
Eq.1. Honest miners divert no power and
will meet an Eq.1 threshold of 0.05 with
90% probability. A miner that diverts half
her power will produce pairs of status re-
ports with only a 60% probability for the
same threshold.

Prob(Vmin ≥ v) = (1− V (v − 1))n , where the cumulative distribution function
V (v) is the probability that the random variable V takes a value less than or
equal to v. In our case, we know that V (v) = v

2256−1 ; therefore,

Prob(Vmin ≥ v) =

(
1− v − 1

2256 − 1

)n

. (1)

Accordingly, we have the method outlined by Algorithm 3. At time t0, a peer
receives a valid announcement for block A, and at time t1, a status report is
received from miner m, who claims to be building on A. (Whether m mined A
is not relevant.) We know the total hash rate H for the Bitcoin network, which
can be computed from the network difficulty.2 The peer estimates the number
of hashes that m computed since the announcement of A as n = (t1 − t0)Hπm
hashes, and then calculates Prob(Vmin ≥ v). At time t2, the peer receives a
second status report from m, with a new nonce, and performs the same set of
calculations; this time, n = (t2 − t0)Hπm. If both probabilities are above a set
threshold, the peer believes in his estimate of the mining power πm. To increase
the level of difficulty for the attacker, peers do not accept status reports before
two minutes since a block announcement or previous status report from the same
miner. Additionally, peers calculate an average of status reports accepted during
the last w rounds, and ignore all reports from miners that frequently miss the
threshold. For a threshold of 0.05 for Eq. 1, an honest miner will be able to submit
a pair of reports with probability 0.952 = 0.90. If honest miners quickly drop their
mining power, they will fail to produce acceptable status reports; if honest miners
quickly increase their power, they will produce reports, but the algorithm will
use their historic power. Neither case increases risk for the merchant. Evidence
that mining power changes over long time scales is encoded in the blockchain.
Unfortunately, there is no available data that quantifies whether these changes
take place gradually or over short time scales.

Thwarting fraudulent miners. Fig. 1 shows the results of a Monte Carlo
simulation that calculates the probability of a malicious miner subverting our
estimate. Over 100,000 trials, we calculated the probability of a peer incorrectly

2 A finer estimate of hashrate can be computed from a moving window of blocks,
instead, if desired; see https://bitcoinwisdom.com/bitcoin/difficulty as an example.
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Fig. 2: The probability of a success-
ful double-spend attack, given a se-
quence of n blocks and largest c
mining pools’ issuing status reports.
Without status reports, a block must
be z = 11 deep before double-spend
attack success drops below 5%. Sta-
tus reports from the top c = 10 min-
ers drops the probability to about
5% after z = 2 blocks.

verifying their estimate of mining power, given 2 status reports by a fraudulent
miner who uses only partial mining power on the main chain. The probability
of producing a pair of consecutive status reports decreases quickly as a miner
diverts more mining power on an alternative chain. A miner that diverts half his
power will have only a 60% chance of producing two status reports when the
threshold is set to 0.05; as noted above, an average below 90% over w rounds is
quickly detectable. As a secondary mechanism, in the long-term, the estimate of
the mining power from Alg. 1 will also decrease if the miner consistently uses
less power on the main chain.

Effectiveness of gradual deployment. In Fig. 2, we estimate the consensus
of blocks that are z deep, using a Monte Carlo simulation based on the real
blockchain. The simulation is based on the mining power of all mining pools
that claimed blocks in 2016. Each trial of the simulation selected a sequence
of z mining pools with replacement, representing a block and a set of z − 1
descendants (as if there was no branching). The mining pools were selected at
random, weighted by their observed mining power. We also varied the number of
honest miners c = 0 . . . 14 issuing status reports, using the most powerful miners
first. Using Alg. 2, we summed the represented mining power. For miners issuing
status reports, we followed Alg. 3, using a threshold of 0.05, and discarded 10% of
reports. We ran 40k trials for each combination of z and c. Though not shown in
the plot, the simulation results show that without any status reports, on average
it takes 6 blocks before φ(B) > 50%, but mining power reaches 50% immediately
if the top 8 miners release status reports. The y-axis of the plot shows the median
probability of a successful double-spend attack, using Nakamoto’s equations [20].

As the figure shows, without status reports (c = 0), a block must be z ≥ 8
deep before the probability of a successful double-spend attack is less than 50%,
and z ≥ 12 blocks deep before attacker success is less than 1%. In contrast, on
average if c = 10 miners start sending out status reports, the probability of a
successful double-spend attack from existing mining power drops to 5% for z = 2.
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We expect these algorithms to work better with Ethereum [10] because it
incentivizes miners to release blocks that may become stale. The stale blocks
help estimate πm correctly. We plan to evaluate this case in future work.

Size of status reports and transaction status. A micro version of reports
would need to announce only the 80-byte block header; that is, a Merkle Root is
sufficient to verify a proof of work, rather than the full list of transactions. Micro
status reports could easily fit in a tweet by each miner, for example. However,
it is also useful to announce the list of transactions that were to be included
by the miner, which increases transparency. These full reports can be made
lightweight by using any efficient block announcement mechanism. For example,
using Compact Blocks [7], this list can be compressed to about 18 KB. Through
the techniques we propose in Section 4, our status reports are about 2–3 KB.
Thus, if the 15 largest mining pools each release full status reports twice every
10 minutes, the extra traffic on the network will be roughly 125 B/s.

4 Graphene: Efficient Block Announcements and Status
Reports

In this section, we detail Graphene, which is our efficient method for announcing
blocks and releasing status reports. The goal of Graphene is for a receiver to learn
the set of specific transaction IDs that are contained in a (pending or confirmed)
block containing n transactions. Unlike other approaches, Graphene never sends
an explicit list of transaction IDs, instead it sends a small Bloom filter and a
very small IBLT. (The operation of IBLTs is reviewed in Appendix B.)

The intuition behind Graphene is as follows. The sender creates an IBLT
I from the set of transaction IDs in the block. To help the receiver create the
same IBLT (or similar), he also creates a Bloom filter S of the transaction IDs
in the block. The receiver uses S to filter out transaction IDs from her pool of
received transaction IDs (which we call the IDpool) and creates her own IBLT
I ′. She then attempts to use I ′ to decode I, which, if successful, will yield the
transaction IDs comprising the block. The number of transactions that falsely
appear to be in S, and therefore are wrongly added to I ′, is determined by a
parameter controlled by the sender. Using this parameter, he can create I such
that it will decode with very high probability.
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PROTOCOL 1: Graphene

1: Sender: Sends inv for a block or status report.
2: Receiver: Requests unknown block; includes count of trans. in her IDpool, m.
3: Sender: Sends Bloom filter S and IBLT I (each created from the set of n

transaction IDs in the block) and essential Bitcoin header fields. The FPR of the
filter is f = a

m−n
, where a = n/(cτ).

4: Receiver: Creates IBLT I′ from the transaction IDs that pass through S. She
decodes the subtraction [9] of the two blocks, I 4 I′.

Protocol details are as follows. A Bloom filter is an array of x bits representing
y items. Initially, the x bits are cleared. Whenever an item is added to the filter, k
bits, selected using k hash functions, in the bit-array are set. The number of bits

required by the filter is x = y− ln(f)
ln2(2)

, where f is the intended false positive rate.

For Graphene, we set f = a
m−n , where a is the expected difference between I and

I ′. Since the Bloom filter contains n entries, and we need to convert to bytes, its

size is
− ln( a

m−n )

ln2(2)
1
8 . It is also the case that a is the primary parameter of the IBLT

size. IBLT I can be decoded by IBLT I ′ with very high probability if the number
of cells in I is d-times the expected symmetric difference between the list of
entries in I and the list of entries in I ′. In our case, the expected difference is a,
and we set d = 1.5 (see Eppstein et al. [9], which explores settings of d). Each cell
in an IBLT has a count, a hash value, and a stored value. (It can also have a key,
but we have no need for a key). For us, the count field is 2 bytes, the hash value is
4 bytes, and the value is the last 5 bytes of the transaction ID (which is sufficient
to prevent collisions). In sum, the size of the IBLT with a symmetric difference
of a entries is 1.5(2 + 4 + 5)a = 16.5a bytes. Thus the total cost in bytes, T , for

the Bloom filter and IBLT are given by T (a) = n− ln(f)
c + aτ = n

− ln( a
m−µ )

c + aτ ,

where all Bloom filter constants are grouped together as c = 8 ln2(2), and we let
the overhead on IBLT entries be the constant τ = 16.5.

To set the Bloom filter as small as possible, we must ensure that the false
positive rate of the filter is as high as permitted. We enforce a rule in Graphene
that all inv messages are sent ahead of a block announcement, and thus, can
assume that the receiver already has all of the transactions in the block in her
IDpool (they need not be in her mempool). Thus, we know that µ = n; i.e., we
allow for a of m− n transactions to become false positives, since all transactions
in the block are already guaranteed to pass through the filter. It follows that

T (a) = n
− ln( a

m−n )

c
+ aτ. (2)

Taking the derivative w.r.t. a, Eq. 2 is minimized when when a = n/(cτ). (Refer
to Eq. 3 in Appendix C for a more detailed discussion on how to calculate a.)

Due to the randomized nature of an IBLT, there is a non-zero chance that it
will fail to decode. In that case, the sender resends the IBLT with double the
number of cells (which is still very small). In our simulations, presented in the
next section, this doubling was sufficient for the incredibly few IBLTs that failed.
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4.1 Comparison to Compact Blocks

PROTOCOL 2: CompactBlocks

1: Sender: Sends inv for a block or status report that has n transactions.
2: Receiver: If block is not in mempool, requests compact block.
3: Sender: Sends the block header information, all transaction IDs in the block and

any full transactions he predicts the sender hasn’t received yet.
4: Receiver: Recreates the block with additional information, and requests missing

transactions if there exist any.

Compact Blocks [7] is to our knowledge the best-performing related work. It
has several modes of operation. We examined the Low Bandwidth Relaying mode
due to its bandwidth efficiency, which operates as follows. After fully validating
a new block, the sender sends an inv, for which the receiver sends a getdata
message if she doesn’t have the block. The sender then sends a compact block
that contains block header information, all transaction IDs (shortened to 5 bytes)
in the block, and any transactions that he predicts the receiver does not have
(e.g., the coinbase). If the receiver still has missing transactions, she requests
them via an inv message. Protocol 2 outlines this mode of Compact Blocks.

The main difference between Graphene and Compact Blocks is that instead of
sending a Bloom filter and an IBLT, the sender sends block header information
and all shortened transaction IDs to the receiver. For a block of n transactions,
Compact Blocks costs 5nB bytes. For both protocols, the receiver needs the inv
messages for the set of transactions in the block before the sender can send it.
Therefore, we expect the size of the IDpool of the receiver, m, to be constrained
such that m ≥ n. Assuming that m > 0 and n > 0, the following inequality must

hold for Graphene to outperform Compact Blocks, n
− ln( a

m−n )

c + aτ < 5n; after
algebraic simplification, our scheme is strictly smaller whenever n ≥ m/1, 287, 670.

It does not seem likely that blockchain systems would in practice have a set
of unconfirmed transactions held by peers that is 1,287,670 times larger than the
block size. (Already over 22 billion transactions for the current block size.) In
the next section, we provide further empirical results; and a detailed example
of how to calculate the size of each scheme appears in Appendix C. Finally, we
note that Xtreme Thinblocks [25] are strictly larger than Compact Blocks since
they contain all IDs and a Bloom filter, and so Graphene performs strictly better
than Xtreme Thinblocks as well.

Ordered blocks. Graphene does not specify an order for transactions in the
blocks, and instead assumes that transactions are sorted by ID. Bitcoin requires
transactions depending on another transaction in the same block to appear
later, but a canonical ordering is easy to specify. If a miner would like to order
transactions with some proprietary method (e.g., [15]), that ordering would be
sent alongside the IBLT. For a block of n items, in the worst case the list will
be n log2(n) bits long. Even with this extra data, our approach is must more
efficient than Compact Blocks.

10



5 Canary: Improved Network Efficiency and Security

In this section, we show how to leverage status reports and Graphene to re-
architect the p2p network underlying Bitcoin. The current p2p network is designed
to prioritize decentralized control. Status reports can allow peers in Bitcoin and
other blockchains to instead prioritize security, resiliency, and performance with
managed networks. We take inspiration from networking technologies such as
software defined networks (SDNs) [19] in which a centralized network controller
dictates the behavior of a local network. Separating the control and data planes
is a paradigm that predates SDNs going back to the 1970s [1,12,16,18]. We
are specifically not advocating for the centralized control of the Bitcoin network,
but rather for the creation of a set of network overlays, each managed by an
independent entity.

The existing p2p network is not Bitcoin’s only network: miners also join the
Bitcoin Relay Network (BRN), a separate network for fast and reliable dissemina-
tion of transaction and block data. The BRN is nearly a clique topologically, and
it is not realistic for the majority of peers to join the BRN. With deployment
of status reports by mining pools, peers are free to pursue an alternative to the
existing unreliable and ungoverned p2p network. In our approach, miners remain
in the BRN, but they additionally offer managed network services to interested
clients for a fee. Miners forward all received transactions to the BRN. In fact,
the service can be provided by any entity that joins the BRN as a full node.

The advantage of this approach is that (like an SDN) the miners can arrange
their dependent full node clients in any topology that suits them. We imagine
most will charge a small fee to support a star topology based on redundant
and resilient cloud services. However, it is possible for the miner to arrange
clients in a tree that scales well with the number of clients; status reports can
be used by clients to detect failure, and comparison of client feedback can be
used by the miner to identify malicious nodes. Full nodes have the option of
joining a secondary managed network, allowing for the detection of any missing
status reports more quickly than a timeout would. In this way, the reliability or
maliciousness of a provider can be determined. Providers of this service would
advertise availability like any other Internet-based business. Meanwhile, the
original p2p network would be available to peers that prefer its paradigm.

Receiving updates from miners. Any node connected to the BRN can be the
root of a distribution network that propagates new transactions, status reports,
and blocks. For simplicity, we assume the root is a miner. Status reports are
propagated along the BRN, and the roots of a distribution network forward all
status reports that they receive. It is sufficient for a full node to join a single
distribution network and watch if status reports are received from a sufficient
number of miners on schedule; full nodes that wish to more quickly recover from
being eclipsed can listen for status reports on a second distribution network.

A trivial structure for a miner distribution network is a star structure in which
each constituent full node has a direct connection to the owner miner. However,
one-to-many connections do not scale well. Therefore, we suggest that full nodes
be organized in a spanning tree with the miner at the root. The limitation of
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trees is that they offer the chance for full nodes to act maliciously and stop
forwarding information to descendants. To address this problem, we have full
nodes pay the root of the tree a membership fee to join the tree, which is in-line
with Bitcoin’s fee-based design.

Full nodes joining a distribution tree will be placed by the owner (at the root)
in a chosen location on the tree depending on factors such as the joining fee, full
node’s reputation/reliability, etc. For instance, an unknown, recently joined full
node is likely to be placed as a leaf, whereas the root can move well-behaving
nodes higher in the tree over time, i.e., closer to the root. This incentivizes the
member full nodes to behave well on the tree in order to be placed closer to the
root, and therefore benefit from more reliable and faster message reception.

When status reports are not received (or are received malformed), a full node
can report directly to the root, and through comparison of reports, faulty nodes
in the middle of the tree can be easily discovered. Full nodes should also check
that their submitted transactions appear in the status reports of miners other
than the one they submitted it to. The status reports need only confirm that
at least 50% of the mining power is reachable, rather than a low probability of
double spend attack.

We expect that the set of available distribution networks will be small and
with low churn, just as the set of mining pools has low churn (see Fig. 9 in
Appendix D). We also expect that the miners will charge membership fees and
that standard solutions for DoS-protection for Web services will be applied (e.g.,
cloud services) as they are more likely in practice than the tree-based solution
we propose here; full nodes that do not wish to pay such membership fees could
remain on the existing p2p network.

Submitting transactions. Full nodes submit their transactions to the Bitcoin
network by sending them to one or more miners. In contrast to transaction
flooding in the current Bitcoin network, our mechanism is more scalable and
bandwidth efficient; however, it is potentially susceptible to adversarial flooding
attacks. Many DoS-resistant mechanisms exist and are used by commercial web-
based services. In the spirit of keeping mining open to all, we suggest each miner
to run a Tor hidden service [21] by setting up an introduction point.

Traffic reduction. All transactions and block announcements are preceded by
inv messages, both in today’s p2p network as well as Canary’s, and they represent
a significant fraction of the network’s overhead. In both networks, inv messages
cross each (undirected) edge once. Since each peer in today’s network maintains
connections to at least 8 peers, inv messages cross four times as many edges as
the number of peers. In Canary’s tree-based topology, however, the number of
edges is equal to the number of peers (assuming each peer is on only one tree),
hence reducing inv traffic.

6 Canary and Graphene Evaluation

Our evaluation addresses the following questions in service of the dual design
goals of reducing traffic while detecting eclipse attacks:
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Fig. 3: Main evaluation result: A comparison of Graphene on Canary’s tree topology
to Compact Blocks on the Satoshi graph. The plot shows boxplots of ratios of traffic costs.
(Right) Excluding transaction content, our approach reduces Bitcoin traffic overhead to
20%(i.e., reduces it by 80%). (Left) When including the cost of transaction content (set at
500B each), our approach reduces Bitcoin’s total traffic by 20% of the current cost.

1. What reduction in traffic overhead results from using Graphene and Canary
compared to using Compact Blocks on the original Satoshi-based graph
topology? (Answer: traffic is reduced by 80%.)

Secondarily, we isolate each component by asking:
2. What is the reduction in traffic from using Graphene for block announcements

compared to Compact Blocks? (Answer: overhead is reduced by 45–80%.)
3. What is the reduction in traffic from using Canary’s tree-based graph com-

pared to the Satoshi-based graph? (Answer: overhead is reduced by 30–70%.)

Simulator assumptions. Our evaluations are based on a detailed, custom
simulator of Bitcoin using a Python-based discrete event simulator package. Our
simulation models the propagation of messages across network links (ignoring
effects from variable network bandwidth, TCP, etc.). Nodes accurately model
any part of Bitcoin’s operation necessary for evaluating our metrics, including
maintaining a mempool, the blockchain and its forks, and using realistic signaling.

For Graphene and Compact Blocks, our simulator creates and decodes real
Bloom filters and IBLTs, rather than merely estimating whether they might
decode or return any false positives. If these data structures fail due to random
chance, the nodes recover within the simulation. Because our simulation models
detailed signaling and is written in a high-level language, our evaluations are
based on a modest number of peers. Since our goal is a comparison between two
choices, we expect that our results are representative of larger-scale scenarios.

A challenging parameter to set is the number of transactions per second offered
to the network by peers. Our approach is to create kernel density estimates (KDEs)
from the transaction generation patterns of real world peers. To that end, we
gathered data for all Bitcoin transactions between October 27, 2015 and January
7, 2016 from http://blockchain.info. Each transaction in the dataset is labeled with
an IP associated with the peer believed to have generated it, as well as the time
it was released to the network. For each peer, we normalized the release times by
the time of the day in which they were released. We then constructed the KDE for
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each peer using these normalized transactions times and gaussian kernels with one
hour bandwidth. The KDE for a given peer represents a probability distribution
from which we can draw transactions over the course of a simulated day. For
each peer in the simulator, we randomly select one of the KDEs corresponding
to a real world peer. Because these distributions have been generated from real
data, they are a good approximation of the activity of real peers over the average
one-day interval. On the other hand, this approach is not able to model days of
the week or seasonal phenomena in transaction creation times.

6.1 Evaluation

Each simulation is configured to use the following parameters: (i) Topology:
Satoshi’s original high-degree graph topology; or our Canary protocol’s binary
tree topology. (ii) Block Protocol: Compact Blocks; or our Graphene protocol.
(iii) Block capacity: 2000 transactions. (iv) Full nodes: 50, 100, 150, or 200 peers.
In all, we ran 16 combinations of parameters, and we ran each combination with
at least 20 different seeds (and up to 30 seeds in some cases as time allowed);
all told, we completed 376 simulations. The seeds determined the number of
transactions per second (by sampling our KDE, as described above), and the
interarrival of transactions and blocks. We set status reports to be generated
every 2.5 minutes by each miner. In all simulations, we used 6 miner nodes,
representing 6 mining pools. Each simulation was equivalent to 120 minutes of
running Bitcoin; in sum, we simulated about 30 days of Bitcoin’s operation.

Our main results are shown in Fig. 3, which compares Graphene on Canary’s
tree topology against Compact Blocks on the Satoshi graph, as a function of the
number of nodes in the network. Since each run is a different number of KBs,
we compare the ratio of an exact set of parameters (including the seed), varying
only the protocol and topology combination. Boxplots3 show the distribution of
results across all trials. Fig. 3(left) shows that our approach of using Canary and
Graphene reduces traffic overhead by a median value of about 80% compared
to Compact Blocks over the Satoshi graph (i.e., the current method sends 6.6×
more bytes than our approach). Most traffic in Bitcoin is due to the transactions
themselves, and Fig. 3(right) shows that using Canary and Graphene reduces
total traffic by 20% compared to using Compact Blocks over the Satoshi graph.
As the number of full nodes increases along the x-axis, the ratio of total traffic
in the network between the two protocol-topology combinations remains steady,
suggesting that our results are representative of larger networks.

We also evaluated the sum number of bytes per message type for two example
seeds across four protocol-topology combinations. First, we found that in all
cases, changing from Satoshi graphs to trees drastically reduces the number of
inv messages. Second, we saw that the amount of data used by Compact Blocks
is much greater than Graphene’s use of a Bloom filter of the block and an IBLT
of the transaction list. (See Fig. 7 in Appendix C.) We also grouped our larger set
of results according to transactions-per-second, and found that Compact Blocks

3 See https://en.wikipedia.org/wiki/Box plot.
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Fig. 4: Varying Topology. When Graphene is used, Canary reduces traffic overhead by 70%
compared to Satoshi (or by 10% for total traffic, which includes transaction data). When
Compact Blocks are used, Canary reduces traffic by more than 30% compared to Satoshi
graphs (or by 10% for total traffic).
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Fig. 5: Varying Protocol: On Canary’s tree-based topology, Graphene reduces traffic over-
head by 80% compared to Compact Blocks (or by 15% for total traffic, which includes
transaction data). When using a Satoshi-style graph, the cost of Graphene reduces traffic
by 45% compared to Compact Blocks (or by 15% for total traffic).

on the Satoshi graph generates a wide range of bytes-per-transaction, even at the
lowest transactions-per-second rate. In contrast, Graphene on Canary is both
more efficient and stable as load changes. (Details appear in Fig. 6, Appendix C.)

Canary. To isolate the efficiency gains of Canary, we compared the two protocols
on the Satoshi graph and Canary tree topologies. Fig. 4(left) shows that both
protocols benefit from using a tree topology. Graphene benefits more from Canary,
which reduces traffic overhead by 70%. When transaction data is also included
as part of the total traffic, Graphene reduces overhead by about 10%. Fig. 7 in
Appendix D details the reduction for two sample seeds, and shows that Canary
reduces traffic by cutting down inv messages.

Graphene. When we evaluate the total bandwidth ratio of Graphene to Compact
Blocks, we can see that both Canary and Satoshi topologies benefit from using
Graphene. Fig. 5(left) shows that Graphene benefits with a reduction of traffic
by 80%, while gains on Satoshi graphs are less than 55% due to increased inv

traffic. Again, for these detailed gains, refer to Fig. 7 in Appendix D.
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7 Conclusion

First, we have presented status report messages that allow peers to detect eclipse
attacks almost immediately. We have also described how these reports can
estimate the risk of a double-spend attack. Second, we presented Graphene, a
protocol for efficiently announcing new blocks and status reports. Third, we
proposed Canary, a new tree-based topology for Bitcoin, which separates the
network’s data and control planes. Via a detailed network simulation, we have
demonstrated that the combination of Canary and Graphene reduces network
traffic by 80%, compared to the state of the art use of Compact Blocks on the
Satoshi graph. Our proposed mechanisms work together or are incrementally
deployable, and provide an efficient method for increasing transparency and
detecting eclipse attacks, not only for Bitcoin but also for other blockchain-based
network protocols.

References

1. Systems Network Architecture General Information. No. GA27-3102-0, IBM, http://
docwiki.cisco.com/wiki/IBM Systems Network Architecture Protocols, first edn. (Jan
1975)

2. Andresen, G.: O(1) Block Propagation. https://gist.github.com/gavinandresen/
e20c3b5a1d4b97f79ac2 (August 2014)

3. Bishop, B.: bitcoin-dev mailling list: Weak block thoughts... https://lists.
linuxfoundation.org/pipermail/bitcoin-dev/2015-September/011158.html (Sep 2015)

4. Bloom, B.H.: Space/Time Trade-offs in Hash Coding with Allowable Errors. Com-
mun. ACM 13(7), 422–426 (Jul 1970)

5. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J., Felten, E.: Sok: Research
perspectives and challenges for bitcoin and cryptocurrencies. In: IEEE S&P. pp.
104–121 (May 2015), http://doi.org/10.1109/SP.2015.14

6. Casella, G., Berger, R.L.: Statistical inference. Duxbury advanced series, Brooks
Cole, Pacific Grove (Calif.) (2002), http://opac.inria.fr/record=b1134456

7. Corallo, M.: Bip152: Compact block relay. https://github.com/bitcoin/bips/blob/
master/bip-0152.mediawiki (April 2016)

8. Croman, K., et al.: On Scaling Decentralized Blockchains . In: Workshop on Bitcoin
and Blockchain Research (Feb 2016)

9. Eppstein, D., Goodrich, M.T., Uyeda, F., Varghese, G.: What’s the Difference?:
Efficient Set Reconciliation Without Prior Context. In: ACM SIGCOMM Conference.
pp. 218–229 (2011), http://doi.org/10.1145/2018436.2018462

10. Ethereum Homestead Documentation. http://ethdocs.org/en/latest/
11. Eyal, I., Gencer, A.E., Sirer, E.G., van Renesse, R.: Bitcoin-NG: A Scalable

Blockchain Protocol. In: USENIX NSDI (2016)

12. Feamster, N., Balakrishnan, H., Rexford, J., Shaikh, A., van der Merwe, J.: The
case for separating routing from routers. In: Proceedings of the ACM SIGCOMM
Workshop on Future Directions in Network Architecture. pp. 5–12. FDNA ’04,
ACM, New York, NY, USA (2004), http://doi.acm.org/10.1145/1016707.1016709

13. Fischer, M., Lynch, N., Paterson, M.: Impossibility of distributed consensus with
one faulty process. JACM 32(2), 374–382 (1985)

16

http://docwiki.cisco.com/wiki/IBM_Systems_Network_Architecture_Protocols
http://docwiki.cisco.com/wiki/IBM_Systems_Network_Architecture_Protocols
https://gist.github.com/gavinandresen/e20c3b5a1d4b97f79ac2
https://gist.github.com/gavinandresen/e20c3b5a1d4b97f79ac2
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-September/011158.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-September/011158.html
http://doi.org/10.1109/SP.2015.14
http://opac.inria.fr/record=b1134456
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
http://doi.org/10.1145/2018436.2018462
http://ethdocs.org/en/latest/
http://doi.acm.org/10.1145/1016707.1016709


14. Goodrich, M., Mitzenmacher, M.: Invertible bloom lookup tables. In: Conf. on
Comm., Control, and Computing. pp. 792–799 (Sept 2011), http://doi.org/10.1109/
Allerton.2011.6120248

15. Hanke, T.: A Speedup for Bitcoin Mining. http://arxiv.org/pdf/1604.00575.pdf (Rev.
5) (March 31 2016)

16. Haskin, D.L.: A BGP/IDRP Route Server alternative to a full mesh routing. RFC
1863 (Oct 1995), http://rfc-editor.org/rfc/rfc1863.txt

17. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse Attacks on Bitcoin’s
Peer-to-peer Network. In: USENIX Security (2015)

18. Keshav, S., Paul, S.: Centralized multicast. In: Proceedings of the Seventh Annual
International Conference on Network Protocols. pp. 59–. ICNP ’99, IEEE Computer
Society, Washington, DC, USA (1999), http://dl.acm.org/citation.cfm?id=850936.
852461

19. Kim, H., Feamster, N.: Improving network management with software defined
networking. IEEE Communications Magazine 51(2), 114–119 (February 2013)

20. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System. https://bitcoin.org/
bitcoin.pdf (May 2009)

21. Overlier, L., Syverson, P.: Locating hidden servers. In: IEEE S&P. pp. 15–pp. IEEE
(2006)

22. Russel, R.: Playing with invertible bloom lookup tables and bitcoin trans-
actions. http://rustyrussell.github.io/pettycoin/2014/11/05/Playing-with-invertible-
bloom-lookup-tables-and-bitcoin-transactions.html (Nov 2014)

23. Sasson, E.B., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza, M.:
Zerocash: Decentralized anonymous payments from bitcoin. In: IEEE S&P. pp.
459–474 (2014), http://dx.doi.org/10.1109/SP.2014.36

24. Sompolinsky, Y., Zohar, A.: Secure high-rate transaction processing in Bitcoin.
Financial Cryptography and Data Security (2015), http://doi.org/10.1007/978-3-
662-47854-7 32

25. Tschipper, P.: BUIP010 Xtreme Thinblocks. https://bitco.in/forum/threads/buip010-
passed-xtreme-thinblocks.774/ (Jan 2016)

26. Tschorsch, F., Scheuermann, B.: Bitcoin and beyond: A technical survey on decen-
tralized digital currencies. IEEE Communications Surveys Tutorials PP(99), 1–1
(2016)

A Introduction to Blockchains and Bitcoin

Account balances. A Bitcoin is a unit of currency, which is fungible, divisible
(up to eight decimal places), and recombinable. It is measured as a balance across
multiple accounts, which are themselves manifested in addresses.4 Each address
comprises a stored asymmetric cryptographic key and an associated balance of
Bitcoin. The public portions of an address are the public key and the balance
of coin. When an address is involved in a transaction with one or more other
addresses, Bitcoins are transferred among them.

4 Internally, Bitcoins exist only as “unspent transaction outputs” (UTXO), but users
of the system think of them as balances in addresses, and that view does not affect
the results of this paper.
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Roles. Users wishing to exchange coins broadcast the details of their transactions
over Bitcoin’s p2p network, signed with their private keys. A set of miners on
the p2p network verify that each transaction is signed correctly and does not
conflict with another transaction. Miners independently agglomerate a set of valid
transactions into a block and attempt to solve a predefined proof-of-work (POW)
problem involving this block and a chain of prior valid blocks. In Bitcoin, the
POW computation is dynamically calibrated to take approximately ten minutes
per block. The first miner to solve the problem broadcasts his solution to the
network, adding it to the ever-growing blockchain; the miners then start over,
with the appended blockchain and the set of transactions that were not added
as part of the previous block. When transactions appear in a block, they are
considered confirmed, and each subsequent block provides additional confirmation.
The miners’ incentive for discovering a block is a reward of coins, called the
coinbase, consisting of a predetermined block reward (currently 12.5 BTC) and
fees from transactions included in the block.

Full nodes are peers in the network that do not mine, but do generate,
validate, and propagate transactions and blocks to other nodes including miners.
Consumers (i.e., those who purchase goods or services) typically have no need to
process and validate all transactions, so they can instead operate simple payment
verification (SPV) nodes that process, store, and transmit data involving only
addresses-of-interest, which are typically addresses they control, make payments
to, or receive payments from. SPV nodes rely on full nodes to relay transactions-
of-interest.

Bitcoin transaction consistency. The main goal of the Bitcoin p2p network
is to provide a consistent view of blocks and unconfirmed transactions across
all network peers. Each peer maintains a local snapshot of the transactions in a
memory pool dubbed the mempool. Blocks consist of a list of transactions that
have already (almost always) been broadcast to miners and full nodes in the
network.

To announce a new block, a miner lists all transactions contained in the new
block along with a header that provides an easily verifiable POW solution. When
a full node or miner receives a new block, it validates each transaction in the
block and the proof of work.

Due to propagation delays in the network, it is possible for the miners to
receive competing (but valid) block announcements, which bifurcates the chain,
until one of the two forks is appended to first. It is also possible and valid for a
miner to receive a set of blocks that retroactively rewrites many blocks; doing so
is a demonstration of computational work that miners accept despite the age or
depth5 of a rewritten block.

Topology and flooding. Bitcoin propagates new transaction and block an-
nouncements by flooding throughout a p2p random graph of full nodes and
miners. Each peer in the graph requests direct connections to 8 other peers, and
accepts requests for connections from up to 117 other peers. A peer will offer a

5 The depth of a block refers to the number of blocks that follow it; the height of a
block is the number of blocks that precede it.
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newly created transaction to each neighbor via an inv message, which reports
the hash of the transaction content as its ID. If a peer does not already possess
the transaction, it will request it using a getdata message. Blocks are handled
similarly: inv messages describe a block by its ID, which is created from the
hash of the block’s contents. Upon receiving the inv, peers will request the block
if they do not already have it. Hence, in today’s topology, inv messages cross
every edge in the random graph once, while the actual transaction and block
data typically propagate along only a spanning tree of the graph (more edges
will be traversed if there are propagation delays). For convenience, in this paper,
we refer to the set of (unconfirmed) transaction IDs that a peer knows about as
the IDpool. Actual transaction contents are placed in the mempool.

B Overview of IBLTs

An IBLT [14] is an efficient data structure that supports insertion and retrieval
of key-value pairs. Like Bloom filters, an IBLT is an efficient data structure
that allows two parties to determine, with high probability, which values from
a set they share in common. Unlike Bloom filters, IBLTs allow for recovery of
any missing values, which are assumed to be of fixed size and encoded as binary
strings. Key-value pairs can be inserted, retrieved and deleted like an ordinary
hash table. An IBLT consists of m entries, each storing a count, a keySum, and
a valueSum, all initialized to zero. A new value v is inserted by determining its
entry i = h(v) based on the hash of its value such that i < m. At entry i, all
three fields are incremented or xored. In particular, standard addition is used for
the count field, but xor is used to add to the keySum and valueSum fields. An
item can be deleted similarly: at the correct entry, count is subtracted by 1, and
the valueSum and keySum fields are xor’ed. When count ≡ 1 the valueSum field
contains the actual value of the sole item remaining in the cell. (The purpose
of the keySum field is to support a GET() operation for a given key: that is, if
count ≡ 1 and keySum ≡ h(v), then valueSum ≡ v.) IBLTs use k > 1 hash
functions to store each value in k entries, which we collectively call a value’s entry
set. If table space is sufficient, then with high probability for at least one of the
k entries, count ≡ 1 , and so keySum and valueSum fields are recoverable [14] .

Suppose that two peers each have a list of values, V and V ′, respectively, such
that the difference is expected to be small. The first peer constructs an IBLT
L (with m entries) from V . The second peer constructs V ′ from L′ (also having
m entries). Eppstein et al. [9] showed that a cell-by-cell difference operator can
be used to efficiently compute the symmetric difference L4 L′. For each pair
of fields (f, f ′), at each entry in L and L′, we compute either f ⊕ f ′ or f − f ′
depending on the field type. When |count| ≡ 1 at any entry, the corresponding
value can be recovered. If count ≡ 1, then the value belongs to L \ L′. And
if count ≡ −1, then the value belongs to L′ \ L. Peers proceed by removing
all values corresponding to these unit counts—not only from the recoverable
entry, but also from all entries in the value’s entry set. This process will generally
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produce new recoverable entries, and continues until there remain no recoverable
entries.

In general it is possible to place an arbitrary number of values t into an IBLT,
but only a fixed number τ can actually be recovered and only after the other
t− τ values have first been removed (using the procedure above for example).
The capacity of an IBLT refers to this value τ and is proportional to the number
of entries m it comprises.

C Supplementary Material for Graphene and Canary

Setting a, the expected symmetric difference. Actual implementations of
Bloom filters and IBLTs involve several (non-continuous) ceiling functions:

T (a) =

(
dln(

m− n
a

)e

⌈
n ln(m−n

a )

dln(m−n
a )e ln2(2)

⌉)
1

8
+ daeτ (3)

The optimal value of Eq. 3 can be found by brute force using a simple loop. We
compared the value of a picked by using a = n/(cτ) to the cost for that a using
Eq. 3 for valid combinations of 50 ≤ n ≤ 2000 and 50 ≤ m ≤ 10000. We found
that it is always within 37% of the cost of the optimal value, with a median
difference of 16%. In practice, a for-loop brute-force search for the lowest value
of a is almost no cost to perform, and we do so in our simulations.

Example. A receiver with an IDpool of m = 4000 transactions makes a request
for a new block that has n = 2000 transactions. The value of a that minimizes
the cost is a = n/(cτ) = 31.5. The sender creates a Bloom filter S with f =

a
m−n = 31.5/2000 = 0.01577, with total size of 2000× −ln(0.01577)c = 2.1KB. The
sender also creates an IBLT with a cells, totaling 16.5a = 521B. In sum, a total
of 2160B + 521B = 2.6KB bytes are sent. The receiver creates an IBLT of the
same size, and using the technique introduced in Eppstein et al. [9], the receiver
subtracts one IBLT from the other before decoding. In comparison, for a block of
n transactions, Compact Blocks costs n ∗ 5B = 5nB. Therefore, Compact Blocks
costs 2000 ∗ 5B = 10KB, over 3 times the cost of Graphene. If Graphene was
to impose an ordering, the additional cost for n = 2000 transactions would be
n log2(n) bits = 2000 ∗ log2(2000) bits = 2.74 KB. This increases the cost of
Graphene to 5.34 KB, still almost half of Compact Blocks.
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