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Abstract Designing robots that can model unstructured environments and act pre-
dictably in those environments is a challenging problem. In this article we address
two issues in object modeling and manipulation. First, in image-based models, how
can we choose a discrete set of canonical views from an infinite set of possible
choices to support recognition and manipulation? Second, how can we make ac-
tions repeatable and predictable in unstructured environments? We propose an ob-
ject model that handles both of these issues in a coherent way and introduce a novel
image-based visual servoing algorithm that works in conjunction with the object
model. We then demonstrate our object model and visual servoing algorithm on a
tool grasping task on the Robonaut 2 simulator.

1 Introduction

In the fields of human psychophysics and neurophysiology, the study of visual ob-
ject recognition is often motivated by the question of how humans recognize 3-D
objects while receiving only 2-D light patterns on the retina [29]. Two types of mod-
els for object recognition have been proposed to answer this question. The structural
description model represents each object by a small number of view-invariant prim-
itives and their position in an object-centered reference frame [23]. Alternatively,
image-based models represent each object as a collection of viewpoint-specific lo-
cal features. Since the development of these models, experiments in human psy-
chophysics and neurophysiology have provided converging evidence for image-
based models. In experiments done by Bülthoff and Edelman [6] [2], it was shown
that when a new object is presented to a human subject, a small set of canonical
views are formed despite the fact that each viewpoint is presented to the subject for
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the same amount of time. Experiments on monkeys further confirmed that a sig-
nificant percentage of neurons in the inferior temporal cortex responded selectively
to a subset of views of a known object [20]. However, how an infinite set of pos-
sible views can be effectively reduced to a smaller set of canonical views remains
an open question. Different approaches such as view interpolation [24] and linear
combinations of views [31] have been proposed.

Closely related to the image-based models in the field of psychophysics, aspect
graphs were first introduced as a way to represent 3-D objects using multiple 2-D
views in the field of computer vision [16]. An aspect graph contains distinctive
views of an object captured from a viewing sphere centered on the object. Research
on aspect graphs has focused on the methodologies for automatically computing as-
pect graphs of polyhedra [10] and general curved objects [17]. The set of viewpoints
on the viewing sphere is partitioned into regions that have the same qualitative topo-
logical structure as an image of the geometric contours of the object. However, work
done in this field was mostly theoretical and was not applicable in practice [7]. One
of the difficulties faced in this work concerned the large number of aspects that exist
for normal everyday objects. An object can generate millions of different aspects,
but many of these may be irrelevant at the scale of the observation. In this work, we
propose an object model that provides a consistent treatment for classifying obser-
vations into aspects within a practically-sized subset of all possible aspects for most
types of objects including deformable objects.

Object and tool manipulation are essential skills for a humanoid robot, and rec-
ognizing known objects and tools is often a first step in manipulation tasks. In com-
puter vision and robotics, object recognition is often defined as the process of la-
beling segments in an image or fitting a 3-D model to an observed point cloud. The
object models used to accomplish these tasks usually include information about vi-
sual appearance and shape. However, what these object recognition systems provide
is merely a label for each observed object. The sequence of actions that the robot
should perform based on the object label are often manually defined. Without link-
ing actions to object labels these object models themselves have limited utility to
the robot.

Both aspect graphs and image-based models attempt to model 3-D objects with
multiple 2-D views. Research in aspect graphs has encountered difficulties in de-
termining the threshold to differentiate two distinctive views while for image-based
models how to generalize from unfamiliar to canonical views remains an open ques-
tion. In this article we propose an object model that addresses both of these issues
and incorporates actions in a coherent way. In particular, we show how aspects can
be chosen in a unique and repeatable way that is defined by the object itself, and in
a way that supports manipulation.

While many of our examples use images and visual processing, our methodology
applies to other modes of perception such as audition and haptics. Below, we use the
terms “observation” and “aspect” instead of “view” and “canonical view” to reflect
the more general nature of our approach beyond just visual processing.

The three main contributions of this paper are the following. 1) We define a
principle that determines whether two observations should be differentiated or gen-



Modeling Objects as Aspect Transition Graphs to Support Manipulation 3

eralized to one aspect based on the actor’s capability. 2) We propose an image-based
visual servoing algorithm that allows the actor to manipulate an object to cause the
features in an image to conform with an aspect in memory. 3) We introduce a method
for determining whether a sequence of non-deterministic manipulation actions can,
under certain assumptions, be guaranteed to transition between two aspects. We
demonstrate our object model and our visual servoing algorithm on a tool-grasping
task using the Robonaut 2 simulator.

2 Related Work

Besides work done in aspect graphs and image-based models mentioned in the last
section, our work also relates to a body of work in hybrid control theory. In [3], a
controller is described as a funnel that guides the robot state to convergence; mul-
tiple controllers can be combined to funnel robot states to a desired state that no
one single controller can reach alone. In [30], an algorithm that combines linear
quadratic regulators into a nonlinear policy was also introduced. However under
certain situations the goal state may not be reachable through a combinations of
controllers that act like funnels. For example, the visual servoing controller imple-
mented in our experiment controls the end effector to a certain pose based on the
robot hand’s visual appearance. However to reach the goal state, a controller that
transitions from a state where the robot hand is not visible to one in which the vi-
sual servoing controller can be executed is required. Such a controller can be an
open loop controller that moves the end effector to a memorized pose and may not
necessarily converge to a certain state like a funnel.

In this work we introduce the notion of a slide as a metaphor for this kind of
action that transitions from one set of states to another (see Figure 1). Uncertainty
of the state may increase after transitioning down a slide, but may still reach the goal
state if a funnel-slide-funnel structure is carefully designed. We investigate how a
sequence of these two kinds of controllers will change how an object is observed. In
previous (on-going) work we have referred to funnels as track control actions and
slides as search control actions [11]. The search control action orients the visual
sensor to where the target is likely be found therefore transitioning states like a
slide; the track control action keeps the target in the visual center and converges to
a subset of states like a funnel. Figure 1 illustrates the funnel-slide-funnel concept
using the same style of figure demonstrated in previous work by Burridge et al [3].

There is also a good deal of related work in visual servoing. This work can be
classified into two major types: position-based servoing, where servoing is based on
the estimated pose; and image-based servoing, where servoing is based directly on
visual features [14]. The image-based servoing approach has the advantage that it
performs with an accuracy independent of extrinsic camera calibration and does not
require an accurate model of the target object or end effector. Our visual servoing
approach belongs to this class of image-based servoing techniques.
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Fig. 1 Funnel-slide-funnel
structure. We use the funnel
metaphor introduced in [3]
to describe a closed-loop
controller or a track control
action [11] that converges
to a subset of states and the
slide metaphor to describe
an open-loop controller or a
search control action [11] that
causes state transitions.

Our work is inspired by Jägersand and Nelson [15], in which Broyden’s method
is used to estimate the visuomotor Jacobian online. Our algorithm uses a similar
update approach but is implemented on top of a changing set of features. Some
other work in visual servoing has also investigated approaches that do not rely on a
predefined set of features. In [26], a set of robust SIFT features are selected to per-
form visual servoing. In [12] moments of SIFT features that represent six degrees
of motion are designed. An approach that is based on the image entropy was also
introduced in [4]. However these approaches all assume a setting in which the cam-
era is mounted on the end effector. In this article we are interested in a setting that is
more similar to human manipulation. Unlike a system where the camera is mounted
on the end effector, only part of the observed features move in correspondence with
the end effector. Our algorithm is used to guide the robot end effector, within the
field of view, to a pose that is defined relative to an object that was memorized. The
features that are controllable are learned and reused.

Our work also has many connections to prior work on affordances. The term
affordance [9] has many interpretations. We prefer the definition of affordance as
“the opportunities for action provided by a particular object or environment” [8].
Affordances can be used to explain the functionality and utility of things in the en-
vironment. Our object models are based on this interactionist view of perception and
action that focuses on learning relationships between objects and actions specific to
the robot. An approach to bind affordances of objects with the robot was also intro-
duced by Stoytchev [27]. In this work, the robot learns sequences of actions that will
lead to invariant features on objects through random exploration. In the object model
introduced in [33], predefined base affordances are associated with object surface
types. Instead of defining object affordances from a human perspective, our object
models memorize how robot actions change perception with a graph representation.

The aspect transition graph model employed in this work was first introduced by
Sen [25]. In our previous work [18] [19], we introduced a mechanism for learning
these models without supervision, from a fixed set of actions and observations. We
used these models to support belief-space planning techniques where actions are
chosen to minimize the expected future model-space entropy, and we showed that
these techniques can be used to condense belief over objects more efficiently. In
this article we extend the aspect transition graph model to handle an infinite variety
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of observations and to handle continuous actions. We start with a discussion of our
aspect transition graph model.

3 Object Model

The aspect transition graph (ATG) object model discussed in this paper is an ex-
tension of the original concept of an aspect graph. In addition to distinctive views,
the ATG object model summarizes how actions change viewpoints or the state of
the object and thus, the observation. We define the term “observation” to be the
combination of all sensor feedback of the robot at a particular time and the “ob-
servation space” as the space of all possible observations. This limits the model to
a specific robot, but allows the model to present object properties other than view-
point changes. Extensions to tactile, auditory and other sensors is possible with this
representation. An ATG model of an object can be used to plan manipulation ac-
tions for that object to achieve a specific target aspect. For example, in order for the
robot to pick up an object, the target aspect is a view where the robot’s end effector
surrounds the object. We expect that this view will be common to many such tasks
and that it can be the expected outcome of a sequence of slides (i.e. like moving the
effector to the same field of view as the target object) and funnels (like visually ser-
voing features from the hand into the pregrasp configuration relative to the object).

Definitions

We define an “aspect” as a single observation that is stored in the object model. This
usage is consistent with the term “canonical view” coined in the psychophysics lit-
erature to describe image-based models. As we will see below, many observations
will not be stored in the object’s memory and hence will not be categorized as as-
pects. We will discuss in detail below how a given observation is categorized as an
aspect or not.

An ATG object model is represented using a directed multigraph1 G = (X ,U),
composed of a set of aspect nodes X connected by a set of action edges U that
capture the probabilistic transition between aspects. An action edge U is a triple
(X1,X2,A) consisting of a source node X1, a destination node X2 and an action A
that transitions between them. Note that there can be multiple action edges (as-
sociated with different actions) that transition between the same pair of nodes. In
contrast to aspect graphs and image-based models that differentiate views based on
visual appearance, we argue that, in general, discriminating between object obser-
vations should depend on whether the actor is capable of manipulating the object
such that the observation converges to a target aspect. That is, we define aspects that
are functions of the visual servoing and action abilities of the robot.

1 A multigraph allows multiple edges between a given pair of vertices.



6 Li Yang Ku, Erik Learned-Miller, and Roderic Grupen

x
1

x
2

region of attraction of x
1
 

ε-region of x
1

xβ

ε-region of x
2

region of attraction of x
2
 

u

xα

Fig. 2 An ATG model containing two aspects x1 and x2, each a likely result of applying a funnel
action within their respective regions of attraction. The edge labeled u is a model-referenced “slide”
action that reliably maps the ε-region of x1 to the interior of the region of attraction of x2.

Figure 2 shows an example of an ATG model that contains two aspects x1, x2 and
one action edge u connecting the two aspects in the observation space. An aspect is
represented as a single dot in the figure. The smaller ellipses around x1,x2 represent
the ε-region of the corresponding aspect. Inside the ε-region, the observation is
close to the target aspect, and the funnel action is considered to have “converged”.
The ε-region is task dependent; a task that requires higher precision such as picking
up a needle will require a smaller ε-region. Each aspect x is located in the ε-region
but does not have to be in the center. The location and shape of the ε-region also
depends on the given task since certain dimensions in the observation space might
be less relevant when performing certain tasks.

The larger ellipses surrounding the ε-regions are the region of attraction of the
“funnel” controller referenced to aspects x1 and x2. Observations within the region
of attraction converge to the ε-region of the target aspect by running a closed-loop
controller that does not rely on additional information from the object model. In our
experiment, a visual servoing controller is implemented to perform gradient descent
to minimize the observation error. The region of attraction for using such a con-
troller is the set of observations from which a gradient descent error minimization
procedure leads to the ε-region of the target aspect.

Slides

The arrow in Figure 2 that connects the two aspects is an action edge (x1,x2,a)
that represents a “slide” action. Action a is an open-loop controller that causes as-
pect transitions. Instead of converging to an aspect, “slide” actions tend to increase
uncertainty in the observation space. If a funnel is used to describe a convergent con-
troller then a slide is suitable for describing this type of action. Figure 1 illustrates
this metaphor with an example structure that allows transitions from a converged
aspect to the mouth of another funnel.
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We implement slide actions as open-loop controllers. In our experiments, a slide
action a can be represented in the form a = φ |σ̃τ where φ represents the potential
function that the controller tries to minimize, σ̃ represents a set of memorized con-
troller parameters, and τ represents the motor resources the action controls. An ex-
ample is an end point position controller that moves to a relative pose with respect to
the center of an object point cloud. Under situations when there is no randomness in
observation, action execution and the environment, executing action a from aspect
x1 will transition reliably to aspect x2.

Convergence

The arrow in Figure 2 that connects the observation xα within the ε-region of x1
to observation xβ represents a scenario where action a is executed when xα is ob-
served in a system in which actions have stochastic outcomes. We define εu as the
maximum error between the aspect x2 and the observation xβ when action a is ex-
ecuted while the current observation is within the ε-region of aspect x1. εu can be
caused by a combination of kinematic and sensory errors generated by the robot or
randomness in the environment. If the region of attraction of the controller that con-
verges to aspect x2 covers the observation space within εu from x2, by running the
convergent controller we are guaranteed to converge within the ε-region of aspect
x2 under such an environment. Figure 1 illustrates this using the funnel and slide
metaphor. As long as the end of the slide is within the mouth of the next funnel
we can guarantee convergence to the desired state even when open loop controllers
are within the sequence. The target aspect x2 is determined by estimating the most
likely observation after executing action a through the Bayesian filtering algorithm.

Completeness and Sufficiency

We call an Aspect Transition Graph model complete if the union of the regions of at-
traction over all aspects cover the whole observation space and a path exists between
any pair of aspects. A complete ATG object model allows the robot to manipulate
the object from any observation to one of the aspects. Complete ATG object models
are informative but often hard to acquire and do not exist for irreversible actions.
On the other hand, it is not always necessary to have a complete ATG to accomplish
a task. For example, a robot can accomplish most drill related tasks without model-
ing the bottom of the drill. Therefore, we define an Aspect Transition Graph object
model to be sufficient if it can be used to accomplish all required tasks of the object.
In this work we will focus on sufficient ATG object models.

4 Visual Servoing

In this section we introduce an image-based visual servoing algorithm under the
control basis framework [13]. This visual servoing controller is used to converge
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from an observation within the region of attraction to the ε-region of the corre-
sponding aspect. An action is written in the form φ |στ , where φ is a potential func-
tion, σ represents sensory resources allocated, and τ represents the motor resources
allocated [13]. The control basis framework provides a means for robot systems to
explore combinations of sensory and motor controls. Although only visual data are
used in this work, the control basis framework allows us to combine controllers that
utilize sensory resources of different modalities in future work. In our experiment
the visual servoing controller is used to control the end effector of the robot to reach
a pose relative to a target object using visual sensor feedback. Unlike many visual
servoing approaches, our visual servoing algorithm does not require a set of prede-
fined visual features on the end effector or target object nor does it require an inverse
kinematic solution for the robot. The only information required is the current obser-
vation and the target aspect. Figure 3 shows a trial of our visual servoing algorithm
converging to a stored target aspect.

Fig. 3 Visual servoing se-
quences. Each image pair
shows the target aspect (left)
and the current observation
(right). A line in between
represents a pair of match-
ing keypoints. The top image
pair represents the starting
observation and the bottom
image pair represents when
the controller converged.

Potential Function

In the control basis framework, a potential function φ represents an error function
that the controller minimizes. To reach minimum error a closed loop controller per-
forms gradient descent on the potential function to converge to a minimum. Arti-
ficial potential functions that guarantee asymptotically stable behavior are usually
used to avoid local minima [11]. However in visual servoing, potential functions
with a unique minimum often do not exist due to occlusion, lighting and noisy sen-
sory data. Instead of trying to define a potential function with a unique minimum, we
define a potential function with possibly many local minima and call the region in
which gradient descent converges to a particular minimum the region of attraction.
If the current aspect is within the region of attraction we can guarantee convergence
to the target aspect through gradient descent.

Our potential function is defined as the weighted squared Euclidean distance
between the signature of the current observation s̃ and the signature of the target
aspect s. This approach can be used with most feature detectors and feature de-
scriptors. In our experiment the Fast-Hessian detector and the SURF descriptor [1]
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Fig. 4 Components of the
signature of the target aspect
(left) and the current observa-
tion (right). The circle and the
triangle represent the ith and
jth matched keypoints.

are implemented. A depth filter that uses the depth image is first used to filter out
most keypoints that belong to the background. The first step to calculate the signa-
ture of an observation is to find a subset K of keypoints in the current observation
that match to keypoints in the target aspect. The signature of an observation can then
be calculated based on this subset K of keypoints. The signature is a combination
of the distance signature vector sD and the angle signature vector sA. sD is a sig-
nature vector that consists of Euclidean distances sD

i j between all pairs of keypoints
(ki,k j) in K: sD

i j =
√

(xi− x j)2 +(yi− y j)2. Here xi,yi are the X Y image coordinates
of keypoint ki ∈ K. The angle signature vector sA consists of angle differences sA

i j

between all pairs of keypoints (ki,k j) in K: sA
i j = ωi j− θi. Here ωi j represents the

orientation of the ray from keypoint ki to keypoint k j and θi represents the orienta-
tion of keypoint ki. Figure 4 illustrates examples of sD

i j and sA
i j of the target aspect

and the current observation.
The potential φ is then the scaled squared Euclidean distance between distance

signature vectors of the target aspect sD and the current observation s̃D plus the
weighted squared Euclidean distance between angle signature vectors of the target
aspect sA and the current observation s̃A;

φ =
1

ND
· ∑
{i, j|ki,k j∈K}

(sD
i j− s̃D

i j)
2 + ∑
{i, j|ki,k j∈K}

wA
i j · (sA

i j− s̃A
i j)

2,

where ND = |K| · (|K|−1)/2 and wA
i j = sD

i j/∑{i, j|ki,k j∈K} sD
i j. Here |K| is the number

of matched keypoints between the current observation and the target aspect and wA
i j

is a normalized weight proportional to the keypoint pair distance sD
i j in the target

aspect. The purpose of wA
i j is to weight angle differences more heavily for keypoints

that are far apart.

Gradient Descent

In order to perform gradient descent on the potential function we need to be able
to estimate the potential-motor Jacobian defined as J = ∂φ(σ)/∂τ . A seven de-
gree freedom arm is used in our experiment, therefore τ = [q1,q2, ...,q7] where qi
represents the ith joint in Robonaut-2’s right arm. The control signal that leads to
the greatest descent can then be calculated by the expression: ∆τ = −c(J#φ(σ)),
where c is a positive step size and J# is the Moore-Penrose pseudoinverse [22].
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In order to calculate the partial derivative of the potential function φ with re-
spect to each joint q, we introduce the visuomotor Jacobian defined as Jv = ∂V/∂τ ,
where V is the X Y positions and orientations of the set of keypoints detected in the
current observation that match to keypoints in the target aspect based on its feature
descriptor. Given ∆τ and Jv we can calculate the change in the keypoint positions
and angles through ∆V = Jv ·∆τ . Since the potential only depends on matched pairs
we can calculate an estimated potential for every joint value.

Learning the Visuomotor Jacobian

Our visuomotor Jacobian that models how features change with respect to joint
values is inspired by work done in understanding how humans obtain a sense of
agency by observing their own hand movements [32]. Our approach learns that cer-
tain feature positions on the robot end effector are controllable while features in the
background are not. Our visuomotor Jacobians for each aspect are updated on-line
using a Broyden-like method Jvt+1 = Jvt +(µ(∆V − Jvt ∆τ )∆τ

T/∆τ T ∆τ ), where
Jvt is the visuomotor Jacobian at time t and µ ∈ (0,1] is a factor that specifies the
update rate [21]. When µ = 1 the updating formula will converge to the correct
Jacobian Jv after m noiseless orthogonal moves and observations, where m is the di-
mension of Jv. In our experiment we set µ = 0.1 to make the estimation more robust.
The visuomotor Jacobians for each aspect are initialized randomly for the first run
and memorized afterwards. The more trials the controller runs the more accurate the
estimated Jv is on average. Using Broyden’s method to estimate Jacobians on-line
for visual servoing was first introduced in [15].

Fig. 5 Robonaut 2 approach-
ing a pregrasp pose for a
screwdriver on a tool stand in
simulation.

5 Experimental Results

The aspect transition graph object model in conjunction with the visual servoing
algorithm introduced in previous sections are tested on a tool grasping task on the
NASA Robonaut-2 simulator [5]. The goal of the task is to control Robonaut-2’s
right hand to a pose where a screwdriver on a tool stand is in between the robot’s
right thumb, index finger and middle finger as shown in Figure 5. An ATG object
model consisting of three aspects, that is sufficient for this task, was built through
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demonstration. We show that the “slide-funnel-slide-funnel” controller sequence de-
creases the average pose error over a “slide-slide” controller sequence.

Building ATG Models

In this experiment our ATG object model is built through a teleoperated demon-
stration. An interface was implemented to allow the demonstrator to indicate when
to create a new aspect in the object model. The demonstrator can control the robot
end effector through interactive markers implemented by the MoveIt! platform [28].
When a new aspect is created, the action edge that connects the previous aspect to
this new aspect can be inferred.

Fig. 6 The first, second, and third aspect stored in the ATG model through demonstration are
shown from left to right. In the first aspect, the object on top of the table is a screwdriver on a tool
stand. In the second aspect, the robot hand is in a position where a straight movement toward the
screwdriver would lead to a pregrasp pose. The third aspect represents a pregrasp pose. This is the
goal aspect for the pregrasp task designed in this experiment.

The ATG object model used in this experiment consists of three aspects. The first
aspect represents an observation in which the screwdriver is on a tool stand on a
table and is 0.6 meters in front of the robot. In addition, no parts of the robot are
visible. The left image in Figure 6 is the corresponding observation of this aspect.
The second aspect represents an observation where the robot’s right hand is about
0.07 meters right of the screwdriver. The action edge between the first and second
aspects represents an action that moves the robot’s right hand to a pose relative to the
center of the segmented point cloud observed in the first aspect. This point cloud is
segmented based on the distance to the camera. The middle image in Figure 6 is the
corresponding observation of this aspect. The third aspect represents an observation
where the robot’s right thumb, index and middle finger surrounds the screwdriver
handle. The right image in Figure 6 is the corresponding observation of this aspect.
The action edge in between the second and third aspects represents an action that
moves the robot’s right hand to a pose relative to the right hand pose of the previous
aspect. The relative action frame is determined based on the closest observable fea-
ture to the end effector. An even better approach would be to assign action frames
based on the intention of the demonstrator but this is beyond the scope of this paper.

Region of Attraction

The region of attraction of the second and third aspect of the ATG object model
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with respect to the visual servoing controller can be analyzed. It is possible to also
have a controller that is capable of converging to the first aspect through controlling
joints in the robot’s neck and waist, however since we assume the robot starts in a
similar pose with similar observation this controller is not implemented in this ex-
periment. The region of attraction of an aspect is defined as the observation space
in which a closed loop convergence controller that does not rely on additional infor-
mation from the object model can converge to the ε-region of the aspect. An aspect
or observation lies in a high dimensional observation space and can be varied by
multiple different parameters or noise. In this experiment we are interested in two
types of noise. 1) Noise in the relative pose between the robot hand and the object.
This kind of noise can be caused by kinematic errors from executing an action or
imperfect object positions calculated from a noisy point cloud. This type of noise
will result in a different end effector pose relative to the object. 2) Noise in the object
position. This kind of noise can be caused by placing the tool stand and screwdriver
in a different position than the position previously observed in the demonstration.
This type of noise can cause the estimated object center position to vary and will
affect the visual servoing controller since the object and the robot end effector will
look visually different from a different angle. In this experiment our goal is to find
the region of attraction of the second and third aspects with respect to these two
kinds of noise.

These two kinds of noise are artificially added to our experiment and the num-
ber of gradient descent iterations required to reach the ε-region of the aspect are
recorded. In this experiment we only consider noise on the X-Y plane for easier
visualization and analysis. For each type of noise and each aspect we tested 289
different combination of noise in the X and Y axes roughly within the scale that
the visual servoing controller can handle. The results for adding noise in the relative
pose between the robot hand and the object to the second aspect are shown in Figure
7. The plot on the left indicates how many iterations the visual servoing controller
executed till convergence for different noise values. Each color tile is one single
experiment and dark blue means the controller converges fast while orange means
the controller took longer to converge. A yellow tile means that the controller could
not converge within the 1000 iteration threshold. We call the region of attraction
the set of observations that include the aspect plus the set of noise positions that
corresponds to a non yellow tile connected to the origin. The plot on the right is a
visualization of the same result in 3D which has some resemblance to the funnel
metaphor used in Figure 1.

The results for adding noise in the relative pose between the robot hand and the
object to the third aspect are shown in Figure 8. Note that this aspect has a smaller
region of attraction with more tolerance in the direction perpendicular to the hand
opening. If there is a large error in the Y axis the robot’s hand may end up in front
or behind the screwdriver. Under such situations without additional information the
visual servoing controller will not be able to avoid colliding with the screwdriver
while trying to reach the goal. The results for adding noise in the object position are
shown in Figure 9. Notice that the regions of attraction are much larger for this type
of noise.
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Fig. 7 Iteration till convergence with respect to noise in the relative pose between the robot hand
and the object for the second aspect.

Fig. 8 Iteration till convergence with respect to noise in the relative pose between the robot hand
and the object for the third aspect.

Fig. 9 Iteration till convergence with respect to noise in the object position for the second aspect
(left image) and the third aspect (right image).

Convergence and Accuracy

By analyzing the observed regions of attraction of the visual servo controller that
converges to the two aspects we can estimate the magnitude of noise this “slide-
funnel-slide-funnel” controller sequence can tolerate. Through Figure 7 and Figure
8 we can see that the visual servo controller has a region of attraction with about
1.5 centimeter radius of kinematic noise around the second aspect and about 0.5
centimeter radius of kinematic noise around the third aspect. We evaluate these se-
quences of actions by comparing the final end effector position in the X-Y plane to
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the demonstrated pose relative to the screwdriver. We tested noise of three different
magnitudes to each open-loop action; 0.5, 1.0, and 1.5 centimeters for the action
that transitions from the first aspect to the second aspect and 0.1, 0.2, and 0.3 cen-
timeters for the action that transitions from the second aspect to the third aspect. For
each combination of noise we test eight uniformly distributed directions. Among
the 72 test cases 100% of them converged to the second aspect and 87.5% of them
converged to the third aspect.

We did not reach a 100% overall convergence rate for two possible reasons. First,
in addition to the artificial noise, randomness in the action planner and simulator also
exist in the system. Second, the region of attractions shown in the previous section
are estimated based on visual similarity. Two observations can be visually similar
but position wise quite different therefore causing a false estimate of convergence.
Figure 10 shows the test cases that the controller fails to converge on; most of the
failed test cases are located in the lower right corner. This is consistent with the
shape of the region of attraction of the controller with respect to the third aspect
shown in Figure 8. The final poses of the end effector relative to the screwdriver are
recorded and compared to the demonstrated pose.

We further compare the result to a sequence of “slide-slide” controllers without
visual servoing acting as a funnel. The average position error is shown in Table
1. The “slide-funnel-slide-funnel” structure reduces the error by 55.8% and has an
average error of 0.75 cm in the X-Y plane when only considering test cases that
converged.

complete test set “slide-funnel-slide-funnel”
structure converged test set

“slide-slide” structure 2.24 cm 2.06 cm
“slide-funnel-slide-funnel” structure 0.99 cm 0.75 cm

Table 1 Average position error in the X-Y plane in centimeters.

6 Conclusion

In this paper we introduce an image-based object model that categorizes different
observations of an object into a subset of aspects based on interactions instead
of only on visual appearance. We further propose that a sequence of controllers
that form a “funnel-slide-funnel” structure based on this object model can have
high rates of success even when open-loop controllers are within the sequence. To
demonstrate this proposition we created an aspect transition graph object model that
represents a pregrasp action through a teleoperation demonstration. In addition, we
introduced a novel visual servoing controller that funnels the current observation to
a memorized aspect using a changing set of visual features. The regions of attrac-
tion with respect to the end effector pose of the visual servoing controller are then
identified by manually adding kinematic noise to the end effector position. Based
on this region of attraction we identified the magnitude of kinematic noise this se-
quence of controllers is capable of handling and showed that under an environment
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with a similar magnitude of noise this sequence of actions decreases the average
final position error significantly.

The biggest drawback of the current approach is its scalability to model more
complex objects. In this work we define aspects by manually indicating meaning-
ful observations. In future work we plan to identify transitions autonomously and
investigate hierarchical models that reuse exisiting sub-structures.

Fig. 10 Convergence with re-
spect to artificial noise added
to the test cases. Each dot
represents a test case where
the X Y value represents
the summed magnitude and
direction of the manually
added kinematic noise. A red
diamond indicates that the
controller fails to converge to
the third aspect while a blue
circle indicates that the action
sequence converged.
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