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Abstract— A modification of a standard graph neural net-
work to use the directed nature of edges in many graphs
improves accuracy.

I. INTRODUCTION

Graphs are a datastructure used to represents objects and
relationships. We define a simple graph G = (V, FE) to be a
set of vertices (nodes) V' = {vp,v1,...,uny—1} and a set of
edges £ = {(vi,v;) : v;,v; € V} CV XV representing
the objects and relationships respectively. A directed graph
imposes an ordering on a pair of nodes such that (v;,v,)
denotes an edge pointing from v; to v;. This ordering is
often useful as it further describes the relationship between
the objects.

Several matrices are commonly used to represent aspects
of the graph. The adjacency matrix:
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encodes the geometry of the graph in matrix form. For an
undirected graph the matrix A is symmetric and the degree
matrix D is a diagonal matrix with elements DJ[i,i] =
>-;Ali] = d(v;). The combinatorial Laplacian matrix, L,
combines the degree and adjacency matrices: L = D — A.
The symmetric normalized Laplacian is given as L' =
D71/2LD71/2.

In a directed graph, A is often asymmetric and we con-
struct two degree matrices D;,, and D,,,; where D;,[i,i] =
> Alj,i] and Doywe[i,i] = >°; Ali, j] count the number of
incoming and outgoing edges of each vertex in the graph
respectively.
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II. GRAPH CONVOLUTION NETWORKS

Graph convolution layers are a fairly recent development
in deep learning utilizing the graph underlying the data
matrix to structure how the data is processed. The work
so far on graph neural networks have focused primarily on
undirected graphs. This brief focuses on graph convolution
networks (GCN) [3]. Graph convolution networks were pro-
posed as a first order approximation to localized spectral
filter networks [2] which in turn were a local approximation
to spectral networks [1]. Spectral networks use the graph
Fourier transform to perform a graph convolution in the fre-
quency domain of the graph a la the convolutional theorem.
Localized spectral filter networks, approximate the graph
spectra using Chebyshev polynomials. These polynomials

have local support on the graph which transformed the global
convolution of spectral networks into a local convolution; an
nth order polynomial approximation has support from the
n-hop neighborhood around a node.

GCNs forgo approximating the graph spectra for a purely
spatial approach to a convolution based on using the graph
Laplacian to diffuse information in the vertex domain. Addi-
tionally, GCNs use an augmented graph, where a self loop is
added to each node. Given the augmented adjacency matrix:
A = A +1, augmented degree matrix: D = diag(A1), the
GCN takes in features X and outputs Y according to:

Y = h(D"Y/2AD~!/2X@). 2)

The function h is a nonlinearity such as a ReLU and the
weights ® are learned by the neural network via backprop-
agation.

III. DIRECTED GRAPH NETWORKS

We look at two approaches to graph convolution networks
designed specifically for directed graphs. The first uses a
linear combination of the adjacency matrix of a directed
graph and its transpose to diffuse information across the
graph:

Y =h((MA + (1 - V)AT)XO) 3)

The parameter A balances the importance of passing infor-
mation forward along edges of a graph and backwards along
edges. We also optionally look at an augmented version of
the graph with self loops on nodes which is necessary in this
formulation for a node to retain information about its own
input features.

Our second approach is a direct adaptation of GCNs.
We replace the augmented diffusion matrix in 2: T + L =
D~1/2AD~'/2 with the equivalent directed version given
by:

I+ Ly =D;'/?AD,}/>. (4)
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We then modify the structure of the neural network to
process the input in two directed graph layers in parallel as
show in figure 1. The two layers compute the following:

Yr= h(D;/?AD,)/*Xe) (5)
Yz = h((D;/?AD,/*TxX0). (6)

The layer in (5) diffuses features in the graph following
the direction of edges, while (6) diffuses features against
the direction of the edges. The output of the two layers is



Fig. 1. The directed graph convolution network architecture.

TABLE I
EXPERIMENTAL RESULTS

Network Cora CiteSeer
GCNN 83.41 +£2.69 | 73.35+2.18 ‘
Parallel GCN 86.87 + 0.77

Linear Adjacency Combination | 80.46 +1.09 | 70.56 £ 0.98 ‘
Augmented Linear Adjacency 85.79 + 2.17
Directed GCN 87.89 £ 2.43

concatenated and fed forward into subsequent layers in the
network.

IV. EXPERIMENTAL EVALUATION

We compare the undirected version of the GCN with our
pair of directed methods on the Cora citation dataset [4]. To
account for the increased capacity of having parallel layers
in the directed GCN, we also compare against a network
with parallel undirected GCN layers.

The Cora dataset consists of 2708 papers linked by 5429
edges denoting a citation from one paper to another. Each
paper has a binary vector describing it which represents
the presence or absence of 1433 unique words. The goal
of the experiment is to classify each paper into one of 7
categories. The neural networks are given the labels for 80%
for training, 10% are reserved for model validation, and
models are evaluated based on their accuracy predicting the
remaining 10%. Each model is trained for 400 iterations.
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