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Abstract

We describe a methodology for rapid exper-
imentation in statistical machine translation
which we use to add a large number of features
to a baseline system exploiting features from a
wide range of levels of syntactic representation.
Feature values were combined in a log-linear
model to select the highest scoring candidate
translation from ann-best list. Feature weights
were optimized directly against the BLEU eval-
uation metric on held-out data. We present re-
sults for a small selection of features at each
level of syntactic representation.

1 Introduction

Despite the enormous progress in machine translation
(MT) due to the use of statistical techniques in recent
years, state-of-the-art statistical systems often produce
translations with obvious errors. Grammatical errors in-
clude lack of a main verb, wrong word order, and wrong
choice of function words. Frequent problems of a less
grammatical nature include missing content words and
incorrect punctuation.

In this paper, we attempt to address these problems by
exploring a variety of new features for scoring candidate
translations. A high-quality statistical translation system
is our baseline, and we add new features to the exist-
ing set, which are then combined in a log-linear model.
To allow an easy integration of new features, the base-
line system provides ann-best list of candidate transla-
tions which is then reranked using the new features. This
framework allows us to incorporate different types of fea-
tures, including features based on syntactic analyses of
the source and target sentences, which we hope will ad-
dress the grammaticality of the translations, as well as
lower-level features. As we work onn-best lists, we can
easily use global sentence-level features.

We begin by describing our baseline system and the
n-best rescoring framework within which we conducted
our experiments. We then present a selection of new fea-
tures, progressing from word-level features to those based

to part-of-speech tags and syntactic chunks, and then to
features based on Treebank-based syntactic parses of the
source and target sentences.

2 Log-linear Models for Statistical MT

The goal is the translation of a text given in some source
language into a target language. We are given a source
(‘Chinese’) sentencef = fJ

1 = f1, . . . , fj , . . . , fJ ,
which is to be translated into a target (‘English’) sentence
e = eI

1 = e1, . . . , ei, . . . , eI Among all possible target
sentences, we will choose the sentence with the highest
probability:

êI
1 = argmax

eI
1

{Pr(eI
1|fJ

1 )} (1)

As an alternative to the often used source-channel ap-
proach (Brown et al., 1993), we directly model the pos-
terior probabilityPr(eI

1|fJ
1 ) (Och and Ney, 2002) us-

ing a log-linear combination of feature functions. In
this framework, we have a set ofM feature functions
hm(eI

1, f
J
1 ),m = 1, . . . ,M . For each feature function,

there exists a model parameterλm,m = 1, . . . ,M . The
direct translation probability is given by:
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We obtain the following decision rule:

êI
1 = argmax

eI
1

{ M∑
m=1

λmhm(eI
1, f

J
1 )

}
(3)

The standard criterion for training such a log-linear
model is to maximize the probability of the parallel train-
ing corpus consisting ofS sentence pairs{(fs, es) : s =
1, . . . , S}. However, this does not guarantee optimal per-
formance on the metric of translation quality by which
our system will ultimately be evaluated. For this reason,
we optimize the parameters directly against the BLEU
metric on held-out data. This is a more difficult optimiza-
tion problem, as the search space is no longer convex.



Figure 1: Example segmentation of Chinese sentence and
its English translation into alignment templates.

However, certain properties of the BLEU metric can be
exploited to speed up search, as described in detail by
Och (2003). We use this method of optimizing feature
weights throughout this paper.

2.1 Baseline MT System: Alignment Templates

Our baseline MT system is the alignment template system
described in detail by Och, Tillmann, and Ney (1999)
and Och and Ney (2004). In the following, we give a
short description of this baseline model.

The probability model of the alignment template sys-
tem for translating a sentence can be thought of in distinct
stages. First, the source sentence wordsfJ

1 are grouped to
phrases̃fK

1 . For each phrasẽf an alignment templatez is
chosen and the sequence of chosen alignment templates
is reordered (according toπK

1 ). Then, every phrasẽf
produces its translatioñe (using the corresponding align-
ment templatez). Finally, the sequence of phrasesẽK

1

constitutes the sequence of wordseI
1.

Our baseline system incorporated the following feature
functions:

Alignment Template Selection Each alignment
template is chosen with probabilityp(z|f̃), estimated by
relative frequency. The corresponding feature function in
our log-linear model is the log probability of the product
of p(z|f̃) for all used alignment templates used.

Word Selection This feature is based on the lexical
translation probabilitiesp(e|f), estimated using relative
frequencies according to the highest-probability word-
level alignment for each training sentence. A translation
probability conditioned on the source and target position
within the alignment templatep(e|f, i, j) is interpolated
with the position-independent probabilityp(e|f).

Phrase Alignment This feature favors monotonic
alignment at the phrase level. It measures the ‘amount
of non-monotonicity’ by summing over the distance (in
the source language) of alignment templates which are
consecutive in the target language.

Language Model Features As a language model
feature, we use a standard backing off word-based tri-
gram language model (Ney, Generet, and Wessel, 1995).
The baseline system actually includes four different lan-
guage model features trained on four different corpora:
the news part of the bilingual training data, a large Xin-
hua news corpus, a large AFP news corpus, and a set of
Chinese news texts downloaded from the web.

Word/Phrase Penalty This word penalty feature
counts the length in words of the target sentence. Without
this feature, the sentences produced tend to be too short.
The phrase penalty feature counts the number of phrases
produced, and can allow the model to prefer either short
or long phrases.

Phrases from Conventional Lexicon The baseline
alignment template system makes use of the Chinese-
English lexicon provided by LDC. Each lexicon entry is
a potential phrase translation pair in the alignment tem-
plate system. To score the use of these lexicon entries
(which have no normal translation probability), this fea-
ture function counts the number of times such a lexicon
entry is used.

Additional Features A major advantage of the log-
linear modeling approach is that it is easy to add new
features. In this paper, we explore a variety of features
based on successively deeper syntactic representations of
the source and target sentences, and their alignment. For
each of the new features discussed below, we added the
feature value to the set of baseline features, re-estimated
feature weights on development data, and obtained re-
sults on test data.

3 Experimental Framework

We worked with the Chinese-English data from the recent
evaluations, as both large amounts of sentence-aligned
training corpora and multiple gold standard reference
translations are available. This is a standard data set,
making it possible to compare results with other systems.
In addition, working on Chinese allows us to use the ex-
isting Chinese syntactic treebank and parsers based on it.

For the baseline MT system, we distinguish the fol-
lowing three different sentence- or chunk-aligned parallel
training corpora:

• training corpus (train) : This is the basic training
corpus used to train the alignment template transla-
tion model (word lexicon and phrase lexicon). This
corpus consists of about 170M English words. Large
parts of this corpus are aligned on a sub-sentence
level to avoid the existence of very long sentences
which would be filtered out in the training process
to allow a manageable word alignment training.

• development corpus (dev): This is the training cor-
pus used in discriminative training of the model-
parameters of the log-linear translation model. In



most experiments described in this report this cor-
pus consists of 993 sentences (about 25K words) in
both languages.

• test corpus (test): This is the test corpus used to
assess the quality of the newly developed feature
functions. It consists of 878 sentences (about 25K
words).

For development and test data, we have four English (ref-
erence) translations for each Chinese sentence.

3.1 Reranking,n-best lists, and oracles

For each sentence in the development, test, and the blind
test corpus a set of 16,384 different alternative transla-
tions has been produced using the baseline system. For
extracting then-best candidate translations, an A* search
is used. Thesen-best candidate translations are the basis
for discriminative training of the model parameters and
for re-ranking.

We usedn-best reranking rather than implementing
new search algorithms. The development of efficient
search algorithms for long-range dependencies is very
complicated and a research topic in itself. The rerank-
ing strategy enabled us to quickly try out a lot of new
dependencies, which would not have been be possible if
the search algorithm had to be changed for each new de-
pendency.

On the other hand, the use ofn-best list rescoring lim-
its the possibility of improvements to what is available
in the n-best list. Hence, it is important to analyze the
quality of then-best lists by determining how much of an
improvement would be possible given a perfect reranking
algorithm. We computed theoracle translations, that is,
the set of translations from ourn-best list that yields the
best BLEU score.1

We use the following two methods to compute the
BLEU score of an oracle translation:

1. optimal oracle (opt ): We select the oracle sentences
which give the highest BLEU score comparedto the
set of 4 reference translations. Then, we compute
BLEU score of oracle sentences usingthe same set
of reference translations.

2. round-robin oracle (rr ): We select four differ-
ent sets of oracle sentences which give the highest
BLEU scorecompared to each of the 4 references
translations. Then, we compute for each set of or-
acle sentences a BLEU scoreusing always those
three references to score that have not been cho-
sen to select the oracle. Then, these 4 3-reference
BLEU scores are averaged.

1Note that due to the corpus-level holistic nature of the
BLEU score it is not trivial to compute the optimal set of oracle
translations. We use a greedy search algorithm for the oracle
translations that might find only a local optimum. Empirically,
we do not observe a dependence on the starting point, hence we
believe that this does not pose a significant problem.

Table 1: Oracle BLEU scores for different sizes of the
n-best list. The avBLEUr3 scores are computed with
respect to three reference translations averaged over the
four different choices of holding out one reference.

avBLEUr3[%] BLEUr4
n rr opt opt
human 35.8 -
1 28.3 28.3 31.6
4 29.1 30.8 34.5
16 29.9 33.2 37.3
64 30.6 35.6 38.7
256 31.3 37.8 42.8
1024 31.7 40.0 45.3
4096 32.0 41.8 47.3

The first method provides the theoretical upper bound of
what BLEU score can be obtained by rescoring a givenn-
best list. Using this method with a 1000-best list, we ob-
tain oracle translations that outperform the BLEU score
of the human translations. The oracle translations achieve
113% against the human BLEU score on the test data
(Table 1), while the first best translations obtain 79.2%
against the human BLEU score. The second method uses
a different references for selection and scoring. Here, us-
ing an 1000-best list, we obtain oracle translations with a
relative human BLEU score of 88.5%.

Based on the results of the oracle experiment, and
in order to make rescoring computationally feasible for
features requiring significant computation for each hy-
pothesis, we used the top 1000 translation candidates for
our experiments. The baseline system’s BLEU score is
31.6% on the test set (equivalent to the 1-best oracle in
Table 1). This is the benchmark against which the contri-
butions of the additional features described in the remain-
der of this paper are to be judged.

3.2 Preprocessing

As a precursor to developing the various syntactic fea-
tures described in this report, the syntactic represen-
tations on which they are based needed to be com-
puted. This involved part-of-speech tagging, chunking,
and parsing both the Chinese and English side of our
training, development, and test sets.

Applying the part-of-speech tagger to the often un-
grammatical MT output from ourn-best lists sometimes
led to unexpected results. Often the tagger tries to “fix
up” ungrammatical sentences, for example by looking for
a verb when none is present:

ChinaNNP 14CD openJJ borderNN
cities NNSachievementsVBZ remarkableJJ

Here, althoughachievementshas never been seen as a
verb in the tagger’s training data, the prior for a verb
in this position is high enough to cause a present tense



verb tag to be produced. In addition to the inaccura-
cies of the MT system, the difference in genre from the
tagger’s training text can cause problems. For example,
while our MT data include news article headlines with no
verb, headlines are not included in the Wall Street Journal
text on which the tagger is trained. Similarly, the tagger
is trained on full sentences with normalized punctuation,
leading it to expect punctuation at the end of every sen-
tence, and produce a punctuation tag even when the evi-
dence does not support it:

ChinaNNP ’s POS economicJJ
developmentNN andCC openingVBG
up RP 14CD borderNN cities NNS
remarkableJJachievements.

The same issues affect the parser. For example the
parser can create verb phrases where none exist, as in the
following example in which the tagger correctly did not
identify a verb in the sentence:

These effects have serious implications for designing
syntactic feature functions. Features such “is there a verb
phrase” may not do what you expect. One solution would
be features that involve the probability of a parse subtree
or tag sequence, allowing us to ask “how good a verb
phrase is it?” Another solution is more detailed features
examining more of the structure, such as “is there a verb
phrasewith a verb?”

4 Word-Level Feature Functions

These features, directly based on the source and target
strings of words, are intended to address such problems as
translation choice, missing content words, and incorrect
punctuation.

4.1 Model 1 Score

We used IBM Model 1 (Brown et al., 1993) as one of the
feature functions. Since Model 1 is a bag-of-word trans-
lation model and it gives the sum of all possible alignment
probabilities, a lexical co-occurrence effect, ortriggering
effect, is expected. This captures a sort of topic or seman-
tic coherence in translations.

As defined by Brown et al. (1993), Model 1 gives a
probability of any given translation pair, which is

p(f |e; M1) =
ε

(l + 1)m

m∏
j=1

l∑
i=0

t(fj |ei).

We used GIZA++ to train the model. The training data is
a subset (30 million words on the English side) of the en-
tire corpus that was used to train the baseline MT system.
For a missing translation word pair or unknown words,
wheret(fj |ei) = 0 according to the model, a constant
t(fj |ei) = 10−40 was used as a smoothing value.

The average %BLEU score (average of the best four
among different 20 search initial points) is 32.5. We also
tried p(e|f ; M1) as feature function, but did not obtain
improvements which might be due to an overlap with the
word selection feature in the baseline system.

The Model 1 score is one of the best performing fea-
tures. It seems to ’fix’ the tendency of our baseline sys-
tem to delete content words and it improves word selec-
tion coherence by the triggering effect. It is also possible
that the triggering effect might work on selecting a proper
verb-noun combination, or a verb-preposition combina-
tion.

4.2 Lexical Re-ordering of Alignment Templates

As shown in Figure 1 the alignment templates (ATs)
used in the baseline system can appear in various con-
figurations which we will callleft/right-monotoneand
left/right-continuous. We built 2 out of these 4 models to
distinguish two types of lexicalized re-ordering of these
ATs:

The left-monotone modelcomputes the total proba-
bility of all ATs being left monotone: where the lower
left corner of the AT touches the upper right corner of the
previous AT. Note that the first word in the current AT
may or may not immediately follow the last word in the
previous AT. The total probability is the product over all
alignment templatesi, eitherP (ATi is left-monotone) or
1− P (ATi is left-monotone).

Theright-continuous modelcomputes the total prob-
ability of all ATs being right continuous: where the
lower left corner of the AT touches the upper right cor-
ner of the previous ATand the first word in the cur-
rent AT immediately follows the last word in the pre-
vious AT. The total probability is the product over all
alignment templatesi, eitherP (ATi is right-continuous)
or 1− P (ATi is right-continuous).

In both models, the probabilitiesP have been esti-
mated from the full training data (train ).

5 Shallow Syntactic Feature Functions

By shallow syntax, we mean the output of the part-of-
speech tagger and chunkers. We hope that such features
can combine the strengths of tag- and chunk-based trans-
lation systems (Schafer and Yarowsky, 2003) with our
baseline system.

5.1 Projected POS Language Model

This feature uses Chinese POS tag sequences as surro-
gates for Chinese words to model movement. Chinese
words are too sparse to model movement, but an attempt



to model movement using Chinese POS may be more
successful. We hope that this feature will compensate for
a weak model of word movement in the baseline system.

Chinese POS sequences are projected to English us-
ing the word alignment. Relative positions are indicated
for each Chinese tag. The feature function was also tried
without the relative positions:

CD +0 M +1 NN +3 NN -1 NN +2 NN +3
14 (measure) open border cities

The table shows an example tagging of an English hy-
pothesis showing how it was generated from the Chinese
sentence. The feature function is the log probability out-
put by a trigram language model over this sequence. This
is similar to the HMM Alignment model (Vogel, Ney, and
Tillmann, 1996) but in this case movement is calculated
on the basis of parts of speech.

The Projected POS feature function was one of the
strongest performing shallow syntactic feature functions,
with a %BLEU score of 31.8. This feature function can
be thought of as a trade-off between purely word-based
models, and full generative models based upon shallow
syntax.

6 Tree-Based Feature Functions

Syntax-based MT has shown promise in the
work of, among others, Wu and Wong (1998) and
Alshawi, Bangalore, and Douglas (2000). We hope that
adding features based on Treebank-based syntactic
analyses of the source and target sentences will address
grammatical errors in the output of the baseline system.

6.1 Parse Tree Probability

The most straightforward way to integrate a statistical
parser in the system would be the use of the (log of the)
parser probability as a feature function. Unfortunately,
this feature function did not help to obtain better results
(it actually seems to significantly hurt performance).

To analyze the reason for this, we performed an ex-
periment to test if the used statistical parser assigns a
higher probability to presumably grammatical sentences.
The following table shows the average log probability as-
signed by the Collins parser to the 1-best (produced), or-
acle and the reference translations:

Hypothesis 1-best Oracle Reference
log(parseProb) -147.2 -148.5 -154.9

We observe that the average parser log-probability of
the 1-best translation is higher than the average parse
log probability of the oracle or the reference translations.
Hence, it turns out that the parser is actually assigning
higher probabilities to the ungrammatical MT output than
to the presumably grammatical human translations. One
reason for that is that the MT output uses fewer unseen
words and typically more frequent words which lead to
a higher language model probability. We also performed
experiments to balance this effect by dividing the parser

probability by the word unigram probability and using
this ’normalized parser probability’ as a feature function,
but also this did not yield improvements.

6.2 Tree-to-String Alignment

A tree-to-string model is one of several syntax-
based translation models used. The model is a
conditional probability p(f |T (e)). Here, we used
a model defined by Yamada and Knight (2001) and
Yamada and Knight (2002).

Internally, the model performs three types of opera-
tions on each node of a parse tree. First, itreordersthe
child nodes, such as changingVP → VB NP PP into
VP → NP PP VB. Second, itinsertsan optional word at
each node. Third, ittranslatesthe leaf English words into
Chinese words. These operations are stochastic and their
probabilities are assumed to depend only on the node, and
are independent of other operations on the node, or other
nodes. The probability of each operation is automatically
obtained by a training algorithm, using about 780,000 En-
glish parse tree-Chinese sentence pairs. The probability
of these operationsθ(ek

i,j) is assumed to depend on the
edge of the tree being modified,ek

i,j , but independent of
everything else, giving the following equation,

p(f |T (e)) =
∑
Θ

∏
θ(ek

i,j)

p(θ(ek
i,j)|ek

i,j) (4)

whereΘ varies over the possible alignments between the
f ande andθ(ek

i,j) is the particular operations (inΘ) for
the edgeek

i,j .
The model is further extended to incorporate phrasal

translations performed at each node of the input parse
tree (Yamada and Knight, 2002). An English phrase cov-
ered by a node can be directly translated into a Chinese
phrase without regular reorderings, insertions, and leaf-
word translations.

The model was trained using about 780,000 English
parse tree-Chinese sentence pairs. There are about 3 mil-
lion words on the English side, and they were parsed by
Collins’ parser.

Since the model is computationally expensive, we
added some limitations on the model operations. As the
base MT system does not produce a translation with a
big word jump, we restrict the model not to reorder child
nodes when the node covers more than seven words. For
a node that has more than four children, the reordering
probability is set to be uniform. We also introduced prun-
ing, which discards partial (subtree-substring) alignments
if the probability is lower than a threshold.

The model gives a sum of all possible alignment prob-
abilities for a pair of a Chinese sentence and an English
parse tree. We also calculate the probability of the best
alignment according to the model. Thus, we have the fol-



lowing two feature functions:

hTreeToStringSum(e, f) = log(
∑
Θ

∏
θ(ek

i,j)

p(θ(ek
i,j)|ek

i,j))

hTreeToStringViterbi(e, f) = log(max
Θ

∏
θ(ek

i,j)

p(θ(ek
i,j)|ek

i,j))

As the model is computationally expensive, we sorted the
n-best list by the sentence length, and processed them
from the shorter ones to the longer ones. We used 10
CPUs for about five days, and 273/997 development sen-
tences and 237/878 test sentences were processed.

The average %BLEU score (average of the best four
among different 20 search initial points) was 31.7 for
bothhTreeToStringSumandhTreeToStringViterbi. Among the pro-
cessed development sentences, the model preferred the
oracle sentences over the produced sentence in 61% of
the cases.

The biggest problem of this model is that it is compu-
tationally very expensive. It processed less than 30% of
then-best lists in long CPU hours. In addition, we pro-
cessed short sentences only. For long sentences, it is not
practical to use this model as it is.

6.3 Tree-to-Tree Alignment

A tree-to-treetranslation model makes use of syntac-
tic tree for both the source and target language. As in
the tree-to-string model, a set of operations apply, each
with some probability, to transform one tree into another.
However, when training the model, trees for both the
source and target languages are provided, in our case
from the Chinese and English parsers.

We began with the tree-to-tree alignment model pre-
sented by Gildea (2003). The model was extended to han-
dle dependency trees, and to make use of the word-level
alignments produced by the baseline MT system. The
probability assigned by the tree-to-tree alignment model,
given the word-level alignment with which the candidate
translation was generated, was used as a feature in our
rescoring system.

We trained the parameters of the tree transformation
operations on 42,000 sentence pairs of parallel Chinese-
English data from the Foreign Broadcast Information Ser-
vice (FBIS) corpus. The lexical translation probabili-
ties Pt were trained using IBM Model 1 on the 30 mil-
lion word training corpus. This was done to overcome
the sparseness of the lexical translation probabilities es-
timated while training the tree-to-tree model, which was
not able to make use of as much training data.

As a test of the tree-to-tree model’s discrimination, we
performed an oracle experiment, comparing the model
scores on the first sentence in then-best list with candi-
date giving highest BLEU score. On the 1000-best list for
the 993-sentence development set, restricting ourselves
to sentences with no more than 60 words and a branching

factor of no more than five in either the Chinese or En-
glish tree, we achieved results for 480, or 48% of the 993
sentences. Of these 480, the model preferred the pro-
duced over the oracle 52% of the time, indicating that
it does not in fact seem likely to significantly improve
BLEU scores when used for reranking. Using the prob-
ability of the source Chinese dependency parse aligning
with the n-best hypothesis dependency parse as a feature
function, making use of the word-level alignments, yields
a 31.6 %BLEU score — identical to our baseline.

6.4 Markov Assumption for Tree Alignments

The tree-based feature functions described so far have the
following limitations: full parse tree models are expen-
sive to compute for long sentences and for trees with flat
constituents and there is limited reordering observed in
the n-best lists that form the basis of our experiments. In
addition to this, higher levels of parse tree are rarely ob-
served to be reordered between source and target parse
trees.

In this section we attack these problems using a simple
Markov model for tree-based alignments. It guarantees
tractability: compared to a coverage of approximately
30% of the n-best list by the unconstrained tree-based
models, using the Markov model approach provides 98%
coverage of the n-best list. In addition, this approach is
robust to inaccurate parse trees.

The algorithm works as follows: we start with word
alignments and two parameters:n for maximum number
of words in tree fragment andk for maximum height of
tree fragment. We proceed from left to right in the Chi-
nese sentence and incrementally grow a pair of subtrees,
one subtree in Chinese and the other in English, such that
each word in the Chinese subtree is aligned to a word in
the English subtree. We grow this pair of subtrees un-
til we can no longer grow either subtree without violat-
ing the two parameter valuesn andk. Note that these
aligned subtree pairs have properties similar to alignment
templates. They can rearrange in complex ways between
source and target. Figure 2 shows how subtree-pairs for
parametersn = 3 and k = 3 can be drawn for this
sentence pair. In our experiments, we use substantially
bigger tree fragments with parameters set ton = 8 and
k = 9.

Once these subtree-pairs have been obtained, we can
easily assert a Markov assumption for the tree-to-tree and
tree-to-string translation models that exploits these pair-
ings. Let consider a sentence pair in which we have dis-
coveredn subtree-pairs which we can callFrag0, . . .,
Fragn. We can then compute a feature function for the
sentence pair using the tree-to-string translation model as
follows:

hMarkovTreeToString=
logPtree-to-string(Frag0) + . . . + logPtree-to-string(Fragn)

Using this Markov assumption on tree alignments with



Figure 2: Markov assumption on tree alignments.

the Tree to String model described in Section 6.2 we ob-
tain a coverage improvement to 98% coverage from the
original 30%. The accuracy of the tree to string model
also improved with a %BLEU score of 32.0 which is the
best performing single syntactic feature.

6.5 Using TAG elementary trees for scoring word
alignments

In this section, we consider another method for carving
up the full parse tree. However, in this method, instead of
subtree-pairs we consider a decomposition of parse trees
that provides each word with a fragment of the original
parse tree as shown in Figure 3. The formalism of Tree-
Adjoining Grammar (TAG) provides the definition what
each tree fragment should be and in addition how to de-
compose the original parse trees to provide the fragments.
Each fragment is a TAG elementary tree and the compo-
sition of these TAG elementary trees in a TAG deriva-
tion tree provides the decomposition of the parse trees.
The decomposition into TAG elementary trees is done by
augmenting the parse tree for source and target sentence
with head-word and argument (or complement) informa-
tion using heuristics that are common to most contempo-
rary statistical parsers and easily available for both En-
glish and Chinese. Note that we do not use the word
alignment information for the decomposition into TAG
elementary trees.

Once we have a TAG elementary tree per word,
we can create several models that score word align-
ments by exploiting the alignments between TAG ele-
mentary trees between source and target. Lettfi and
tei be the TAG elementary trees associated with the
aligned wordsfi andei respectively. We experimented
with two models over alignments: unigram model over
alignments:

∏
i P (fi, tfi , ei, tei) and conditional model:∏

i P (ei, tei | fi, tfi)× P (fi+1, tfi+1 | fi, tfi)
We trained both of these models using the SRI Lan-

guage Modeling Toolkit using 60K aligned parse trees.
We extracted 1300 TAG elementary trees each for Chi-

Figure 3: Word alignments with TAG elementary trees.

nese and for English. The unigram model gets a %BLEU
score of 31.7 and the conditional model gets a %BLEU
score of 31.9.

%BLEU
Baseline 31.6
IBM Model 1 p(f |e) 32.5
Tree-to-String Markov fragments 32.0
Right-continuous alignment template 32.0
TAG conditional bigrams 31.9
Left-monotone alignment template 31.9
Projected POS LM 31.8
Tree-to-String 31.7
TAG unigram 31.7
Tree-to-Tree 31.6
combination 32.9

Table 2: Results for the baseline features, each new fea-
ture added to the baseline features on its own, and a com-
bination of new features.

7 Conclusions

The use of discriminative reranking of ann-best list pro-
duced with a state-of-the-art statistical MT system al-
lowed us to rapidly evaluate the benefits of off-the-shelf
parsers, chunkers, and POS taggers for improving syntac-
tic well-formedness of the MT output. Results are sum-
marized in Table 2; the best single new feature improved
the %BLEU score from 31.6 to 32.5. The 95% confi-
dence intervals computed with the bootstrap resampling
method are about 0.8%. In addition to experiments with
single features we also integrated multiple features using
a greedy approach where we integrated at each step the
feature that most improves the BLEU score. This feature
integration produced a statistically significant improve-
ment of absolute 1.3% to 32.9 %BLEU score.

Our single best feature, and in fact the only single fea-
ture to produce a truly significant improvement, was the
IBM Model 1 score. We attribute its success that it ad-
dresses the weakness of the baseline system to omit con-



tent words and that it improves word selection by em-
ploying a triggering effect. We hypothesize that this al-
lows for better use of context in, for example, choosing
among senses of the source language word.

A major goal of this work was to find out if we can ex-
ploit annotated data such as treebanks for Chinese and
English and make use of state-of-the-art deep or shal-
low parsers to improve MT quality. Unfortunately, none
of the implemented syntactic features achieved a statisti-
cally significant improvement in the BLEU score. Poten-
tial reasons for this might be:

• As described in Section 3.2, the use of off-the-shelf
taggers and parsers has various problems due to vari-
ous mismatches between the parser training data and
our application domain. This might explain that the
use of the parser probability as feature function was
not successful. A potential improvement might be to
adapt the parser by retraining it on the full training
data that has been used by the baseline system.

• The use of a 1000-best list limits the potential im-
provements. It is possible that more improvements
could be obtained using a largern-best list or a word
graph representation of the candidates.

• The BLEU score is possibly not sufficiently sensi-
tive to the grammaticality of MT output. This could
not only make it difficult to see an improvement in
the system’s output, but also potentially mislead the
BLEU-based optimization of the feature weights. A
significantly larger corpus for discriminative train-
ing and for evaluation would yield much smaller
confidence intervals.

• Our discriminative training technique, which di-
rectly optimizes the BLEU score on a development
corpus, seems to have overfitting problems with
large number of features. One could use a larger de-
velopment corpus for discriminative training or in-
vestigate alternative discriminative training criteria.

• The amount of annotated data that has been used
to train the taggers and parsers is two orders of
magnitude smaller than the parallel training data
that has been used to train the baseline system (or
the word-based features). Possibly, a comparable
amount of annotated data (e.g. a treebank with 100
million words) is needed to obtain significant im-
provements.

This is the first large scale integration of syntactic analy-
sis operating on many different levels with a state-of-the-
art phrase-based MT system. The methodology of using
a log-linear feature combination approach, discriminative
reranking ofn-best lists computed with a state-of-the-art
baseline system allowed members of a large team to si-
multaneously experiment with hundreds of syntactic fea-
ture functions on a common platform.
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