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Logistics

• Problem Set 3 is due 4/15 at 8pm.
• Project progress report due this Friday, 4/8. Submit a pdf
via email. 1-2 pages.

• Weekly quiz due next Tuesday at 8pm.

2



Summary

Last Week: Random sketching and subspace embedding.

• Subspace embedding via leverage score sampling.

• Analysis via matrix concentration bounds.

• Spectral graph sparsification via leverage score sampling.

Today:

• Finish spectral graph sparsification and physical interpretation

• Start on Markov chains and their analysis

• Markov chain based algorithms for 2-SAT and 3-SAT.

• Gambler’s ruin.
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Spectral Graph Sparsification
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Subpace Embedding via Sampling

Theorem (Subspace Embedding via Leverage Score Sampling)
For any A ∈ Rn×d with left singular vector matrix U, let
τi = ∥Ui,:∥22 and pi =

τi∑
τi
. Let S ∈ Rm×n have S:,j

independently set to 1√mpi
· eTi with probability pi.

Then, if m = O
(
d log(d/δ)

ϵ2

)
, with probability ≥ 1− δ, S is an

ϵ-subspace embedding for A.

• Matches oblivious random projection up to the logd factor.
• Variational characterization: τi = maxx∈Rd

[Ax](i)2
∥Ax∥22

.
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Spectral Graph Sparsification

• Given a graph G, find a (weighted) subgraph G′ with many fewer
edges such that: (1− ϵ)LG ⪯ LG′ ⪯ (1+ ϵ)LG.

• Equivilantly, letting B ∈ Rm×n be the vertex-edge incidence
matrix of G, find a sampling matrix S that is an ϵ-subspace
embedding for B. I.e, BTSTSB ≈ϵ BTB.

• Sampling edges according to their leverage scores in B gives an
ϵ-spectral sparsifier with just O(n logn/ϵ2) edges.

• Can be used to approximate many properties of G, including the
size of all cuts. 5



Leverage Scores and Effective Resistance

A spectral sparsifier G′ of G with O(n logn/ϵ2) edges can be
constructed by sampling rows of the vertex-edge incidence matrix
via their leverage scores. What are these leverage scores?

• View each edge as a 1-Ohm resistor.

• If we fix a current of 1 between u, v, the voltage drop across the
nodes is known as the effective resistance between u and v.

• We will show that the leverage score of each edge is exactly
equal to its effective resistance.

• Intuitively, to form a spectral sparsifier, we should sample high
resistance edges with high probability, since they are
‘bottlenecks’. 6



Electrical Flows

For a flow f ∈ Rm, the currents going into each node are given by BTf.

The electrical flow when one unit of current is sent from u to v is:

f e = argmin
f:BTf=bu,v

∥f∥2.

Since power (energy/time) is given by P = I2 · R.
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Leverage Scores and Effective Resistance

f e = argmin
f:BTf=bu,v

∥f∥2.

By Ohm’s law, the voltage drop across (u, v) (i.e., the effective
resistance) is simply the entry f eu,v (since u, v is a unit resistor).

• To solve for f, note that we can assume that f is in the column
span of B. Otherwise, it would not have minimal norm. So
f = Bϕ for some vector ϕ ∈ Rn.

• Then need to solve BTBϕ = bu,v. I.e., Lϕ = bu,v. ϕ is unique up to
its component in the null-space of L.

• ϕ = L+bu,v.

• Gives f e = BL+bu,v. So f eu,v is just bTu,vL+bu,v = bu,v(BTB)+bu,v.
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Leverage Scores and Effective Resistance

The effective resistance across edge (u, v) is given by

bu,v(BTB)+bu,v = eTu,vB(BTB)+BTeu,v.

Write B = UΣVT in its SVD.

eTu,vB(BTB)+BTeu,v = eTu,vUΣVT(VΣ−2VT)VΣUTeu,v
= eTu,vUUTeu,v
= UTu,vUu,v = ∥Uu,v∥22.

I.e., the effective resistance is exactly the leverage score of the
corresponding row in B. 9



Markov Chains
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Markov Chain Definition

• A discrete time stochastic process is a collection of
random variables X0, X1, X2, . . . ,

• A discrete time stochastic process is a Markov chain if is it
memoryless:

Pr(Xt = at|Xt−1 = at−1, . . . , X0 = a0) = Pr(Xt = at|Xt−1 = at−1)
= Pat−1,at .

Think-Pair-Share: In a Markov chain, is Xt independent of
Xt−2, Xt−3, . . . , X0?
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Transition Matrix

A Markov chain X0, X1, . . . where each Xi can take m possible
values, is specified by the transition matrix P ∈ [0, 1]m×m with

Pj,k = Pr(Xi+1 = k|Xi = j).

Let qi ∈ [0, 1]1×m be the distribution of Xi. Then qi+1 = qiP.
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Graph View

Often viewed as an underlying state transition graph. Nodes
correspond to possible values that each Xi can take.

The Markov chain is irreducible if the underlying graph consists of
single strongly connected component.
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2-SAT

Motivating Example: Find a satisfying assignment for a 2-CNF
formula with n variables.

(x1 ∨ x̄2) ∧ (x̄1 ∨ x̄3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x̄3) ∧ (x4 ∨ x̄1)

A simple ‘local search’ algorithm:

1. Start with an arbitrary assignment.

2. Repeat 2mn2 times, terminating if a satisfying assignment is
found:

• Chose an arbitrary unsatisfied clause.
• Pick one of the variables in the clause uniformly at
random, and switch the assignment of the variable.

3. If a valid assignment is not found, return that the formula is
unsatisfiable.

Claim: If the formula is satisfiable, the algorithm finds a satisfying
assignment with probability ≥ 1− 2−m. 13



Randomized 2-SAT Analysis

Fix a satisfying assignment S. Let Xi ≤ n be the number of variables
that are assigned the same values as in S, at step i.

• Xi+1 = Xi ± 1 since we flip one variable in an unsatisfied clause.

• Pr(Xi+1 = Xi + 1) ≥

• Pr(Xi+1 = Xi − 1) ≤

(x1 ∨ x̄2) ∧ (x̄1 ∨ x̄3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x̄3) ∧ (x4 ∨ x̄1)
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Coupling to a Markov Chain

The number of correctly assigned variables at step i, Xi, obeys

Pr(Xi+1 = Xi + 1) ≥ 1
2 and Pr(Xi+1 = Xi − 1) ≤ 1

2 .

Is X0, X1, X2, . . . a Markov chain?

Define a Markov chain Y0, Y1, . . . such that Y0 = X0 and:

Pr(Yi+1 = 1|Yi = 0) = 1
Pr(Yi+1 = j+ 1|Yi = j) = 1/2 for 1 ≤ j ≤ n− 1
Pr(Yi+1 = j− 1|Yi = j) = 1/2 for 1 ≤ j ≤ n− 1
Pr(Yi+1 = n|Yi = n) = 1.

• Our algorithm terminates as soon as Xi = n. We expect to reach
this point only more slowly with Yi. So it suffices to argue that
Yi = n with high probability for large enough i.

• Formally could use a coupling argument (see Chapter 11 of
Mitzenmacher Upfal.) 15



Simple Markov Chain Analysis

Want to bound the expected time required to have Yi = n.

Let hj be the expected number of steps to reach n when starting at
node j (i.e., the expected termination time when j variables are
assigned correctly.)

hn = 0
h0 = h1 + 1

hj =
hj−1
2 +

hj+1
2 + 1 for 1 ≤ j ≤ n− 1
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Simple Markov Chain Analysis

Claim: hj = hj+1 + 2j+ 1. Can prove via induction on j.

• h0 = h1 + 1, satisfying the claim in the base case.

hj =
hj−1
2 +

hj+1
2 + 1

=
hj
2 + (j− 1) + 1

2 +
hj+1
2 + 1

=
hj
2 +

hj+1
2 + j+ 1

2 .

• Rearranging gives: hj = hj+1 + 2j+ 1.

So in total we have:

h0 = h1 + 1 = h2 + 3+ 1 = . . . =
n−1∑
j=0

(2j+ 1) = n2.
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Simple Markov Chain Analysis

Upshot: Consider the Markov chain Y0, Y1, . . ., and let i∗ be the
minimum i such Yi∗ = n. Then E[i∗] ≤ n2.

• Thus, by Markov’s inequality, with probability ≥ 1/2, our
2-SAT algorithms finds a satisfying assignment within 2n
steps.

• Splitting our 2nm total steps into m periods of 2n steps
each, we fail to find a satisfying assignment in all m
periods with probability at most 1/2m.

Check-in Question: For a fixed i, what roughly is E[Yi]?
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3-SAT

More Challenging Problem: Find a satisfying assignment for a 3-CNF
formula with n variables.

(x1 ∨ x̄2 ∨ x̄3) ∧ (x̄1 ∨ x̄3 ∨ x4) ∧ (x1 ∨ x2 ∨ x̄3).

• 3-SAT is famously NP-hard. What is the naive deterministic
runtime required to solve 3-SAT?

• The current best known runtime is O(1.307n) [Hansen, Kaplan,
Zamir, Zwick, 2019].

• Will see that our simple Markov chain approach gives an
O(1.3334n) time algorithm.

• Note that the exponential time hypothesis conjectures that
O(cn) is needed to solve 3-SAT for some constant c > 1. The
strong exponential time hypothesis conjectures that for k→ ∞,
solving k-SAT requires O(2n) time.
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Randomized 3-SAT Algorithm

1. Start with an arbitrary assignment.
2. Repeat m times, terminating if a satisfying assignment is
found:

• Chose an arbitrary unsatisfied clause.
• Pick one of the variables in the clause uniformly at
random, and switch the assignment of the variable.

3. If a valid assignment is not found, return that the formula
is unsatisfiable.
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Randomized 3-SAT Analysis

As in the 2-SAT setting, let Xi be the number of correctly assigned
variables at step i. We have:

Pr(Xi = Xi−1 + 1) ≥
Pr(Xi = Xi−1 − 1) ≤

Define the coupled Markov chain Y0, Y1, . . . as before, but with
Yi = Yi−1 + 1 with probability 1/3 and Yi = Yi−1 − 1 = 2/3.

How many steps do you expect are needed to reach Yi = n?
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Randomized 3-SAT Analysis

Letting hj be the expected number of steps to reach n when
starting at node j,

hn = 0
h0 = h1 + 1

hj =
2hj−1
3 +

hj+1
3 + 1 for 1 ≤ j ≤ n− 1

• We can prove via induction that hj = hj+1 + 2j+2 − 3 and in
turn, h0 = 2n+2 − 4− 3n.

• Thus, in expectation, our algorithm takes at most ≈ 2n+2

steps to find a satisfying assignment if there is one.
• Is this an interesting result?
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Modified 3-SAT Algorithm

Key Idea: If we pick our initial assignment uniformly at random, we
will have E[X0] = n/2. With very small, but still non-negligible
probability, X0 will be much larger, and our random walk will be more
likely to find a satisfying assignment.

Modified Randomized 3-SAT Algorithm:

Repeat m times, terminating if a satisfying assignment is found:

1. Pick a uniform random assignment for the variables.

2. Repeat 3n times, terminating if a satisfying assignment is found:

• Chose an arbitrary unsatisfied clause.
• Pick one of the variables in the clause uniformly at
random, and switch the assignment of the variable.

If a valid assignment is not found, return that the formula is
unsatisfiable.
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Modified 3-SAT Analysis

Consider a single random assignment with X0 = n− j. I.e., we need to
correct j variables to find a satisfying assignment.

Let qj be a lower bound on the success probability in this case. Since
j ≤ n and since we run the search process for 3n steps,

qj = Pr[X3n = n]
≥ Pr[X3j = n]
≥ Pr[take exactly 2j steps forward and j steps back in 3j steps]

=

(
3j
j

)(
2
3

)j
·
(
1
3

)2j
.

Via Stirling’s approximation,
(3j
j
)
≥ 1√

j
· 3

3j−2

22j−2 , giving:

qj ≥
22

32
√
j
· 3

3j

22j
· 2

j

33j
≈ 1√

j · 2j
≥ 1√

n · 2j
.
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Modified 3-SAT Analysis

Our overall probability of success in a single trial is then lower
bounded by:

q ≥
n∑
j=0

Pr[X0 = n− j] · qj

≥
n∑
j=0

(
n
j

)
· 12n · 1√

n · 2j

≥ 1√
n · 2n

n∑
j=1

(
n
j

)
· 1
2j

=
1√
n · 2n

·
(
3
2

)n
≤ 1√

n
·
(
3
4

)n
.

Thus, if we repeat for m = O
(√

n ·
( 4
3
)n)

= O(1.33334n) trials, with
very high probability, we will find a satisfying assignment if there is
one.
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Gambler’s Ruin
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Gambler’s Ruin

• You and ‘a friend’ repeatedly toss a fair coin. If it hits heads, you
give your friend $1. If it hits tails, they give you $1.

• You start with $ℓ1 and your friend starts with $ℓ2. When either of
you runs out of money the game terminates.

• What is the probability that you win $ℓ2?
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Gambler’s Ruin Markov Chain

Let X0, X1, . . . be the Markov chain where Xi is your profit at step
i. X0 = 0 and:

P−ℓ1,−ℓ1 = Pℓ2,ℓ2 = 1
Pj,j+1 = Pj,j−1 = 1/2 for − ℓ1 < j < ℓ2

• ℓ1 and ℓ2 are absorbing states.
• All j with −ℓ1 < j < ℓ2 are transient states. I.e.,
Pr[Xi′ = j for some i′ > i | Xi = j] < 1.

Observe that this Markov chain is also a Martingale since
E[Xi+1|Xi] = Xi. 27



Gambler’s Ruin Analysis

Let X0, X1, . . . be the Markov chain where Xi is your profit at step i.
X0 = 0 and:

P−ℓ1,−ℓ1 = Pℓ2,ℓ2 = 1
Pj,j+1 = Pj,j−1 = 1/2 for − ℓ1 < j < ℓ2

We want to compute q = limi→∞ Pr[Xi = ℓ2].

By linearity of expectation, for any i, E[Xi] = 0. Further, for
q = limi→∞ Pr[Xi = ℓ2], since −ℓ1, ℓ2 are the only non-transient states,

lim
i→∞

E[Xi] = ℓ2q+−ℓ1(1− q) = 0.

Solving for q, we have q = ℓ1
ℓ1+ℓ2

.

28



Gambler’s Ruin Thought Exercise

What if you always walk away as soon as you win just $1. Then
what is your probability of winning, and what are your
expected winnings?
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