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Logistics

• I released Problem Set 3 on Monday – it is due 4/15 at 8pm.
• Project progress report due next Friday, 4/8. Submit via
email.

• Weekly quiz due next Tuesday at 8pm.
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Summary

Last Week: Random sketching and subspace embedding.

• Subspace embedding from the distributional
Johnson-Lindenstrauss lemma and an ϵ-net argument.

• Application to fast over-constrained linear regression.

• Proof of distributional JL via the Hanson-Wright inequality.

• You’ll see two more applications of subspace embeddings on
the problem set, along with problems practicing the use of
ϵ-nets and the Hanson-Wright inequality.

Today:

• Subspace embedding via sampling.

• The matrix leverage scores.

• Analysis via matrix concentration bounds.

• Spectral graph sparsifiers. 3



Quiz Review
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Quiz Review
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Subspace Embedding

S ∈ Rm×n is an ϵ-subspace embedding for A ∈ Rn×d, if for all x ∈ Rd,

(1− ϵ)∥Ax∥ ≤ ∥SAx∥2 ≤ (1+ ϵ)∥Ax∥2.

Last Time: If S is a random sign matrix, and m = O
(
d+log(1/δ)

ϵ2

)
, then

for any A, S is an ϵ-subspace embedding with probability ≥ 1− δ.

In many applications it is preferable for S to be a row sampling
matrix. The sample can preserve sparsity, structure, etc. 6



Problem Reformulation

For A ∈ Rn×d, let A = UΣVT be its SVD. U ∈ Rn×rank(A), V ∈ Rd×rank(A)

are orthonormal, and Σ ∈ Rrank(A)×rank(A) is positive diagonal.)

• For any x ∈ Rd, let z = ΣVTx. Observe that: ∥Ax∥2 = ∥Uz∥2 and
∥SA∥2 = ∥SUz∥2.

• Thus, to prove that S is an ϵ-subspace embedding for A, it
suffices to show that it is an ϵ-subspace embedding for U.

• I.e., it suffices to show that for any x ∈ Rd,

(1− ϵ)∥Ux∥22 ≤ ∥SUx∥22 ≤ (1+ ϵ)∥Ux∥22. 7



Loewner Ordering

Suffices to show that for any x ∈ Rd,

(1−ϵ)∥x∥22 ≤ ∥SUx∥22 ≤ (1+ϵ)∥x∥22 =⇒ (1−ϵ)xTIx ≤ xTUTSTSUx ≤ (1+ϵ)xTIx.

This condition is typically denoted by (1− ϵ)I ⪯ UTSTSU ⪯ (1+ ϵ)I.

M ⪯ N iff ∀x ∈ Rd xTMx ≤ xTNx (Loewner Order)

When (1− ϵ)N ⪯ M ⪯ (1+ ϵ)N, I will write M ≈ϵ N as shorthand.

(1− ϵ)I ⪯ UTSTSU ⪯ (1+ ϵ)I is equivilant to all eigenvalues of UTSTSU
lying in [1− ϵ, 1+ ϵ].
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Sampling from U

So Far: We have an orthonormal matrix U ∈ Rn×d and we want
to sample rows so that UTSTSU ≈ϵ I. What are some possible
sampling strategies?
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Leverage Score Sampling

• τi = ∥Ui,:∥22 is known as the ith leverage score of U.
• Let pi = τi∑n

i=1 τi
.

• Let S:,j = eTi ·
1√mpi

with probability pi.

E[UTSTSU] = =
m∑
j=1

E[UTST:,jS:,jU]

=
m∑
j=1

n∑
i=1

pi · (
1

√mpi
UTi,:)(

1
√mpi

Ui,:)

=
m∑
j=1

1
mU

TU = I.
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Matrix Concentration

We want to show that UTSTSU is close to E[UTSTSU] = I. Need to
apply a matrix concentration bound.

Theorem (Matrix Chernoff Bound)
Consider independent symmetric random matrices
X1, . . . , Xm ∈ Rd×d, with Xi ⪰ 0, λmax(Xi) ≤ R, and X =

∑m
i=1 Xi. Let

M = E[X]. Then:

Pr [λmin(X) ≤ (1− ϵ)λmin(M)] ≤ d ·
[

e−ϵ

(1− ϵ)1−ϵ

]λmin(M)/R

Pr [λmax(X) ≥ (1+ ϵ)λmax(M)] ≤ d ·
[

eϵ
(1+ ϵ)1+ϵ

]λmin(M)/R
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Matrix Concentration Applied to Leverage Score Sampling

Theorem (Matrix Chernoff Bound)
Consider independent symmetric random matrices
X1, . . . , Xm ∈ Rd×d, with Xi ⪰ 0, λmax(Xi) ≤ R, and X =

∑m
i=1 Xi. Let

M = E[X]. Then:

Pr [λmax(X) ≥ (1+ ϵ)λmax(M)] ≤ d ·
[

eϵ
(1+ ϵ)1+ϵ

]λmin(M)/R

• In our setting, Xi = UTST:,jS:,jU. Xi = 1
mpiU

T
i,:Ui,: with probability pi.

• M = E[X] =
• R =

• Pr[UTSTSU ⪰ (1+ ϵ)I] ≤ d ·
[

eϵ
(1+ϵ)1+ϵ

]m/d
≲ d · e−ϵ2·m/d

• If we set m = O
(
d log(d/δ)

ϵ2

)
we have Pr[UTSTSU ⪰ (1+ ϵ)I] ≤ δ.
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Subpace Embedding via Sampling

Theorem (Subspace Embedding via Leverage Score Sampling)
For any A ∈ Rn×d with left singular vector matrix U, let
τi = ∥Ui,:∥22 and pi =

τi∑
τi
. Let S ∈ Rm×n have S:,j

independently set to 1√mpi
· eTi with probability pi.

Then, if m = O
(
d log(d/δ)

ϵ2

)
, with probability ≥ 1− δ, S is an

ϵ-subspace embedding for A.

Matches oblivious random projection up to the logd factor.
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Leverage Score Intuition
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Check-In

Check-in Question: Would row-norm sampling from A directly
rather than its left singular vectors U have worked to give a
subspace embedding?
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Variational Characterization of Leverage Scores

For a matrix A ∈ Rn×d with SVD A = UΣVT, the ith leverage score is
given by τi(A) = ∥Ui,:∥22. Consider the maximization problem:

τi(A) = max
x∈Rd

[Ax](i)2
∥Ax∥22

.

How much can a vector in A’s column span ‘spike’ at position i.

Can rewrite this problem as:

max
z:∥z∥2=1

[Uz](i)2
∥Uz∥22

= [Uz](i)2.

What z maximizes this value?
15



Variational Characterization of Leverage Scores

τi(A) = max
x∈Rd

[Ax](i)2
∥Ax∥22

.

• Remember that we want ∥SAx∥22 ≈ ∥Ax∥22 for all x ∈ Rd.

• The leverage scores ensure that we sample all Ax with high
enough probability to well approximate ∥Ax∥22.

• In fact, could prove the subspace embedding theorem by
showing that for a fixed x ∈ Rd, ∥SAx∥22 ≈ ∥Ax∥22, and then
applying a net argument + union bound. Athough you would
lose a factor d over the optimal bound. 16



Leverage Score Intuition

• When ai is not spanned by the other rows of A, τi(A) = 1.
• τi(A) is small when many rows are similar to ai.
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Leverage Score Intuition

• Leverage scores are a ‘smooth’ indicator of cluster structure.

• Very high leverage scores tend to correspond to outliers –
original motivation for use in statistics.

• When used as sampling probabilities, give a more ‘balanced
sample’ than uniform sampling.
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Spectral Graph Sparsification
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Graph Sparsification

Given a graph G = (V, E), find a (weighted) subgraph G′ with many
fewer edges that approximates various properties of G.1

Cut Sparsifier: (Karger) For any set of nodes S,

CUT′(S, V \ S) ≈ϵ CUT(S, V \ S).

1Image taken from Nick Harvey’s notes https://www.cs.ubc.ca/~nickhar/W15/Lecture11Notes.pdf.
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The Graph Laplacian

For a graph with adjacency matrix A ∈ {0, 1}n×n and diagonal degree
matrix D ∈ Rn×n, L = D− A is the graph Laplacian.

L can be written as L =
∑

(u,v)∈E

Lu,v where Lu,v is an ‘edge Laplacian’
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Laplacian Smoothness

Observation 1: For any z ∈ Rd,

zTLz =
∑

(u,v)∈E

zTLu,vz =
∑

(u,v)∈E

(z(i)− z(j))2.

• zTLz measures how smoothly z varies across the graph.

• If z ∈ {−1, 1}n is a cut indicator vector with z(i) = 1 for i ∈ S and
z(i) = −1 otherwise, then zTLz = 4 · CUT(S, V \ S).

• So G′ with (weighted) Laplacian L′ ≈ϵ L will be a cut sparsifier,
with CUT′(S, V \ S) ≈ϵ CUT(S, V \ S) for all S.

• Such a G′ is called an ϵ-spectral sparsifier of G.
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Laplacian Factorization

Observation 2: Lu,v = bu,vbTu,v. So L =
∑

(u,v)∈E

bu,vbTu,v.

That is, letting B ∈ Rm×n have rows {bTu,v : (u, v) ∈ E}, L = BTB.

• So if a sampling matrix S is a subspace embedding for B, then
BTSTSB ≈ϵ BTB ≈ϵ L. I.e., SB is the weighted vertex-edge
incidence matrix of an ϵ-spectral sparsifier of G.

• By our results on subspace embedding, every graph G has an
ϵ-spectral sparsifier with just O(n logn/ϵ2) edges. 22



Some History

• The concept of spectral sparsification was first introduced by
Spielman and Teng ‘04 in their seminal work on fast system
solvers for graph Laplacians. In this work, sparsifiers are used
as preconditioners (like in Problem Set 3).

• Spielman and Srivastava ‘08 showed how to construct
sparsifiers with O(n logn/ϵ2) edges via effective resistance
(leverage score) sampling.

• Batson, Spielman, and Srivastava ‘08 showed how to achieve
O(n/ϵ2) edges with a deterministic algorithm.

• Marcus, Spielman, and Srivastava ‘13 built on this work to give
optimal bipartite expanders with any degree and to resolve the
famous Kadison-Singer problem in functional analysis.
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