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Logistics

• I’ll return midterms at the end of class.
• Overall the class did very well – mean was a 29.75 out of 36
(≈ 83%).

• If you are not happy with your performance, message me
and we can chat about it. I’m also happy to review
solutions in office hours.

• I plan to release Problem Set 3 by end of this week.
• 1 page progress report on Final Project due 4/8.
• Weekly quiz due next Tuesday at 8pm.
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Summary

Randomized Linear Algebra Before Break:
• Freivald’s algorithm for matrix product testing.

• Hutchinson’s method for trace estimation. Analysis via linearity
of variance for pairwise-independent random variables.

• Approximate matrix multiplication via norm-based sampling.
Analysis via outer-product view of matrix multiplication.

• Application to fast randomized low-rank approximation.

• Related ideas for sampling for initializing k-means clustering –
the k-means++ algorithm.

Today: Random sketching and the Johnson-Lindenstrauss lemma.
• Subspace embedding and ϵ-net arguments.

• Application to fast over-constrained linear regression.
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Linear Sketching
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Linear Sketching

Given a large matrix A ∈ Rn×d, we pick a random linear
transformation S ∈ Rm×n and compute SA (alternatively, pick
S ∈ Rd×m and compute AS). Using SA we can approximate many
computations involving A.

What algorithms have we seen in class that are based on linear
sketching? 4



Linear Sketching Examples

Freivald’s Algorithm:
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Linear Sketching Examples

Hutchinson’s Trace Estimator:
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Linear Sketching Examples

Graph Connectivity via ℓ0 sampling:
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Linear Sketching Examples

Norm-Based Sampling for AMM/Low-Rank Approximation:
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Subspace Embedding
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Subspace Embedding

It is helpful to define general guarantees for sketches, that are useful
in many problems.

Definition (Subspace Embedding)
S ∈ Rm×d is an ϵ-subspace embedding for A ∈ Rn×d if, for all x ∈ Rd,

(1− ϵ)∥Ax∥2 ≤ ∥SAx∥2 ≤ (1+ ϵ)∥Ax∥2.

I.e., S preserves the norm of any vector Ax in the column span of A.

Tons of applications. E.g.,

• Fast linear regression (next) and preconditioning.

• Approximation of A’s singular values.

• Approximate matrix multiplication and near optimal low-rank
approximation.

• Compressed sensing/sparse recovery (related to ℓ0 sampling).
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Subspace Embedding Application

Theorem (Sketched Linear Regression)
Consider A ∈ Rn×d and b ∈ Rn. We seek to find an approximate
solution to the linear regression problem:

argmin
x∈Rd

∥Ax− b∥2.

Let S ∈ Rm×d be an ϵ-subspace embedding for [A;b] ∈ Rn×d+1. Let
x̃ = argminx∈Rd ∥SAx− Sb∥2. Then we have:

∥Ax̃− b∥2 ≤
1+ ϵ

1− ϵ
·min
x∈Rd

∥Ax− b∥2.

• Time to compute x∗ = argminx∈Rd ∥Ax− b∥2 is O(nd2).

• Time to compute x̃ is just O(md2). For large n (i.e., a highly
over-constrained problem) can set m≪ n.
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Sketched Regression Proof

Claim: Since S is a subspace embedding for [A;b], for all x ∈ Rd,

(1− ϵ)∥Ax− b∥2 ≤ ∥SAx− Sb∥2 ≤ (1+ ϵ)∥Ax− b∥2.
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Sketched Regression Proof

Claim: Since S is a subspace embedding for [A;b], for all x ∈ Rd,

(1− ϵ)∥Ax− b∥2 ≤ ∥SAx− Sb∥2 ≤ (1+ ϵ)∥Ax− b∥2.

Let x∗ = argminx∈Rd ∥Ax− b∥2 and x̃ = argminx∈Rd ∥SAx− Sb∥2.
We have:

∥Ax̃− b∥2 ≤
1

1− ϵ
∥SAx− Sb∥2 ≤

1
1− ϵ

· ∥SAx∗ − Sb∥2

≤ 1+ ϵ

1− ϵ
· ∥Ax∗ − b∥2.
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Subspace Embedding Intuition

Think-Pair-Share 1: Assume that n > d and that rank(A) = d. If
S ∈ Rm×n an is an ϵ-subspace embedding for A with ϵ < 1, how large
must m be? Hint: Think about rank(SA) and/or the nullspace of SA.

Think-Pair-Share 2: Describe how to deterministically compute a
subspace embedding S with m = d and ϵ = 0 in O(nd2) time.
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Optimal Subspace Embedding

Let Q ∈ Rn×d be an orthonormal basis for the columns of A.
Then any vector Ax in A’s column span can be written as Qy for
some y ∈ Rd.

Let S = QT. S ∈ Rd×n (i.e., m = d) and further, for any x ∈ Rd

∥SAx∥22 = ∥QTQy∥22 = ∥y∥22 = ∥Ax∥22.

How would you compute Q?
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Randomized Subspace Embedding

Theorem (Oblivious Subspace Embedding)
Let S ∈ Rm×d be a random matrix with i.i.d. ±1/

√
m entries. Then if

m = O
(
d+log(1/δ)

ϵ2

)
, for any A ∈ Rn×d, with probability ≥ 1− δ, S is

an ϵ-subspace embedding of A.

• S can be computed without any knowledge of A.
• Still achieves near optimal compression.

• Constructions where S is sparse or structured, allow efficient
computation of SA (fast JL-transform, input-sparsity time
algorithms) 15



Oblivious Subspace Embedding Proof

15



Proof Outline

1. Distributional Johnson-Lindenstrauss: For S ∈ Rm×d with i.i.d.
±1/

√
m entries, for any fixed y ∈ Rn, with probability 1− δ for

very small δ, (1− ϵ)∥y∥2 ≤ ∥Sy∥2 ≤ (1+ ϵ)∥y∥2.

2. Via a union bound, have that for any fixed set of vectors
N ⊂ Rn, with probability 1− |N | · δ, ∥Sy∥2 ≈ϵ ∥y∥2 for all y ∈ N .

3. But we want ∥Sy∥2 ≈ϵ ∥y∥2 for all y = Ax with x ∈ Rd. This is a
linear subspace, i.e., an infinite set of vectors!

4. ‘Discretize’ this subspace by rounding to a finite set of vectors
N , called an ϵ-net for the subspace. Then apply union bound to
this finite set, and show that the discretization does not
introduce too much error.

Remark: ϵ-nets are a key proof technique in theoretical computer
science, learning theory (generalization bounds), random matrix
theory, and beyond. They are a key take-away from this lecture. 16



Step 1: Distributional JL Lemma

Theorem (Distributional JL)
Let S ∈ Rm×d be a random matrix with i.i.d. ±1/

√
m entries. Then if

m = O(log(1/δ)/ϵ2), for any fixed y ∈ Rn, with probability ≥ 1− δ,
(1− ϵ)∥y∥2 ≤ ∥Sy∥2 ≤ (1+ ϵ)∥y∥2.

I.e., via a random matrix, we can compress any vector from n to
≈ log(1/δ)/ϵ2 dimensions, and approximately preserve its norm. A
bit surprising maybe that m does not depend on n at all.

Expectation:
E[∥Sy∥22] =

m∑
i=1

E[⟨Si,:, y⟩2] =
m∑
i=1

E


 n∑

j=1

Sij · yj

2


=
m∑
i=1

n∑
j=1

Var(Sij · yj)

=
m∑
i=1

n∑
j=1

1
m · y2j = ∥y∥22.
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Restriction to Unit Ball

Want to show that with high probability, ∥Sy∥2 ≈ϵ ∥y∥2 for all
y ∈ {Ax : x ∈ Rd}. I.e., for all y ∈ V , where V is A’s column span.

Observation: Suffices to prove ∥Sy∥2 ≈ϵ ∥y∥2 = 1 for all y ∈ SV where

SV = {y : y ∈ V and ∥y∥2 = 1}.

Proof: For any y ∈ V , can write y = ∥y∥2 · ȳ where ȳ = y/∥y∥2 ∈ SV .

(1− ϵ) ≤ ∥Sȳ∥2 ≤ (1+ ϵ) =⇒
(1− ϵ) · ∥y∥2 ≤ ∥Sȳ∥2 · ∥y∥2 ≤ (1+ ϵ) · ∥y∥2 =⇒

(1− ϵ)∥y∥2 ≤ ∥Sy∥2 ≤ (1+ ϵ)∥y∥2. 18



Discretization of Unit Ball

Theorem
For any ϵ ≤ 1, there exists a set of points Nϵ ⊂ SV with
|Nϵ| =

(4
ϵ

)d such that, for all y ∈ SV ,
min
w∈Nϵ

∥y− w∥2 ≤ ϵ.

By the distributional JL lemma, if we set δ′ = δ ·
(
ϵ
4
)d then, via a

union bound, with probability at least 1− δ′ · |Nϵ| = 1− δ, for
all w ∈ Nϵ,

(1− ϵ)∥w∥2 ≤ ∥Sw∥2 ≤ (1+ ϵ)∥w∥2.

Requires S ∈ Rm×n where

m = O
(
log(1/δ′)

ϵ2

)
= O

(
d log(4/ϵ) + log(1/δ)

ϵ2

)
= Õ

(
d
ϵ2

)
.
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Proof Via ϵ-net

So Far: If we set m = Õ(d/ϵ2) and pick random S ∈ Rm×n, then with
probability ≥ 1− δ, ∥Sw∥2 ≈ϵ ∥w∥2 for all w ∈ Nϵ.

Expansion via net vectors: For any y ∈ SV , we can write:

y = w0 + (y− w0) for w0 ∈ Nϵ

= w0 + c1 · e1 for c1 = ∥y− w0∥2 and e1 =
y− w0

∥y− w0∥2
∈ SV

= w0 + c1 · w1 + c1 · (e1 − w1) for w1 ∈ Nϵ

= w0 + c1 · w1 + c2 · e2 for c2 = c1 · ∥e1 − w1∥2 and e2 =
e1 − w1

∥e1 − w1∥2
∈ SV

= w0 + c1 · w1 + c2 · w2 + c3 · w3 + . . .

For all i, have ci ≤ ϵi.
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Proof Via ϵ-net

Have written y ∈ SV as y = w0 + c1w1 + c2w2 + . . . where
w0,w1, . . . ∈ Nϵ, and ci ≤ ϵi. By triangle inequality:

∥Sy∥2 = ∥Sw0 + c1Sw1 + c2Sw2 + . . . ∥2
≤ ∥Sw0∥2 + c1∥Sw1∥2 + c2∥Sw2∥2 + . . .

≤ (1+ ϵ) + ϵ(1+ ϵ) + ϵ2(1+ ϵ) + . . .

(since via the union bound, ∥Sw∥2 ≈ ∥w∥2 for all w ∈ Nϵ)

≤ 1+ ϵ

1− ϵ
≈ 1+ 2ϵ

Similarly, can prove that ∥Sy∥2 ≥ 1− 2ϵ, giving, for all y ∈ SV
(and hence all y ∈ V):

(1− 2ϵ)∥y∥2 ≤ ∥Sy∥2 ≤ (1+ 2ϵ)∥y∥2.

21



Full Argument

• There exists an ϵ-net Nϵ over the unit ball in A’s column
span, SV with |Nϵ| ≤

(4
ϵ

)d.
• By distributional JL, for m = O

(
d log(1/ϵ)+log(1/δ)

ϵ2

)
, with

probability ≥ 1− δ, for all w ∈ Nϵ, ∥Sw∥2 ≈ϵ ∥w∥2.
=⇒ for all y ∈ SV , ∥Sy∥2 ≈ϵ ∥y∥2.
=⇒ for all y ∈ V , i.e., for all y = Ax for x ∈ Rd,
∥Sy∥2 ≈ϵ ∥y∥2.
=⇒ S ∈ Rm×n is an ϵ-subspace embedding for A.
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Net Construction

Theorem (ϵ-net over ℓ2 ball)
For any ϵ ≤ 1, there exists a set of points Nϵ ⊂ SV with |Nϵ| =

( 4
ϵ

)d
such that, for all y ∈ SV ,

min
w∈Nϵ

∥y− w∥2 ≤ ϵ.

Theoretical algorithm for constructing Nϵ:

• Initialize Nϵ = {}.

• While there exists v ∈ SV where minw∈Nϵ ∥v− w∥2 > ϵ, pick an
arbitrary such v and let Nϵ := Nϵ ∪ {v}.

If the algorithm terminates in T steps, we have |Nϵ| ≤ T and Nϵ is a
valid ϵ-net.
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Net Construction

How large is the net constructed by our theoretical algorithm?

Consider w,w′ ∈ Nϵ. We must have ∥w− w′∥2 > ϵ, or we would have
not added both to the net.

Thus, we can place an ϵ/2 radius ball around each w ∈ Nϵ, and none
of these balls will intersect.

Note that all these balls lie within the ball of radius (1+ ϵ/2). 24



Volume Argument

We have |Nϵ| disjoint balls with radius ϵ/2, lying within a ball of
radius (1+ ϵ/2).

In d dimensions, the radius r ball has volume cd · rd, where cd
is a constant that depends on d but not r.

Thus, the total number of balls is upper bounded by:

|Nϵ| ≤
(1+ ϵ/2)d

(ϵ/2)d
≤

(
4
ϵ

)d
.

Remark: We never actually construct an ϵ-net. We just use the
fact that one exists (the output of this theoretical algorithm) in
our subspace embedding proof.
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Distributional JL Lemma Proof
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Proofs of Distributional JL Lemma

There are many proofs of the distributional JL Lemma:

• Let S ∈ Rm×n have i.i.d. Gaussian entries. Observe that each
entry of Sy is distributed as N (0, ∥y∥22), and give a proof via
concentration of independent Chi-Squared random variables
(see 514 slides).

• Write ∥Sy∥22 =
∑m

i=1
∑n

j=1
∑n

k=1 Si,jSi,kyjyk and prove
concentration of this sum, even though the terms are not all
independent of each other (only pairwise independent within
one row).

• Apply the Hanson-Wright inequality – an exponential
concentration inequality for random quadratic forms.

• This inequality comes up in a lot of places, including in the tight
analysis of Hutchinson’s trace estimator.
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Hanson Wright Inequality

Theorem (Hanson-Wright Inequality)
Let x ∈ Rn be a vector of i.i.d. random ±1 values. For any matrix
A ∈ Rn×n,

Pr[
∣∣xTAx− tr(A)

∣∣ ≥ t] ≤ 2 exp
(
−c ·min

{
t2

∥A∥2F
,

t
∥A∥2

})
.

Observe that sTAs =
∑m

i=1
∑n

j=1
∑n

k=1 Si,jSi,kyjyk = ∥Sy∥22 and that

tr(A) = m · tr(yyT) = m · ∥y∥22. 27



Distributional JL via Wright Inequality

Let x =
√
m · s, so x has i.i.d. ±1 entries. Assume w.l.o.g. that ∥y∥2 = 1.

Pr[
∣∣∥Sy∥22 − 1

∣∣ ≥ ϵ] = Pr[
∣∣sTAs− 1

∣∣ ≥ ϵ]

= Pr[
∣∣xTAx−m

∣∣ ≥ ϵm]

= Pr[
∣∣xTAx− tr(A)

∣∣ ≥ ϵm]

≤ 2 exp
(
−c ·min

{
(ϵm)2

∥A∥2F
,
ϵm
∥A∥2

})
.

∥A∥2F = m · ∥yyT∥2F = m · ∥y∥22 = m

∥A∥2 = ∥yyT∥2 = ∥y∥2 = 1

Pr[
∣∣∥Sy∥22 − 1

∣∣ ≥ ϵ] ≤ 2 exp
(
−c ·min

{
(ϵm)2

m ,
ϵm
1

})
= 2 exp(−cϵ2m)

If we set m = O
(
log(1/δ)

ϵ2

)
, Pr[

∣∣∥Sy∥22 − 1
∣∣ ≥ ϵ] ≤ δ, giving the

distributional JL lemma.
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Questions?
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