COMPSCI 690RA: Randomized Algorithms and Probabilistic Data Analysis

Prof. Cameron Musco University of Massachusetts Amherst. Spring 2022. Lecture 7

- I'll return midterms at the end of class.
- Overall the class did very well mean was a 29.75 out of 36 (\approx 83%).
- If you are not happy with your performance, message me and we can chat about it. I'm also happy to review solutions in office hours.
- I plan to release Problem Set 3 by end of this week.
- 1 page progress report on Final Project due 4/8.
- Weekly quiz due next Tuesday at 8pm.

Summary

Randomized Linear Algebra Before Break:

- Freivald's algorithm for matrix product testing.
- Hutchinson's method for trace estimation. Analysis via linearity of variance for pairwise-independent random variables.
- Approximate matrix multiplication via norm-based sampling. Analysis via outer-product view of matrix multiplication.
- Application to fast randomized low-rank approximation.
- Related ideas for sampling for initializing *k*-means clustering the *k*-means++ algorithm.

Today: Random sketching and the Johnson-Lindenstrauss lemma.

- Subspace embedding and ϵ -net arguments.
- Application to fast over-constrained linear regression.

Linear Sketching

Linear Sketching

Given a large matrix $A \in \mathbb{R}^{n \times d}$, we pick a random linear transformation $\mathbf{S} \in \mathbb{R}^{m \times n}$ and compute SA (alternatively, pick $\mathbf{S} \in \mathbb{R}^{d \times m}$ and compute AS). Using SA we can approximate many computations involving A.

What algorithms have we seen in class that are based on linear sketching?

Freivald's Algorithm:

Hutchinson's Trace Estimator:

Graph Connectivity via ℓ_0 sampling:

incidence matrix A

Norm-Based Sampling for AMM/Low-Rank Approximation:

Subspace Embedding

Subspace Embedding

It is helpful to define general guarantees for sketches, that are useful in many problems.

Definition (Subspace Embedding)

 $S \in \mathbb{R}^{m \times d}$ is an ϵ -subspace embedding for $A \in \mathbb{R}^{n \times d}$ if, for all $x \in \mathbb{R}^{d}$,

 $(1 - \epsilon) \|Ax\|_2 \le \|SAx\|_2 \le (1 + \epsilon) \|Ax\|_2.$

I.e., S preserves the norm of any vector Ax in the column span of A.

Subspace Embedding Application

Theorem (Sketched Linear Regression)

Consider $A \in \mathbb{R}^{n \times d}$ and $b \in \mathbb{R}^n$. We seek to find an approximate solution to the linear regression problem:

 $\underset{x\in\mathbb{R}^{d}}{\arg\min}\|Ax-b\|_{2}.$

Let $S \in \mathbb{R}^{m \times d}$ be an ϵ -subspace embedding for $[A; b] \in \mathbb{R}^{n \times d+1}$. Let $\tilde{x} = \arg \min_{x \in \mathbb{R}^d} \|SAx - Sb\|_2$. Then we have:

$$\|A\tilde{x}-b\|_2 \leq \frac{1+\epsilon}{1-\epsilon} \cdot \min_{x \in \mathbb{R}^d} \|Ax-b\|_2.$$

- Time to compute $x^* = \arg \min_{x \in \mathbb{R}^d} ||Ax b||_2$ is $O(nd^2)$.
- Time to compute \tilde{x} is just $O(md^2)$. For large n (i.e., a highly over-constrained problem) can set $m \ll n$.

Claim: Since S is a subspace embedding for [A; b], for all $x \in \mathbb{R}^d$,

$$(1 - \epsilon) \|Ax - b\|_2 \le \|SAx - Sb\|_2 \le (1 + \epsilon) \|Ax - b\|_2$$

Claim: Since S is a subspace embedding for [A; b], for all $x \in \mathbb{R}^d$,

$$(1 - \epsilon) \|Ax - b\|_2 \le \|SAx - Sb\|_2 \le (1 + \epsilon) \|Ax - b\|_2$$

Let $x^* = \arg \min_{x \in \mathbb{R}^d} ||Ax - b||_2$ and $\tilde{x} = \arg \min_{x \in \mathbb{R}^d} ||SAx - Sb||_2$. We have:

$$\|A\tilde{x} - b\|_2 \leq \frac{1}{1 - \epsilon} \|SAx - Sb\|_2 \leq \frac{1}{1 - \epsilon} \cdot \|SAx^* - Sb\|_2$$
$$\leq \frac{1 + \epsilon}{1 - \epsilon} \cdot \|Ax^* - b\|_2.$$

Think-Pair-Share 1: Assume that n > d and that rank(A) = d. If $S \in \mathbb{R}^{m \times n}$ an is an ϵ -subspace embedding for A with $\epsilon < 1$, how large must m be? **Hint:** Think about rank(SA) and/or the nullspace of SA.

Think-Pair-Share 2: Describe how to deterministically compute a subspace embedding S with m = d and $\epsilon = 0$ in $O(nd^2)$ time.

Let $Q \in \mathbb{R}^{n \times d}$ be an orthonormal basis for the columns of A. Then any vector Ax in A's column span can be written as Qy for some $y \in \mathbb{R}^d$.

Let $S = Q^T$. $S \in \mathbb{R}^{d \times n}$ (i.e., m = d) and further, for any $x \in \mathbb{R}^d$

$$||SAx||_2^2 = ||Q^TQy||_2^2 = ||y||_2^2 = ||Ax||_2^2.$$

How would you compute Q?

Randomized Subspace Embedding

Theorem (Oblivious Subspace Embedding)

Let $\mathbf{S} \in \mathbb{R}^{m \times d}$ be a random matrix with i.i.d. $\pm 1/\sqrt{m}$ entries. Then if $m = O\left(\frac{d + \log(1/\delta)}{\epsilon^2}\right)$, for any $A \in \mathbb{R}^{n \times d}$, with probability $\geq 1 - \delta$, **S** is an ϵ -subspace embedding of A.

- S can be computed without any knowledge of A.
- Still achieves near optimal compression.
- Constructions where S is sparse or structured, allow efficient computation of SA (fast JL-transform, input-sparsity time algorithms)

Oblivious Subspace Embedding Proof

Proof Outline

- 1. Distributional Johnson-Lindenstrauss: For $S \in \mathbb{R}^{m \times d}$ with i.i.d. $\pm 1/\sqrt{m}$ entries, for any fixed $y \in \mathbb{R}^n$, with probability 1δ for very small δ , $(1 \epsilon)||y||_2 \le ||Sy||_2 \le (1 + \epsilon)||y||_2$.
- 2. Via a union bound, have that for any fixed set of vectors $\mathcal{N} \subset \mathbb{R}^n$, with probability $1 |\mathcal{N}| \cdot \delta$, $||\mathbf{S}y||_2 \approx_{\epsilon} ||y||_2$ for all $y \in \mathcal{N}$.
- 3. But we want $||\mathbf{S}y||_2 \approx_{\epsilon} ||y||_2$ for all y = Ax with $x \in \mathbb{R}^d$. This is a linear subspace, i.e., an infinite set of vectors!
- 'Discretize' this subspace by rounding to a finite set of vectors *N*, called an *ε*-net for the subspace. Then apply union bound to this finite set, and show that the discretization does not introduce too much error.

Remark: ϵ -nets are a key proof technique in theoretical computer science, learning theory (generalization bounds), random matrix theory, and beyond. They are a key take-away from this lecture.

Theorem (Distributional JL)

Let $\mathbf{S} \in \mathbb{R}^{m \times d}$ be a random matrix with i.i.d. $\pm 1/\sqrt{m}$ entries. Then if $m = O(\log(1/\delta)/\epsilon^2)$, for any fixed $y \in \mathbb{R}^n$, with probability $\geq 1 - \delta$, $(1 - \epsilon) \|y\|_2 \leq \|\mathbf{S}y\|_2 \leq (1 + \epsilon) \|y\|_2$.

I.e., via a random matrix, we can compress any vector from n to $\approx \log(1/\delta)/\epsilon^2$ dimensions, and approximately preserve its norm. A bit surprising maybe that m does not depend on n at all.

Restriction to Unit Ball

Want to show that with high probability, $||\mathbf{S}y||_2 \approx_{\epsilon} ||y||_2$ for all $y \in \{Ax : x \in \mathbb{R}^d\}$. I.e., for all $y \in \mathcal{V}$, where \mathcal{V} is A's column span.

Observation: Suffices to prove $\|\mathbf{S}y\|_2 \approx_{\epsilon} \|y\|_2 = 1$ for all $y \in S_{\mathcal{V}}$ where

$$S_{\mathcal{V}} = \{ y : y \in \mathcal{V} \text{ and } \|y\|_2 = 1 \}.$$

Proof: For any $y \in \mathcal{V}$, can write $y = \|y\|_2 \cdot \overline{y}$ where $\overline{y} = y/\|y\|_2 \in S_{\mathcal{V}}$.

$$(1 - \epsilon) \le \|\mathbf{S}\bar{\mathbf{y}}\|_2 \le (1 + \epsilon) \implies$$

$$(1 - \epsilon) \cdot \|\mathbf{y}\|_2 \le \|\mathbf{S}\bar{\mathbf{y}}\|_2 \cdot \|\mathbf{y}\|_2 \le (1 + \epsilon) \cdot \|\mathbf{y}\|_2 \implies$$

$$(1 - \epsilon)\|\mathbf{y}\|_2 \le \|\mathbf{S}\mathbf{y}\|_2 \le (1 + \epsilon)\|\mathbf{y}\|_2.$$

Discretization of Unit Ball

Theorem

For any $\epsilon \leq 1$, there exists a set of points $\mathcal{N}_{\epsilon} \subset S_{\mathcal{V}}$ with $|\mathcal{N}_{\epsilon}| = \left(\frac{4}{\epsilon}\right)^{d}$ such that, for all $y \in S_{\mathcal{V}}$, $\min_{w \in \mathcal{N}_{\epsilon}} ||y - w||_{2} \leq \epsilon.$

By the distributional JL lemma, if we set $\delta' = \delta \cdot \left(\frac{\epsilon}{4}\right)^d$ then, via a 19 union bound with probability at least 1. $\delta' = b \cdot \left(\frac{\epsilon}{4}\right)^d$ for

Proof Via ϵ -net

So Far: If we set $m = \tilde{O}(d/\epsilon^2)$ and pick random $S \in \mathbb{R}^{m \times n}$, then with probability $\geq 1 - \delta$, $\|Sw\|_2 \approx_{\epsilon} \|w\|_2$ for all $w \in \mathcal{N}_{\epsilon}$.

Expansion via net vectors: For any $y \in S_{\mathcal{V}}$, we can write:

$$y = w_{0} + (y - w_{0}) \quad \text{for } w_{0} \in \mathcal{N}_{\epsilon}$$

$$= w_{0} + c_{1} \cdot e_{1} \quad \text{for } c_{1} = ||y| W w_{0}||_{2} \text{ and } e_{1} = \frac{y - w_{0}}{||y - w_{0}||_{2}} \in S_{\mathcal{V}}$$

$$= w_{0} + c_{1} \cdot w_{1} + c_{1} \cdot (e_{1} - w_{1}) \quad \text{for } w_{1} \in \mathcal{N}_{\epsilon}$$

$$= w_{0} + c_{1} \cdot w_{1} + c_{2} \cdot w_{2} \quad \text{for } c_{2} = c_{1} \cdot ||e_{1} - w_{1}||_{2} \text{ and } e_{2} = \frac{e_{1} - w_{1}}{||e_{1} - w_{1}||_{2}} \in S_{\mathcal{V}}$$

$$= w_{0} + c_{1} \cdot w_{1} + c_{2} \cdot w_{2} + c_{3} \cdot w_{3} + \dots$$

$$C_{1} e_{1} \quad W_{0}$$

$$y$$

$$Z_{0}$$

Proof Via ϵ -net

Have written $y \in S_{\mathcal{V}}$ as $y = w_0 + c_1w_1 + c_2w_2 + \dots$ where $w_0, w_1, \dots \in \mathcal{N}_{\epsilon}$, and $c_i \leq \epsilon^i$. By triangle inequality: $\|\mathbf{S}y\|_2 = \|\mathbf{S}w_0 + c_1\mathbf{S}w_1 + c_2\mathbf{S}w_2 + \dots \|_2$ $\leq \|\mathbf{S}w_0\|_2 + c_1\|\mathbf{S}w_1\|_2 + c_2\|\mathbf{S}w_2\|_2 + \dots$ $\leq (1 + \epsilon) + \epsilon(1 + \epsilon) + \epsilon^2(1 + \epsilon) + \dots$ (since via the union bound, $\|\mathbf{S}w\|_2 \approx \|w\|_2$ for all $w \in \mathcal{N}_{\epsilon}$) $\leq \frac{1 + \epsilon}{1 - \epsilon} \approx 1 + 2\epsilon$

Similarly, can prove that $||Sy||_2 \ge 1 - 2\epsilon$, giving, for all $y \in S_{\mathcal{V}}$ (and hence all $y \in \mathcal{V}$):

$$(1-2\epsilon)\|y\|_2 \le \|\mathbf{S}y\|_2 \le (1+2\epsilon)\|y\|_2.$$

- There exists an ϵ -net \mathcal{N}_{ϵ} over the unit ball in A's column span, $S_{\mathcal{V}}$ with $|\mathcal{N}_{\epsilon}| \leq \left(\frac{4}{\epsilon}\right)^{d}$.
- By distributional JL, for $m = O\left(\frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon^2}\right)$, with probability $\geq 1 \delta$, for all $w \in \mathcal{N}_{\epsilon}$, $\|\mathbf{S}w\|_2 \approx_{\epsilon} \|w\|_2$.

$$\implies$$
 for all $y \in \mathcal{S}_{\mathcal{V}}$, $\|\mathbf{S}y\|_2 \approx_{\epsilon} \|y\|_2$.

 $\implies \text{ for all } y \in \mathcal{V}, \text{ i.e., for all } y = Ax \text{ for } x \in \mathbb{R}^d, \\ \|\mathbf{S}y\|_2 \approx_{\epsilon} \|y\|_2.$

 \implies **S** $\in \mathbb{R}^{m \times n}$ is an ϵ -subspace embedding for A.

Net Construction

Theorem (ϵ -net over ℓ_2 ball)

For any $\epsilon \leq 1$, there exists a set of points $\mathcal{N}_{\epsilon} \subset S_{\mathcal{V}}$ with $|\mathcal{N}_{\epsilon}| = \left(\frac{4}{\epsilon}\right)^d$ such that, for all $y \in S_{\mathcal{V}}$,

$$\min_{w\in\mathcal{N}_{\epsilon}}\|y-w\|_{2}\leq\epsilon.$$

Theoretical algorithm for constructing \mathcal{N}_{ϵ} :

- Initialize $\mathcal{N}_{\epsilon} = \{\}.$
- While there exists $v \in S_{\mathcal{V}}$ where $\min_{w \in \mathcal{N}_{\epsilon}} ||v w||_2 > \epsilon$, pick an arbitrary such v and let $\mathcal{N}_{\epsilon} := \mathcal{N}_{\epsilon} \cup \{v\}$.

If the algorithm terminates in *T* steps, we have $|\mathcal{N}_{\epsilon}| \leq T$ and \mathcal{N}_{ϵ} is a valid ϵ -net.

Net Construction

How large is the net constructed by our theoretical algorithm?

Consider $w, w' \in \mathcal{N}_{\epsilon}$. We must have $||w - w'||_2 > \epsilon$, or we would have not added both to the net.

Thus, we can place an $\epsilon/2$ radius ball around each $w \in \mathcal{N}_{\epsilon}$, and none of these balls will intersect.


```
Note that all these balls lie within the ball of radius (1 + \epsilon/2).
```

We have $|\mathcal{N}_{\epsilon}|$ disjoint balls with radius $\epsilon/2$, lying within a ball of radius (1 + $\epsilon/2$).

In *d* dimensions, the radius *r* ball has volume $c_d \cdot r^d$, where c_d is a constant that depends on *d* but not *r*.

Thus, the total number of balls is upper bounded by:

$$|\mathcal{N}_{\epsilon}| \leq rac{(1+\epsilon/2)^d}{(\epsilon/2)^d} \leq \left(rac{4}{\epsilon}
ight)^d.$$

Remark: We never actually construct an ϵ -net. We just use the fact that one exists (the output of this theoretical algorithm) in our subspace embedding proof.

Distributional JL Lemma Proof

There are many proofs of the distributional JL Lemma:

- Let $\mathbf{S} \in \mathbb{R}^{m \times n}$ have i.i.d. Gaussian entries. Observe that each entry of $\mathbf{S}y$ is distributed as $\mathcal{N}(0, \|y\|_2^2)$, and give a proof via concentration of independent Chi-Squared random variables (see 514 slides).
- Write $\|\mathbf{S}y\|_2^2 = \sum_{i=1}^m \sum_{j=1}^n \sum_{k=1}^n \mathbf{S}_{i,j} \mathbf{S}_{i,k} y_j y_k$ and prove concentration of this sum, even though the terms are not all independent of each other (only pairwise independent within one row).
- Apply the Hanson-Wright inequality an exponential concentration inequality for random quadratic forms.
- This inequality comes up in a lot of places, including in the tight analysis of Hutchinson's trace estimator.

Hanson Wright Inequality

Theorem (Hanson-Wright Inequality)

Let $\mathbf{x} \in \mathbb{R}^n$ be a vector of i.i.d. random ± 1 values. For any matrix $A \in \mathbb{R}^{n \times n}$,

$$\Pr[|\mathbf{x}^{T}A\mathbf{x} - \operatorname{tr}(A)| \ge t] \le 2 \exp\left(-c \cdot \min\left\{\frac{t^{2}}{\|A\|_{F}^{2}}, \frac{t}{\|A\|_{2}}\right\}\right).$$

Observe that $\mathbf{s}^T A \mathbf{s} = \sum_{i=1}^m \sum_{j=1}^n \sum_{k=1}^n \mathbf{S}_{i,j} \mathbf{S}_{i,k} y_j y_k = \|\mathbf{S}y\|_2^2$ and that $\operatorname{tr}(A) = m \cdot \operatorname{tr}(yy^T) = m \cdot \|y\|_2^2.$

Distributional JL via Wright Inequality

Let $\mathbf{x} = \sqrt{m} \cdot \mathbf{s}$, so \mathbf{x} has i.i.d. ± 1 entries. Assume w.l.o.g. that $||\mathbf{y}||_2 = 1$. $\Pr[|||\mathbf{S}\mathbf{y}||_2^2 - 1| \ge \epsilon] = \Pr[|\mathbf{s}^T \mathbf{A}\mathbf{s} - 1| \ge \epsilon]$ $= \Pr[|\mathbf{x}^T A \mathbf{x} - m| > \epsilon m]$ $= \Pr[|\mathbf{x}^T A \mathbf{x} - \operatorname{tr}(A)| > \epsilon m]$ $\leq 2 \exp\left(-c \cdot \min\left\{\frac{(\epsilon m)^2}{\|A\|_{\epsilon}^2}, \frac{\epsilon m}{\|A\|_{2}}\right\}\right).$ $||A||_{r}^{2} = m \cdot ||vv^{T}||_{r}^{2} = m \cdot ||v||_{2}^{2} = m$ $||A||_2 = ||VV^T||_2 = ||V||_2 = 1$ $\Pr[\left|\left\|\mathbf{S}\mathbf{y}\right\|_{2}^{2}-1\right| \geq \epsilon] \leq 2\exp\left(-c \cdot \min\left\{\frac{(\epsilon m)^{2}}{m}, \frac{\epsilon m}{1}\right\}\right) = 2\exp(-c\epsilon^{2}m)$ If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, $\Pr[||\mathbf{S}y||_2^2 - 1| \ge \epsilon] \le \delta$, giving the distributional JL lemma.

Questions?