COMPSCI 690RA: Randomized Algorithms and Probabilistic Data Analysis

Prof. Cameron Musco University of Massachusetts Amherst. Spring 2022. Lecture 6

Logistics (Lots of Them)

- Problem Set 2 is due tomorrow 3/3 at 8pm.
- One page project proposal due Monday 3/7.
- Midterm next week in class designed to be 1.5 hours long, but I will give the full class for it.
- Closed book, mostly short-answer style questions.
- See Schedule tab for midterm study guide/practice questions.
- I will hold additional office hours Monday 3/7 from 4-6pm for midterm review.
- We again do not have a quiz this week due to the upcoming midterm.

Summary

Last Time:

- Saw how ℓ_0 sampling can be used to solve connectivity using $O(n \log^c n)$ bits of memory in a streaming setting.
- Approximate matrix multiplication via non-unifom norm-based sampling. Analysis via outer-product view of matrix multiplication + linearity of variance.
- Stochastic trace estimation Hutchinson's method and its full analysis via linearity of variance for pairwise-independent random variables.

Today: More applications of non-uniform and adaptive sampling to clustering and low-rank approximation.

- The *k*-means++ algorithm and its analysis.
- Randomized low-rank approximation via norm-based sampling, building on approximate matrix multiplication analysis.

k-means clustering and *k*-means ++

k-means Clustering

Given $x_1, \ldots, x_n \in \mathbb{R}^d$, assign to clusters $\{C_1, \ldots, C_k\}$ to minimize $\sum_{i=1}^k \sum_{x \in C_i} ||x - \mu_i||_2^2$ where $\mu_i = \frac{1}{|C_i|} \sum_{x \in C_i} x$ is the cluster centroid.

Probably the most popular clustering objective in practice. But minimizing it is surprisingly hard! $O(n^{dk+1})$ time is the best known for exact minimization, and assuming $P \neq NP$, the exponential dependences on k, d are necessary.

Lloyd's Algorithm

In practice *k*-means clustering is almost always solved with alternating minimization.

Lloyd's Algorithm:

- 1. Initialize some set of clusters $\{C_1, \ldots, C_k\}$ with centroids μ_1, \ldots, μ_k .
- 2. Reassign each datapoint x_i to cluster C_j where $j = \arg \min_{j \in [k]} ||x_i \mu_j||_2^2$.
- 3. Recompute centroids μ_1, \ldots, μ_k to reflect the new clusters.
- 4. Repeat (2)-(3).

Observe that the cost of the clustering can never increase. However, if the initialization is bad, can get caught in a bad local minimum.

) \blacklozenge ♦ ♦

k-means++: An extremely simple randomized initialization scheme for *k*-means which yields a *O*(log *k*) approximation to the optimal clustering.

- Initialize probabilities $p_i = 1/n$ for $i \in [n]$.
- Initialize list of cluster centers $C = \{\}$.
- For j = 1, 2, ... k
 - Set center $c_j \in \{x_1, \ldots, x_n\}$ to x_i with probability p_i . Add c_j to C.
 - For all $i \in [n]$, let $d(i) = \min_{c \in C} ||x_i c||_2^2$.
 - For all $i \in [n]$, let $p_i = d(i) / \sum_{i=1}^n d(i)$.
- Let C_1, \ldots, C_k be the clusters formed by assigning each data point to the nearest center in $C = \{c_1, \ldots, c_k\}$.

Intuition: The adaptive sampling strategy tends to select well-spread cluster centers.

k-means++ Intuition

Why don't we just set c_i to the x_i with maximum $d_i = \min_{c \in C} ||x_i - c||_2^2$? I.e., why do we use random sampling? This deterministic variant can be foiled by outliers.

With random sampling cluster centers are both well-spread and representative of the dataset.

Proof Outline:

 Let C₁,..., C_k the clusters corresponding to centers c₁,..., c_k and μ(C₁),..., μ(C_k) be their centroids. Let A₁,..., A_k be the optimal clusters. We will show:

$$\sum_{i=1}^{k} \sum_{x \in C_i} \|x - \mu(C_i)\|_2^2 \le \sum_{i=1}^{k} \sum_{x \in C_i} \|x - C_i\|_2^2 \le O(\log k) \cdot \sum_{i=1}^{k} \sum_{x \in A_i} \|x - \mu(A_i)\|_2^2.$$

- 2. Prove that, in expectation, the cost corresponding to any cluster A_i that has a center c_1, \ldots, c_k selected from it (i.e., is covered) is at most a constant factor times the optimal cost.
- 3. Argue that in each round of sampling, as long as the current cost is high, we are likely to select a new center from an uncovered cluster.

Proof Outline:

 Let C₁,..., C_k the clusters corresponding to centers c₁,..., c_k and µ(C₁),..., µ(C_k) be their centroids. Let A₁,..., A_k be the optimal clusters. We will show:
k

$$\sum_{i=1}^{n} \sum_{x \in C_{i}} \|x - \mu(C_{i})\|_{2}^{2} \leq \sum_{i=1}^{n} \sum_{x \in C_{i}} \|x - c_{i}\|_{2}^{2} \leq O(\log k) \cdot \sum_{i=1}^{n} \sum_{x \in A_{i}} \|x - \mu(A_{i})\|_{2}^{2}.$$

- 2. Prove that, in expectation, the cost corresponding to any cluster A_i that has a center c_1, \ldots, c_k selected from it (i.e., is covered) is at most a constant factor times the optimal cost.
- 3. Argue that in each round of sampling, as long as the current cost is high, we are likely to select a new center from an uncovered cluster.
- 4. Conclude that we cover any high cost clusters with good probability, and via a careful inductive argument that the expected cost is O(log k) times the optimum.

k-means++ Proof Sketch

Let $\mathcal{X}_u, \mathcal{X}_c$ be the set of uncovered and covered points respectively. Let $\phi(\mathcal{X}_u)$ and $\phi(\mathcal{X}_c)$ be the current cost associated with these points, and $\phi_{OPT}(\mathcal{X}_u)$ and $\phi_{OPT}(\mathcal{X}_c)$ denote the optimal cost.

- Will argue in a few slides that $\mathbb{E}[\phi(\mathcal{X}_c)] \lesssim \phi_{OPT}(\mathcal{X}_c)$

It remains to show that in expectation, the cost corresponding to a covered cluster A_i is at most a constant factor times the optimal cost.

A Useful Lemma: Let S be a set of points with centroid $\mu(S)$, and let z be any other point.

$$\sum_{\mathsf{x}\in\mathsf{S}} \|\mathsf{x}-\mathsf{z}\|_2^2 = \sum_{\mathsf{x}\in\mathsf{S}} \|\mathsf{x}-\mu(\mathsf{S})\|_2^2 + |\mathsf{S}|\cdot\|\mu(\mathsf{S})-\mathsf{z}\|_2^2.$$

Proof:
$$\sum_{x \in S} ||x - z||_2^2 = \sum_{x \in S} ||(x - \mu(S)) + (\mu(S) - z)||_2^2 = \sum_{x \in S} ||x - \mu(S)||_2^2 + \sum_{x \in S} ||\mu(S) - z||_2^2 + \sum_{x \in S} 2\langle x - \mu(S), \mu(S) - z \rangle$$
¹⁵

First Cluster Bound

Lemma

Let A be some cluster in the optimal cluster set A_1, \ldots, A_k . Let c_1 be a cluster center chosen uniformly at random from A. Let $\phi(A) = \sum_{x \in A} ||x - c_1||_2^2$ and $\phi_{OPT}(A) = \sum_{x \in A} ||x - \mu(A)||_2^2$.

 $\mathbb{E}[\phi(\mathsf{A})] = 2\phi_{OPT}(\mathsf{A}).$

16

Future Cluster Bounds

Lemma

Let A be some cluster in the optimal cluster set A_1, \ldots, A_k . Let c_1, \ldots, c_{j-1} be our current set of cluster centers. If we add a random center c_j from A, chosen with probability proportional to $d(a) = \min_{i \in \{1, \ldots, j-1\}} ||a - c_i||_2^2$ then

 $\mathbb{E}[\phi(\mathsf{A})] \leq 8\phi_{OPT}(\mathsf{A}).$

$$\mathbb{E}[\phi(A)] = \sum_{a_1 \in A} \frac{d(a_1)}{\sum_{a \in A} d(a)} \cdot \sum_{a_2 \in A} \min(d(a_2), \|a_2 - a_1\|_2^2)$$

By triangle inequality, for any center c_i , $\|a_1 - c_i\|_2^2 \le (\|a - c_i\|_2 + \|a - a_1\|_2)^2 \le 2\|a - c_i\|_2^2 + 2\|a - a_1\|_2^2$. So $d(a_1) \le 2d(a) + 2\|a - a_1\|_2^2$.

Averaging over all $a \in A$, $d(a_1) \leq \frac{2}{|A|} \sum_{a \in A} d(A) + \frac{2}{|A|} \sum_{a \in A} ||a - a_1||_2^2$.

Combine: $\mathbb{E}[\phi(A)] = \sum_{a_1 \in A} \frac{d(a_1)}{\sum_{a \in A} d(a)} \cdot \sum_{a_2 \in A} \min(d(a_2), ||a_2 - a_1||_2^2)$ and $d(a_1) \le \frac{2}{|A|} \sum_{a \in A} d(A) + \frac{2}{|A|} \sum_{a \in A} ||a - a_1||_2^2$ to get:

$$\begin{split} \mathbb{E}[\phi(\mathsf{A})] &\leq \frac{2}{|\mathsf{A}|} \left(\sum_{a_1 \in \mathsf{A}} \frac{\sum_{a \in \mathsf{A}} d(\mathsf{A})}{\sum_{a \in \mathsf{A}} d(\mathsf{A})} \sum_{a_2 \in \mathsf{A}} \|a_2 - a_1\|_2^2 + \sum_{a_1 \in \mathsf{A}} \frac{\sum_{a \in \mathsf{A}} \|a - a_1\|_2^2}{\sum_{a \in \mathsf{A}} d(\mathsf{A})} \sum_{a_2 \in \mathsf{A}} d(a_2) \right) \\ &= \frac{4}{|\mathsf{A}|} \sum_{a_1 \in \mathsf{A}} \sum_{a_2 \in \mathsf{A}} \|a_2 - a_1\|_2^2 \leq 8\phi_{\mathsf{OPT}}(\mathsf{A}). \end{split}$$

Upshot: At each step that we cover a cluster A from the optimal clustering, the expected cost is, in expectation, within a constant factor of the optimal cost for that cluster.

Randomized Low-Rank approximation

Low-rank Approximation

Consider a matrix $A \in \mathbb{R}^{n \times d}$. We would like to compute an optimal low-rank approximation of A. I.e., for $k \ll \min(n, d)$ we would like to find $Z \in \mathbb{R}^{n \times k}$ with orthonormal columns satisfying:

$$\|\mathsf{A}-\mathsf{Z}\mathsf{Z}^{\mathsf{T}}\mathsf{A}\|_{\mathsf{F}}=\min_{\mathsf{Z}:\mathsf{Z}^{\mathsf{T}}\mathsf{Z}=\mathsf{I}}\|\mathsf{A}-\mathsf{Z}\mathsf{Z}^{\mathsf{T}}\mathsf{A}\|_{\mathsf{F}}.$$

Why is rank(ZZ^TA) $\leq k$?

Why does it suffice to consider low-rank approximations of this form? For any B with rank(B) = k. let $Z \in \mathbb{R}^{n \times k}$ be an orthonormal

Sampling Based Algorithm

We will analysis a simple non-uniform sampling based algorithm for low-rank approximation, that gives a near optimal solution in $O(nd + nk^2)$ time.

Linear Time Low-Rank Approximation:

- Fix sampling probabilities p_1, \ldots, p_n with $p_i = \frac{\|A_{:,i}\|_2^2}{\|A\|_F^2}$.
- Select $\mathbf{i}_1, \dots, \mathbf{i}_t \in [n]$ independently, according to the distribution $\Pr[\mathbf{i}_j = k] = p_k$ for sample size $t \ge k$.

• Let
$$\mathbf{C} = \frac{1}{t} \cdot \sum_{j=1}^{t} \frac{1}{\sqrt{p_{\mathbf{i}_j}}} \cdot A_{:,\mathbf{i}_j}$$
.

• Let $\overline{Z} \in \mathbb{R}^{n \times k}$ consist of the top k left singular vectors of C.

Looks like approximate matrix multiplication! In fact, will use that CC^{T} is a good approximation to the matrix product AA^{T} .

Sampling Based Algorithm

Sampling Based Algorithm Approximation Bound

Theorem

The linear time low-rank approximation algorithm run with $t = \frac{k}{\epsilon^2 \cdot \sqrt{\delta}}$ samples outputs $\overline{Z} \in \mathbb{R}^{n \times k}$ satisfying with probability at least $1 - \delta$:

$$\|A - \overline{\mathbf{Z}}^T A\|_F^2 \le \min_{Z:Z^T Z = I} \|A - ZZ^T A\|_F^2 + 2\epsilon \|A\|_F^2.$$

Key Idea: By the approximate matrix multiplication result from last class, applied to the matrix product AA^{T} , with probability $\geq 1 - \delta$,

$$\|AA^{\mathsf{T}} - \mathsf{C}\mathsf{C}^{\mathsf{T}}\|_{\mathsf{F}} \leq \frac{\epsilon}{\sqrt{k}} \cdot \|A\|_{\mathsf{F}} \cdot \|A^{\mathsf{T}}\|_{\mathsf{F}} = \frac{\epsilon}{\sqrt{k}} \|A\|_{\mathsf{F}}^{2}.$$

Since \mathbf{CC}^{T} is close to AA^{T} , the top eigenvectors of these matrices (i.e. the top left singular vectors of A and **C** will not be too different.) So $\overline{\mathsf{Z}}$ can be used in place of the top left singular vectors of A to give a near optimal approximation.

Formal Analysis

Let $Z_* \in \mathbb{R}^{n \times k}$ contain the top left singular vectors of A – i.e. $Z_* = \arg \min \|A - ZZ^T A\|_F^2$. Similarly, $\overline{\mathbf{Z}} = \arg \min \|\mathbf{C} - ZZ^T \mathbf{C}\|_F^2$.

Claim 1: For any orthonormal $Z \in \mathbb{R}^{n \times k}$, and any matrix *B*,

$$||B - ZZ^{\mathsf{T}}B||_F^2 = \operatorname{tr}(BB^{\mathsf{T}}) - \operatorname{tr}(Z^{\mathsf{T}}BB^{\mathsf{T}}Z).$$

Claim 2: If $||AA^T - CC^T||_F \le \frac{\epsilon}{\sqrt{k}} ||A||_F^2$, then for any orthonormal $Z \in \mathbb{R}^{n \times k}$, $\operatorname{tr}(Z^T(AA^T - CC^T)Z) \le \epsilon ||A||_F^2$.

Proof from claims:

$$\begin{split} \|\mathbf{C} - \overline{\mathbf{Z}}\overline{\mathbf{Z}}^{\mathsf{T}}\mathbf{C}\|_{F}^{2} &\leq \|\mathbf{C} - Z_{*}Z_{*}^{\mathsf{T}}\mathbf{C}\|_{F}^{2} \implies \operatorname{tr}(\overline{\mathbf{Z}}^{\mathsf{T}}\mathbf{C}\mathbf{C}^{\mathsf{T}}\overline{\mathbf{Z}}) \geq \operatorname{tr}(Z_{*}^{\mathsf{T}}\mathbf{C}\mathbf{C}^{\mathsf{T}}Z_{*}) \\ &\implies \operatorname{tr}(\overline{\mathbf{Z}}^{\mathsf{T}}AA^{\mathsf{T}}\overline{\mathbf{Z}}) \geq \operatorname{tr}(Z_{*}^{\mathsf{T}}AA^{\mathsf{T}}Z_{*}) - 2\epsilon \|A\|_{F}^{2} \\ &\implies \|A - \overline{\mathbf{Z}}\overline{\mathbf{Z}}^{\mathsf{T}}A\|_{F}^{2} \leq \|A - Z_{*}Z_{*}^{\mathsf{T}}A\|_{F}^{2} + 2\epsilon \|A\|_{F}^{2}. \end{split}$$

Formal Analysis

Claim 2: If $||AA^T - \mathbf{CC}^T||_F \le \frac{\epsilon}{\sqrt{k}} ||A||_F^2$, then for any orthonormal $Z \in \mathbb{R}^{n \times k}$, $\operatorname{tr}(Z^T(AA^T - \mathbf{CC}^T)Z) \le \epsilon ||A||_F^2$.

Suffices to show that for any symmetric $B \in \mathbb{R}^{n \times n}$, and any orthonormal $Z \in \mathbb{R}^{n \times k}$, tr $(Z^T B Z) \le \sqrt{k} \cdot ||B||_F$.

Norm based sampling gives an additive error approximation, $\|A - \overline{ZZ}^T A\|_F^2 \le \min_{Z:Z^T Z = I} \|A - ZZ^T A\|_F^2 + 2\epsilon \|A\|_F^2$.

- Ideally, we would like a relative error approximation, $\|A - \overline{Z}\overline{Z}^T A\|_F^2 \leq (1 + \epsilon) \cdot \min_{Z:Z^T Z = I} \|A - ZZ^T A\|_F^2.$
- This can be achieved with more advanced non-uniform sampling techniques, based on leverage scores or adaptive sampling.
- Also possible using Johnson-Lindenstrauss type random projection.

Adaptive Sampling

Given an input matrix $A \in \mathbb{R}^{n \times d}$ and rank parameter $k \ll \min(n, d)$.

- Initialize probabilities $p_i = 1/n$ for $i \in [n]$.
- Initialize list of columns $C = \{\}$ and orthonormal matrix V = 0.
- For *j* = 1, 2, ... *t*
 - Set a column $c_j \in \{A_{:,1}, \ldots, A_{:,n}\}$ to $A_{:,i}$ with probability p_i and add c_j to C.
 - Let $V \in \mathbb{R}^{n \times j}$ have orthonormal columns spanning the columns in *C*.
 - For all $i \in [n]$, let $p_i = \frac{\|A_{:,i} VV^T A_{:,i}\|_2^2}{\|A VV^T A\|_F^2}$.
- Return the top k left singular values of $AV \in \mathbb{R}^{n \times t}$.

Adaptive Sampling