
COMPSCI 690RA: Randomized Algorithms and
Probabilistic Data Analysis

Prof. Cameron Musco
University of Massachusetts Amherst. Spring 2022.
Lecture 6

1



Logistics (Lots of Them)

• Problem Set 2 is due tomorrow 3/3 at 8pm.
• One page project proposal due Monday 3/7.
• Midterm next week in class – designed to be 1.5 hours
long, but I will give the full class for it.

• Closed book, mostly short-answer style questions.
• See Schedule tab for midterm study guide/practice
questions.

• I will hold additional office hours Monday 3/7 from 4-6pm
for midterm review.

• We again do not have a quiz this week due to the
upcoming midterm.
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Summary

Last Time:
• Saw how ℓ0 sampling can be used to solve connectivity using
O(n logc n) bits of memory in a streaming setting.

• Approximate matrix multiplication via non-unifom norm-based
sampling. Analysis via outer-product view of matrix
multiplication + linearity of variance.

• Stochastic trace estimation – Hutchinson’s method and its full
analysis via linearity of variance for pairwise-independent
random variables.

Today: More applications of non-uniform and adaptive sampling to
clustering and low-rank approximation.

• The k-means++ algorithm and its analysis.

• Randomized low-rank approximation via norm-based sampling,
building on approximate matrix multiplication analysis.
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k-means clustering and k-means ++
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k-means Clustering

Given x1, . . . , xn ∈ Rd, assign to clusters {C1, . . . , Ck} to minimize∑k
i=1
∑

x∈Ci ∥x− µi∥22 where µi =
1

|Ci|
∑

x∈Ci x is the cluster centroid.

Probably the most popular clustering objective in practice. But
minimizing it is surprisingly hard! O(ndk+1) time is the best known
for exact minimization, and assuming P ̸= NP, the exponential
dependences on k,d are necessary. 4



Lloyd’s Algorithm

In practice k-means clustering is almost always solved with
alternating minimization.

Lloyd’s Algorithm:

1. Initialize some set of clusters {C1, . . . , Ck} with centroids
µ1, . . . , µk.

2. Reassign each datapoint xi to cluster Cj where
j = argminj∈[k] ∥xi − µj∥22.

3. Recompute centroids µ1, . . . , µk to reflect the new clusters.
4. Repeat (2)-(3).

Observe that the cost of the clustering can never increase.
However, if the initialization is bad, can get caught in a bad
local minimum.
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Lloyd’s Algorithm
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k-means++

k-means++: An extremely simple randomized initialization
scheme for k-means which yields a O(log k) approximation to
the optimal clustering.

• Initialize probabilities pi = 1/n for i ∈ [n].
• Initialize list of cluster centers C = {}.
• For j = 1, 2, . . . k

• Set center cj ∈ {x1, . . . , xn} to xi with probability pi. Add cj
to C.

• For all i ∈ [n], let d(i) = minc∈C ∥xi − c∥22.
• For all i ∈ [n], let pi = d(i)/

∑n
i=1 d(i).

• Let C1, . . . , Ck be the clusters formed by assigning each
data point to the nearest center in C = {c1, . . . , ck}.
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k-means++

Intuition: The adaptive sampling strategy tends to select well-spread
cluster centers.
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k-means++ Intuition

Why don’t we just set cj to the xi with maximum
di = minc∈C ∥xi − c∥22? I.e., why do we use random sampling? This
deterministic variant can be foiled by outliers.

With random sampling cluster centers are both well-spread and
representative of the dataset.
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k-means++ Analysis

Proof Outline:

1. Let C1, . . . , Ck the clusters corresponding to centers c1, . . . , ck
and µ(C1), . . . , µ(Ck) be their centroids. Let A1, . . . ,Ak be the
optimal clusters. We will show:

k∑
i=1

∑
x∈Ci

∥x− µ(Ci)∥22 ≤
k∑
i=1

∑
x∈Ci

∥x− ci∥22 ≤ O(log k) ·
k∑
i=1

∑
x∈Ai

∥x− µ(Ai)∥22.

2. Prove that, in expectation, the cost corresponding to any cluster
Ai that has a center c1, . . . , ck selected from it (i.e., is covered) is
at most a constant factor times the optimal cost.

3. Argue that in each round of sampling, as long as the current
cost is high, we are likely to select a new center from an
uncovered cluster.

10



k-means++ Analysis
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k-means++ Analysis

Proof Outline:

1. Let C1, . . . , Ck the clusters corresponding to centers c1, . . . , ck
and µ(C1), . . . , µ(Ck) be their centroids. Let A1, . . . ,Ak be the
optimal clusters. We will show:

k∑
i=1

∑
x∈Ci

∥x− µ(Ci)∥22 ≤
k∑
i=1

∑
x∈Ci

∥x− ci∥22 ≤ O(log k) ·
k∑
i=1

∑
x∈Ai

∥x− µ(Ai)∥22.

2. Prove that, in expectation, the cost corresponding to any cluster
Ai that has a center c1, . . . , ck selected from it (i.e., is covered) is
at most a constant factor times the optimal cost.

3. Argue that in each round of sampling, as long as the current
cost is high, we are likely to select a new center from an
uncovered cluster.

4. Conclude that we cover any high cost clusters with good
probability, and via a careful inductive argument that the
expected cost is O(log k) times the optimum. 12



k-means++ Proof Sketch

Let Xu,Xc be the set of uncovered and covered points respectively.
Let ϕ(Xu) and ϕ(Xc) be the current cost associated with these points,
and ϕOPT(Xu) and ϕOPT(Xc) denote the optimal cost.

• Will argue in a few slides that E[ϕ(Xc)] ≲ ϕOPT(Xc)

• If ϕ(X ) ≥ α · ϕOPT(X ), then
ϕ(Xc) ≤ ϕOPT(Xc) ≤ ϕOPT(X ) ≤ 1/α · ϕ(X ). So
ϕ(Xu) = ϕ(X )− ϕ(Xc) ≥ (1− 1/α) · ϕ(X ). So, we cover a new
cluster with probability:

ϕ(Xu)

ϕ(X )
≥ 1− 1

α
≈ 1

when α is large.

• I.e., unless our current cost is close to the optimal cost, we
cover a new cluster with high probability in each step.
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k-means++ Analysis
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k-means++ Analysis

It remains to show that in expectation, the cost corresponding to a
covered cluster Ai is at most a constant factor times the optimal cost.

A Useful Lemma: Let S be a set of points with centroid µ(S), and let z
be any other point.∑

x∈S
∥x− z∥22 =

∑
x∈S

∥x− µ(S)∥22 + |S| · ∥µ(S)− z∥22.

Proof:
∑

x∈S ∥x− z∥22 =
∑

x∈S ∥(x− µ(S)) + (µ(S)− z)∥22 =∑
x∈S ∥x− µ(S)∥22 +

∑
x∈S ∥µ(S)− z∥22 +

∑
x∈S 2⟨x− µ(S), µ(S)− z⟩ 15



First Cluster Bound

Lemma
Let A be some cluster in the optimal cluster set A1, . . . ,Ak. Let c1 be
a cluster center chosen uniformly at random from A. Let
ϕ(A) =

∑
x∈A ∥x− c1∥22 and ϕOPT(A) =

∑
x∈A ∥x− µ(A)∥22.

E[ϕ(A)] = 2ϕOPT(A).

E[ϕ(A)] =
∑
a1∈A

1
|A| ·

∑
a2∈A

∥a1 − a2∥22

=
1
|A|
∑
a1∈A

∑
a2∈A

[
∥a2 − µ(A)∥22 + |A| · ∥a1 − µ(A)∥22

]
=
∑
a1∈A

∥a1 − µ(A)∥22 +
∑
a2∈A

∥a2 − µ(A)∥22

= 2ϕOPT(A).
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Future Cluster Bounds

Lemma
Let A be some cluster in the optimal cluster set A1, . . . ,Ak. Let
c1, . . . , cj−1 be our current set of cluster centers. If we add a random
center cj from A, chosen with probability proportional to
d(a) = mini∈{1,...,j−1} ∥a− ci∥22 then

E[ϕ(A)] ≤ 8ϕOPT(A).

E[ϕ(A)] =
∑
a1∈A

d(a1)∑
a∈A d(a)

·
∑
a2∈A

min(d(a2), ∥a2 − a1∥22)

By triangle inequality, for any center ci,
∥a1 − ci∥22 ≤ (∥a− ci∥2 + ∥a− a1∥2)2 ≤ 2∥a− ci∥22 + 2∥a− a1∥22. So

d(a1) ≤ 2d(a) + 2∥a− a1∥22.

Averaging over all a ∈ A, d(a1) ≤ 2
|A|
∑

a∈A d(A) + 2
|A|
∑

a∈A ∥a− a1∥22.
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Future Cluster Bounds

Combine: E[ϕ(A)] =
∑

a1∈A
d(a1)∑
a∈A d(a)

·
∑

a2∈Amin(d(a2), ∥a2 − a1∥22)
and d(a1) ≤ 2

|A|
∑

a∈A d(A) + 2
|A|
∑

a∈A ∥a− a1∥22 to get:

E[ϕ(A)] ≤ 2
|A|

(∑
a1∈A

∑
a∈A d(A)∑
a∈A d(A)

∑
a2∈A

∥a2 − a1∥22 +
∑
a1∈A

∑
a∈A ∥a− a1∥22∑

a∈A d(A)
∑
a2∈A

d(a2)
)

=
4
|A|
∑
a1∈A

∑
a2∈A

∥a2 − a1∥22 ≤ 8ϕOPT(A).

Upshot: At each step that we cover a cluster A from the optimal
clustering, the expected cost is, in expectation, within a constant
factor of the optimal cost for that cluster.
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Randomized Low-Rank approximation
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Low-rank Approximation

Consider a matrix A ∈ Rn×d. We would like to compute an optimal
low-rank approximation of A. I.e., for k≪ min(n,d) we would like to
find Z ∈ Rn×k with orthonormal columns satisfying:

∥A− ZZTA∥F = min
Z:ZTZ=I

∥A− ZZTA∥F.

Why is rank(ZZTA) ≤ k?

Why does it suffice to consider low-rank approximations of this
form? For any B with rank(B) = k, let Z ∈ Rn×k be an orthonormal
basis for B’s column span. Then ∥A− ZZTA∥F ≤ ∥A− B∥F. So

min
Z:ZTZ=I

∥A− ZZTA∥F = min
B:rank B=k

∥A− B∥F.

How would one compute the optimal basis Z? Compute the top k
left singular vectors of A, which requires O(nd2) time, or O(ndk) time
for a high accuracy approximation with an iterative method.
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Sampling Based Algorithm

We will analysis a simple non-uniform sampling based algorithm for
low-rank approximation, that gives a near optimal solution in
O(nd+ nk2) time.

Linear Time Low-Rank Approximation:

• Fix sampling probabilities p1, . . . ,pn with pi =
∥A:,i∥22
∥A∥2F

.

• Select i1, . . . , it ∈ [n] independently, according to the
distribution Pr[ij = k] = pk for sample size t ≥ k.

• Let C = 1
t ·
∑t

j=1
1√pij

· A:,ij .

• Let Z ∈ Rn×k consist of the top k left singular vectors of C.

Looks like approximate matrix multiplication! In fact, will use that
CCT is a good approximation to the matrix product AAT.
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Sampling Based Algorithm
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Sampling Based Algorithm Approximation Bound

Theorem
The linear time low-rank approximation algorithm run with
t = k

ϵ2·
√
δ
samples outputs Z ∈ Rn×k satisfying with probability at

least 1− δ:

∥A− ZZTA∥2F ≤ min
Z:ZTZ=I

∥A− ZZTA∥2F + 2ϵ∥A∥2F.

Key Idea: By the approximate matrix multiplication result from last
class, applied to the matrix product AAT, with probability ≥ 1− δ,

∥AAT − CCT∥F ≤
ϵ√
k
· ∥A∥F · ∥AT∥F =

ϵ√
k
∥A∥2F.

Since CCT is close to AAT, the top eigenvectors of these matrices (i.e.
the top left singular vectors of A and C will not be too different.) So Z
can be used in place of the top left singular vectors of A to give a
near optimal approximation.
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Formal Analysis

Let Z∗ ∈ Rn×k contain the top left singular vectors of A – i.e.
Z∗ = argmin ∥A− ZZTA∥2F. Similarly, Z = argmin ∥C− ZZTC∥2F.

Claim 1: For any orthonormal Z ∈ Rn×k, and any matrix B,

∥B− ZZTB∥2F = tr(BBT)− tr(ZTBBTZ).

Claim 2: If ∥AAT − CCT∥F ≤ ϵ√
k
∥A∥2F, then for any orthonormal

Z ∈ Rn×k, tr(ZT(AAT − CCT)Z) ≤ ϵ∥A∥2F.

Proof from claims:

∥C− ZZTC∥2F ≤ ∥C− Z∗ZT∗C∥2F =⇒ tr(ZTCCTZ) ≥ tr(ZT∗CCTZ∗)

=⇒ tr(ZTAATZ) ≥ tr(ZT∗AATZ∗)− 2ϵ∥A∥2F
=⇒ ∥A− ZZTA∥2F ≤ ∥A− Z∗ZT∗A∥2F + 2ϵ∥A∥2F.
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Formal Analysis

Claim 2: If ∥AAT − CCT∥F ≤ ϵ√
k
∥A∥2F, then for any orthonormal

Z ∈ Rn×k, tr(ZT(AAT − CCT)Z) ≤ ϵ∥A∥2F.

Suffices to show that for any symmetric B ∈ Rn×n, and any
orthonormal Z ∈ Rn×k, tr(ZTBZ) ≤

√
k · ∥B∥F.

tr(ZTBZ) =
k∑
i=1

zTi Bzi

≤
k∑
i=1

λi(B) (By Courant-Fischer theorem)

≤
√
k ·

√√√√ k∑
i=1

λi(B)2 ≤
√
k ·

√√√√ n∑
i=1

λi(B)2 =
√
k · ∥B∥F.
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More Advanced Techniques

Norm based sampling gives an additive error approximation,
∥A− ZZTA∥2F ≤ minZ:ZTZ=I ∥A− ZZTA∥2F + 2ϵ∥A∥2F.

• Ideally, we would like a relative error approximation,
∥A− ZZTA∥2F ≤ (1+ ϵ) ·minZ:ZTZ=I ∥A− ZZTA∥2F.

• This can be achieved with more advanced non-uniform
sampling techniques, based on leverage scores or
adaptive sampling.

• Also possible using Johnson-Lindenstrauss type random
projection.
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Adaptive Sampling

Given an input matrix A ∈ Rn×d and rank parameter
k≪ min(n,d).

• Initialize probabilities pi = 1/n for i ∈ [n].
• Initialize list of columns C = {} and orthonormal matrix
V = 0.

• For j = 1, 2, . . . t
• Set a column cj ∈ {A:,1, . . . ,A:,n} to A:,i with probability pi
and add cj to C.

• Let V ∈ Rn×j have orthonormal columns spanning the
columns in C.

• For all i ∈ [n], let pi =
∥A:,i−VVTA:,i∥22
∥A−VVTA∥2F

.

• Return the top k left singular values of AV ∈ Rn×t.
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Adaptive Sampling
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