COMPSCI 690RA: Randomized Algorithms and Probabilistic Data Analysis

Prof. Cameron Musco

University of Massachusetts Amherst. Spring 2022.
Lecture 6

Logistics (Lots of Them)

- Problem Set 2 is due tomorrow 3/3 at 8pm.
- One page project proposal due Monday 3/7.
- Midterm next week in class - designed to be 1.5 hours long, but I will give the full class for it.
- Closed book, mostly short-answer style questions.
- See Schedule tab for midterm study guide/practice questions.
- I will hold additional office hours Monday 3/7 from 4-6pm for midterm review.
- We again do not have a quiz this week due to the upcoming midterm.

Summary

Last Time:

- Saw how ℓ_{0} sampling can be used to solve connectivity using $O\left(n \log ^{c} n\right)$ bits of memory in a streaming setting.
- Approximate matrix multiplication via non-unifom norm-based sampling. Analysis via outer-product view of matrix multiplication + linearity of variance.
- Stochastic trace estimation - Hutchinson's method and its full analysis via linearity of variance for pairwise-independent random variables.

Today: More applications of non-uniform and adaptive sampling to clustering and low-rank approximation.

- The k-means++ algorithm and its analysis.
- Randomized low-rank approximation via norm-based sampling, building on approximate matrix multiplication analysis.

k-means clustering and k-means ++

k-means Clustering

Given $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$, assign to clusters $\left\{C_{1}, \ldots, C_{k}\right\}$ to minimize $\sum_{i=1}^{k} \sum_{x \in c_{i}}\left\|x-\mu_{i}\right\|_{2}^{2}$ where $\mu_{i}=\frac{1}{\left|C_{i}\right|} \sum_{x \in c_{i}} x$ is the cluster centroid.

Probably the most popular clustering objective in practice. But minimizing it is surprisingly hard! $O\left(n^{d k+1}\right)$ time is the best known for exact minimization, and assuming $P \neq N P$, the exponential dependences on k, d are necessary.

Lloyd's Algorithm

In practice k-means clustering is almost always solved with alternating minimization.

Lloyd's Algorithm:

1. Initialize some set of clusters $\left\{C_{1}, \ldots, C_{k}\right\}$ with centroids

$$
\mu_{1}, \ldots, \mu_{k}
$$

2. Reassign each datapoint x_{i} to cluster C_{j} where

$$
j=\arg \min _{j \in[k]}\left\|x_{i}-\mu_{j}\right\|_{2}^{2}
$$

3. Recompute centroids μ_{1}, \ldots, μ_{k} to reflect the new clusters.
4. Repeat (2)-(3).

Observe that the cost of the clustering can never increase. However, if the initialization is bad, can get caught in a bad local minimum.

Lloyd's Algorithm

k-means++

k-means++: An extremely simple randomized initialization scheme for k-means which yields a $O(\log k)$ approximation to the optimal clustering.

- Initialize probabilities $p_{i}=1 / n$ for $i \in[n]$.
- Initialize list of cluster centers $C=\{ \}$.
- For $j=1,2, \ldots k$
- Set center $c_{j} \in\left\{x_{1}, \ldots, x_{n}\right\}$ to x_{i} with probability p_{i}. Add c_{j} to C.
- For all $i \in[n]$, let $d(i)=\min _{c \in c}\left\|x_{i}-c\right\|_{2}^{2}$.
- For all $i \in[n]$, let $p_{i}=d(i) / \sum_{i=1}^{n} d(i)$.
- Let C_{1}, \ldots, C_{k} be the clusters formed by assigning each data point to the nearest center in $C=\left\{c_{1}, \ldots, c_{k}\right\}$.

k-means++

Intuition: The adaptive sampling strategy tends to select well-spread cluster centers.

k-means++ Intuition

Why don't we just set c_{j} to the x_{i} with maximum
$d_{i}=\min _{c \in C}\left\|x_{i}-c\right\|_{2}^{2}$? I.e., why do we use random sampling? This deterministic variant can be foiled by outliers.

With random sampling cluster centers are both well-spread and

k-means++ Analysis

Proof Outline:

1. Let C_{1}, \ldots, C_{k} the clusters corresponding to centers C_{1}, \ldots, C_{k} and $\mu\left(C_{1}\right), \ldots, \mu\left(C_{k}\right)$ be their centroids. Let A_{1}, \ldots, A_{k} be the optimal clusters. We will show:

$$
\sum_{i=1}^{k} \sum_{x \in C_{i}}\left\|x-\mu\left(C_{i}\right)\right\|_{2}^{2} \leq \sum_{i=1}^{k} \sum_{x \in C_{i}}\left\|x-c_{i}\right\|_{2}^{2} \leq O(\log k) \cdot \sum_{i=1}^{k} \sum_{x \in A_{i}}\left\|x-\mu\left(A_{i}\right)\right\|_{2}^{2}
$$

2. Prove that, in expectation, the cost corresponding to any cluster A_{i} that has a center c_{1}, \ldots, c_{k} selected from it (i.e., is covered) is at most a constant factor times the optimal cost.
3. Argue that in each round of sampling, as long as the current cost is high, we are likely to select a new center from an uncovered cluster.
k-means++ Analysis

k-means++ Analysis

Proof Outline:

1. Let C_{1}, \ldots, C_{k} the clusters corresponding to centers C_{1}, \ldots, C_{k} and $\mu\left(C_{1}\right), \ldots, \mu\left(C_{k}\right)$ be their centroids. Let A_{1}, \ldots, A_{k} be the optimal clusters. We will show:
$\sum_{i=1}^{k} \sum_{x \in C_{i}}\left\|x-\mu\left(C_{i}\right)\right\|_{2}^{2} \leq \sum_{i=1}^{k} \sum_{x \in C_{i}}\left\|x-c_{i}\right\|_{2}^{2} \leq O(\log k) \cdot \sum_{i=1}^{k} \sum_{x \in A_{i}}\left\|x-\mu\left(A_{i}\right)\right\|_{2}^{2}$.
2. Prove that, in expectation, the cost corresponding to any cluster A_{i} that has a center c_{1}, \ldots, c_{k} selected from it (i.e., is covered) is at most a constant factor times the optimal cost.
3. Argue that in each round of sampling, as long as the current cost is high, we are likely to select a new center from an uncovered cluster.
4. Conclude that we cover any high cost clusters with good probability, and via a careful inductive argument that the expected cost is $O(\log k)$ times the optimum.

k-means++ Proof Sketch

Let $\mathcal{X}_{u}, \mathcal{X}_{c}$ be the set of uncovered and covered points respectively. Let $\phi\left(\mathcal{X}_{u}\right)$ and $\phi\left(\mathcal{X}_{c}\right)$ be the current cost associated with these points, and $\phi_{\text {OPT }}\left(\mathcal{X}_{u}\right)$ and $\phi_{\text {OPT }}\left(\mathcal{X}_{c}\right)$ denote the optimal cost.

- Will argue in a few slides that $\mathbb{E}\left[\phi\left(\mathcal{X}_{c}\right)\right] \lesssim \phi_{\text {OPT }}\left(\mathcal{X}_{c}\right)$

k-means++ Analysis

It remains to show that in expectation, the cost corresponding to a covered cluster A_{i} is at most a constant factor times the optimal cost.

A Useful Lemma: Let S be a set of points with centroid $\mu(S)$, and let z be any other point.

$$
\sum_{x \in S}\|x-z\|_{2}^{2}=\sum_{x \in S}\|x-\mu(S)\|_{2}^{2}+|S| \cdot\|\mu(S)-z\|_{2}^{2}
$$

Proof: $\sum_{x \in S}\|x-z\|_{2}^{2}=\sum_{x \in S}\|(x-\mu(S))+(\mu(S)-z)\|_{2}^{2}=$
$\sum_{x \in S}\|x-\mu(S)\|_{2}^{2}+\sum_{x \in S}\|\mu(S)-z\|_{2}^{2}+\sum_{x \in S} 2\langle x-\mu(S), \mu(S)-z\rangle$

First Cluster Bound

Lemma

Let A be some cluster in the optimal cluster set A_{1}, \ldots, A_{k}. Let c_{1} be a cluster center chosen uniformly at random from A. Let $\phi(A)=\sum_{x \in A}\left\|x-c_{1}\right\|_{2}^{2}$ and $\phi_{\text {OPT }}(A)=\sum_{x \in A}\|x-\mu(A)\|_{2}^{2}$.

$$
\mathbb{E}[\phi(A)]=2 \phi_{\text {OPT }}(A) .
$$

$$
\mathbb{E}[\phi(A)]=\sum_{a_{1} \in A} \frac{1}{|A|} \cdot \sum_{a_{2} \in A}\left\|a_{1}-a_{2}\right\|_{2}^{2}
$$

Future Cluster Bounds

Lemma

Let A be some cluster in the optimal cluster set A_{1}, \ldots, A_{k}. Let c_{1}, \ldots, c_{j-1} be our current set of cluster centers. If we add a random center c_{j} from A, chosen with probability proportional to $d(a)=\min _{i \in\{1, \ldots, j-1\}}\left\|a-c_{i}\right\|_{2}^{2}$ then

$$
\mathbb{E}[\phi(A)] \leq 8 \phi_{\text {OPT }}(A) .
$$

$$
\mathbb{E}[\phi(A)]=\sum_{a_{1} \in A} \frac{d\left(a_{1}\right)}{\sum_{a \in A} d(a)} \cdot \sum_{a_{2} \in A} \min \left(d\left(a_{2}\right),\left\|a_{2}-a_{1}\right\|_{2}^{2}\right)
$$

By triangle inequality, for any center c_{i},

$$
\begin{gathered}
\left\|a_{1}-c_{i}\right\|_{2}^{2} \leq\left(\left\|a-c_{i}\right\|_{2}+\left\|a-a_{1}\right\|_{2}\right)^{2} \leq 2\left\|a-c_{i}\right\|_{2}^{2}+2\left\|a-a_{1}\right\|_{2}^{2} . \text { So } \\
d\left(a_{1}\right) \leq 2 d(a)+2\left\|a-a_{1}\right\|_{2}^{2} .
\end{gathered}
$$

Averaging over all $a \in A, d\left(a_{1}\right) \leq \frac{2}{|A|} \sum_{a \in A} d(A)+\frac{2}{|A|} \sum_{a \in A}\left\|a-a_{1}\right\|_{2}^{2}$.

Future Cluster Bounds

Combine: $\mathbb{E}[\phi(A)]=\sum_{a_{1} \in A} \frac{d\left(a_{1}\right)}{\sum_{a \in A} d(a)} \cdot \sum_{a_{2} \in A} \min \left(d\left(a_{2}\right),\left\|a_{2}-a_{1}\right\|_{2}^{2}\right)$ and $d\left(a_{1}\right) \leq \frac{2}{|A|} \sum_{a \in A} d(A)+\frac{2}{|A|} \sum_{a \in A}\left\|a-a_{1}\right\|_{2}^{2}$ to get:

$$
\begin{aligned}
\mathbb{E}[\phi(A)] & \leq \frac{2}{|A|}\left(\sum_{a_{1} \in A} \frac{\sum_{a \in A} d(A)}{\sum_{a \in A} d(A)} \sum_{a_{2} \in A}\left\|a_{2}-a_{1}\right\|_{2}^{2}+\sum_{a_{1} \in A} \frac{\sum_{a \in A}\left\|a-a_{1}\right\|_{2}^{2}}{\sum_{a \in A} d(A)} \sum_{a_{2} \in A} d\left(a_{2}\right)\right) \\
& =\frac{4}{|A|} \sum_{a_{1} \in A} \sum_{a_{2} \in A}\left\|a_{2}-a_{1}\right\|_{2}^{2} \leq 8 \phi_{\text {OPT }}(A) .
\end{aligned}
$$

Upshot: At each step that we cover a cluster A from the optimal clustering, the expected cost is, in expectation, within a constant factor of the optimal cost for that cluster.

Randomized Low-Rank approximation

Low-rank Approximation

Consider a matrix $A \in \mathbb{R}^{n \times d}$. We would like to compute an optimal low-rank approximation of A. I.e., for $k \ll \min (n, d)$ we would like to find $Z \in \mathbb{R}^{n \times k}$ with orthonormal columns satisfying:

$$
\left\|A-Z Z^{\top} A\right\|_{F}=\min _{z: Z^{\top} Z=1}\left\|A-Z Z^{\top} A\right\|_{F}
$$

Why is $\operatorname{rank}\left(Z Z^{\top} A\right) \leq k$?

Why does it suffice to consider low-rank approximations of this
form? For anv B with $\operatorname{rank}(B)=k$. let $Z \in \mathbb{R}^{n \times k}$ be an orthonormal

Sampling Based Algorithm

We will analysis a simple non-uniform sampling based algorithm for low-rank approximation, that gives a near optimal solution in $O\left(n d+n k^{2}\right)$ time.

Linear Time Low-Rank Approximation:

- Fix sampling probabilities p_{1}, \ldots, p_{n} with $p_{i}=\frac{\left\|A_{A}, j\right\|_{2}^{2}}{\|A\|_{F}^{2}}$.
- Select $i_{1}, \ldots, i_{t} \in[n]$ independently, according to the distribution $\operatorname{Pr}\left[i_{j}=k\right]=p_{k}$ for sample size $t \geq k$.
- Let $\mathbf{C}=\frac{1}{t} \cdot \sum_{j=1}^{t} \frac{1}{\sqrt{P_{\mathrm{P}_{\mathrm{j}}}}} \cdot A_{;, \mathrm{i}_{\mathrm{j}}}$.
- Let $\bar{Z} \in \mathbb{R}^{n \times k}$ consist of the top k left singular vectors of C.

Looks like approximate matrix multiplication! In fact, will use that $C C^{\top}$ is a good approximation to the matrix product $A A^{\top}$.

Sampling Based Algorithm

Sampling Based Algorithm Approximation Bound

Theorem

The linear time low-rank approximation algorithm run with $t=\frac{k}{\epsilon^{2} \cdot \sqrt{\delta}}$ samples outputs $\bar{Z} \in \mathbb{R}^{n \times k}$ satisfying with probability at least 1 - δ :

$$
\left\|A-\overline{Z Z}^{\top} A\right\|_{F}^{2} \leq \min _{Z: Z^{\top} Z=1}\left\|A-Z Z^{\top} A\right\|_{F}^{2}+2 \epsilon\|A\|_{F}^{2} .
$$

Key Idea: By the approximate matrix multiplication result from last class, applied to the matrix product $A A^{\top}$, with probability $\geq 1-\delta$,

$$
\left\|A A^{T}-C C^{T}\right\|_{F} \leq \frac{\epsilon}{\sqrt{k}} \cdot\|A\|_{F} \cdot\left\|A^{T}\right\|_{F}=\frac{\epsilon}{\sqrt{k}}\|A\|_{F}^{2} .
$$

Since CC^{\top} is close to $A A^{\top}$, the top eigenvectors of these matrices (i.e. the top left singular vectors of A and C will not be too different.) So \bar{Z} can be used in place of the top left singular vectors of A to give a near optimal approximation.

Formal Analysis

Let $Z_{*} \in \mathbb{R}^{n \times k}$ contain the top left singular vectors of A - i.e. $Z_{*}=\arg \min \left\|A-Z Z^{\top} A\right\|_{F}^{2}$. Similarly, $\bar{Z}=\arg \min \left\|C-Z Z^{\top} C\right\|_{F}^{2}$.

Claim 1: For any orthonormal $Z \in \mathbb{R}^{n \times k}$, and any matrix B,

$$
\left\|B-Z Z^{\top} B\right\|_{F}^{2}=\operatorname{tr}\left(B B^{\top}\right)-\operatorname{tr}\left(Z^{\top} B B^{\top} Z\right)
$$

Claim 2: If $\left\|A A^{\top}-C C^{\top}\right\|_{F} \leq \frac{\epsilon}{\sqrt{k}}\|A\|_{F}^{2}$, then for any orthonormal $Z \in \mathbb{R}^{n \times k}, \operatorname{tr}\left(Z^{\top}\left(A A^{\top}-C C^{\top}\right) Z\right) \leq \epsilon\|A\|_{F}^{2}$.
Proof from claims:

$$
\begin{aligned}
\left\|\mathbf{C}-\overline{Z Z}^{\top} \mathbf{C}\right\|_{F}^{2} \leq\left\|\mathbf{C}-Z_{*} Z_{*}^{\top} C\right\|_{F}^{2} & \Longrightarrow \operatorname{tr}\left(\bar{Z}^{\top} C C^{\top} \bar{Z}\right) \geq \operatorname{tr}\left(Z_{*}^{\top} C C^{\top} Z_{*}\right) \\
& \Longrightarrow \operatorname{tr}\left(\bar{Z}^{\top} A A^{\top} \bar{Z}\right) \geq \operatorname{tr}\left(Z_{*}^{\top} A A^{\top} Z_{*}\right)-2 \epsilon\|A\|_{F}^{2} \\
& \Longrightarrow\left\|A-\overline{Z Z}^{\top} A\right\|_{F}^{2} \leq\left\|A-Z_{*} Z_{*}^{\top} A\right\|_{F}^{2}+2 \epsilon\|A\|_{F}^{2} .
\end{aligned}
$$

Formal Analysis

Claim 2: If $\left\|A A^{\top}-\mathrm{CC}^{\top}\right\|_{F} \leq \frac{\epsilon}{\sqrt{k}}\|A\|_{F}^{2}$, then for any orthonormal $Z \in \mathbb{R}^{n \times k}, \operatorname{tr}\left(Z^{\top}\left(A A^{\top}-C C^{\top}\right) Z\right) \leq \epsilon\|A\|_{F}^{2}$.

Suffices to show that for any symmetric $B \in \mathbb{R}^{n \times n}$, and any orthonormal $Z \in \mathbb{R}^{n \times k}, \operatorname{tr}\left(Z^{\top} B Z\right) \leq \sqrt{k} \cdot\|B\|_{F}$.

$$
\begin{aligned}
\operatorname{tr}\left(Z^{\top} B Z\right) & =\sum_{i=1}^{k} z_{i}^{\top} B z_{i} \\
& \leq \sum_{i=1}^{k} \lambda_{i}(B) \quad(B y \text { Courant-Fischer theorem) } \\
& \leq \sqrt{k} \cdot \sqrt{\sum_{i=1}^{k} \lambda_{i}(B)^{2}} \leq \sqrt{k} \cdot \sqrt{\sum_{i=1}^{n} \lambda_{i}(B)^{2}}=\sqrt{k} \cdot\|B\|_{F} .
\end{aligned}
$$

More Advanced Techniques

Norm based sampling gives an additive error approximation, $\left\|A-\overline{Z Z}^{\top} A\right\|_{F}^{2} \leq \min _{Z: Z^{\top} Z=I}\left\|A-Z Z^{\top} A\right\|_{F}^{2}+2 \epsilon\|A\|_{F}^{2}$.

- Ideally, we would like a relative error approximation, $\left\|A-\overline{Z Z}^{\top} A\right\|_{F}^{2} \leq(1+\epsilon) \cdot \min _{Z: Z^{\top} Z=1}\left\|A-Z Z^{\top} A\right\|_{F}^{2}$.
- This can be achieved with more advanced non-uniform sampling techniques, based on leverage scores or adaptive sampling.
- Also possible using Johnson-Lindenstrauss type random projection.

Adaptive Sampling

Given an input matrix $A \in \mathbb{R}^{n \times d}$ and rank parameter $k \ll \min (n, d)$.

- Initialize probabilities $p_{i}=1 / n$ for $i \in[n]$.
- Initialize list of columns $C=\{ \}$ and orthonormal matrix $V=0$.
- For $j=1,2, \ldots t$
- Set a column $c_{j} \in\left\{A_{i, 1}, \ldots, A_{i, n}\right\}$ to $A_{:, i}$ with probability p_{i} and add c_{j} to C.
- Let $V \in \mathbb{R}^{n \times j}$ have orthonormal columns spanning the columns in C.
- For all $i \in[n]$, let $p_{i}=\frac{\left\|A A_{i, i}-V^{\top} A_{i, j}\right\|^{2}}{\left\|A-V^{\top}\right\|_{F}^{2}}$.
- Return the top k left singular values of $A V \in \mathbb{R}^{n \times t}$.

Adaptive Sampling

