
COMPSCI 690RA: Randomized Algorithms and
Probabilistic Data Analysis

Prof. Cameron Musco
University of Massachusetts Amherst. Spring 2022.
Lecture 5

1

Logistics

• Project guidelines and suggested topics have been posted
on the Assignments Tab of the course page.

• One page proposal due Monday 3/7.
• Problem Set 2 was posted last Friday – due next Thursday,
3/3. We will not have a quiz this week – focus on the
problem set and project brainstorming instead.

2

Summary

Last Time:

• Rabin fingerprint analysis. Applications to pattern matching
(Rabin-Karp algorithm) and communication complexity (testing
equality of n-bit strings using O(logn) bits).

• ℓ0 sampling and low-communication graph connectivity.

Today:

• Quickly finish up graph sketching and streaming.

• Start on randomized methods for linear algebraic computation.

• Approximate matrix multiplication via sampling.

• Stochastic trace estimation.

3

A Graph Communication Problem

Consider n nodes, each only knows its own neighborhood. They want
to send messages to a central server, who must then determine if the
graph is connected.

Saw how to solve the problem with high probability using just
O(logc n) sized messages.

4

Simulating Boruvka’s Algorithm via Sketches

• For independent ℓ0 sampling matrices A1, . . . ,Alog2 n, each node
computes Ajvi and sends these sketches to the central server.
O(logc n) bits in total.

• The central server uses Ajv1, . . . ,Ajvn to simulate the jth step of
Boruvka’s algorithm – the sketch allows the server to recover
one outgoing edge from each connected component.

5

A Graph Streaming Problem

Consider a setting where an algorithm must process a stream of
edge insertions or deletions, which define a graph. At the end of the
stream, the algorithm should output whether that graph is
connected or not.

Algorithmic Question: How much memory must an algorithm use to
solve this problem with high probability?

What is the worst-case memory required by a naive deterministic
algorithm that just stores the current state of the graph? How can
you improve on this when there are no edge deletions? 6

Solution via ℓ0 sampling

• The algorithm samples independent ℓ0 sampling matrices
A1, . . . ,Alog2 n and maintains Ajvu for all j and all u ∈ [n], where
vu ∈ R(

n
2) is the incidence vector for node u.

• O(n logc n) bits of storage in total.

• When an edge (u, v) is inserted or deleted, one entry is either
incremented or decremented in each of vu, vv. The algorithm
can update Ajvu and Ajvv in O(logc n) time – simply set
Ajvu = Ajvu ± Aj,k.

• At the end of the stream (or at any time during it) can use the
sketched neighborhoods to simulate Boruvka’s algorithm and
determine connectivity with high probability.

• Can think of the algorithm as computing AB ∈ Rlog3 n×n where
A ∈ Rlog3 n×(n2) is made up of the appended sketching matrices
and B ∈ R(

n
2)×n is the vertex-edge-incidence matrix.

7

Approximate Matrix Multiplication

7

Matrix Multiplication Problem

Given A,B ∈ Rn×n would like to compute C = AB. Requires nω

time where ω ≈ 2.373 in theory.

Today: We’ll see how to compute an approximation in O(n2)
time via a simple sampling approach.

• One of the most fundamental algorithms in randomized
numerical linear algebra. Forms the building block for
many other algorithms.

8

Outer Product View of Matrix Multiplication

Inner Product View: [AB]ij = ⟨Ai,:,Bj,:⟩ =
∑n

k=1 Aik · Bkj.

Outer Product View: Observe that Ck = A:,kBk,: is an n× n matrix with
[Ck]ij = Ajk · Bkj. So AB =

∑n
k=1 A:,kBk,:

Basic Idea: Approximate AB by sampling terms of this sum.
9

Canonical AMM Algorithm

Approximate Matrix Multiplication (AMM):

• Fix sampling probabilities p1, . . . ,pn with pi ≥ 0 and
∑

[n] pi = 1.

• Select i1, . . . , it ∈ [n] independently, according to the
distribution Pr[ij = k] = pk.

• Let C = 1
t ·
∑t

j=1
1
pij

· A:,ijBij,:.

Claim 1: E[C] = AB

E[C] = 1
t

t∑
j=1

E

[
1
pij

· A:,ijBij,:

]
=
1
t

t∑
j=1

n∑
k=1

pk·
1
pk

·A:,kBk,: =
1
t

t∑
j=1

AB = AB

Weighting by 1
pij
keeps the expectation correct.

10

AMM Error Analysis

Claim 2: E[∥AB− C∥2F] = 1
t
∑n

m=1
∥A:,m∥22·∥Bm,:∥22

pm .

E[∥AB− C∥2F] =
∑
k,ℓ

E[([AB]kℓ − Ckℓ)2] =
∑
k,ℓ

Var[Ckℓ].

Var[Ckℓ] = Var

1
t

t∑
j=1

1
pij
Ak,ijBij,ℓ

 =
1
t Var

[
1
pij
Ak,ijBij,ℓ

]

≤ 1
t

n∑
m=1

pm · 1
p2m

· A2k,m · B2m,ℓ

=
1
t

n∑
m=1

A2k,m · B2m,ℓ

pm

E[∥AB− C∥2F] ≤ 1
t ·
∑n

m=1
∑n

k=1
∑n

ℓ=1
A2k,m·B

2
m,ℓ

pm =
∑n

m=1
∥A:,m∥22·∥Bm,:∥22

pm

11

Optimal Sampling Probabilities

Claim 2: E[∥AB− C∥2F] = 1
t
∑n

m=1
∥A:,m∥22·∥Bm,:∥22

pm .

How should we set p1, . . . ,pn to minimize this expected error?

Set pm =
∥A:,m∥2·∥Bm,:∥2∑n
k=1 ∥A:,k∥2·∥Bk,:∥2

, giving:

E[∥AB− C∥2F] =
1
t

n∑
m=1

∥A:,m∥2 · ∥Bm,:∥2 ·

(n∑
k=1

∥A:,k∥2 · ∥Bk,:∥2

)

=
1
t

(n∑
m=1

∥A:,k∥2 · ∥Bk,:∥2

)2

By the Cauchy-Schwarz inequality,∑n
m=1 ∥A:,k∥2 · ∥Bk,:∥2 ≤

√∑n
m=1 ∥A:,k∥22 ·

√∑n
m=1 ∥Bk,:∥22 = ∥A∥F · ∥B∥F

Overall: E[∥AB− C∥2F] ≤
∥A∥2F·∥B∥

2
F

t . Setting t = 1
ϵ2
√
δ
, by Chebyshev’s

inequality:
Pr[∥AB− C∥F ≥ ϵ · ∥A∥F · ∥B∥F] ≤ δ.

12

AMM Upshot

Upshot: Sampling t = O(1/ϵ2) columns/rows of A,B with
probabilities proportional to ∥A:,k∥2 · ∥Bk,:∥2 yields, with good
probability, an approximation C with

∥AB− C∥F ≤ ϵ · ∥A∥F · ∥B∥F.

• Probabilities take O(n2) time to compute. After sampling, C
takes O(t · n2) time to compute.

• Can derive related bounds when probabilities are just
approximate – i.e. pk ≥ β · ∥A:,k∥2·∥Bk,:∥2∑n

m=1 ∥A:,m∥2·∥Bm,:∥2 for some β > 0.

• Can also give bounds on ∥AB− C∥2, but analysis is much more
complex. Will see tools in the coming weeks that let us do this.

• A classic example of using weighted sampling to decrease
variance and in turn, sample complexity.

13

AMM Upshot

Think-Pair-Share 1: Ideally we would have relative error,
∥AB− C∥F ≤ ϵ∥AB∥F. Could we get this via a tighter analysis or
better sampling distribution?

Think-Pair-Share 2: What if we just uniformly sampled
rows/columns? Recall that E[∥AB− C∥2F] = 1

t
∑n

m=1
∥A:,m∥22·∥Bm,:∥22

pm .

14

Stochastic Trace Estimation

14

Matrix Trace

The trace of a matrix A ∈ Rn×n is the sum of it diagonal entries.

tr(A) =
n∑
i=1

Aii.

When A is diagonalizable (e.g., when it is symmetric) with
eigenvalues λ1, . . . , λn, tr(A) =

∑n
i=1 λi.

How many operations does it take to compute tr(A) given
explicit access to A?

15

Implicit Trace Estimation

• Given implicit access to A ∈ Rn×n through matrix-vector
multiplication.

• Goal is to approximate tr(A) =
∑n

i=1 Aii.

Main question: How many matrix-vector multiplication “queries”
Ax1, . . . ,Axm are required to approximate tr(A)?

Algorithms in this model are called matrix-free methods. Useful
when A is not given explicitly, but we have an efficient algorithm for
multiplying A by a vector (examples to come).

What other matrix free method have we studied in this class? 16

Naive Exact Algorithm

Naive solution:

• Set xi = ei for i = 1, . . . ,n.
• Return tr(A) =

∑n
i=1 xTi Axi.

Returns exact solution, but requires n matrix-vector multiplies.

We will see how to use m≪ n multiplies by using randomness
and allowing for small approximation error.

17

Motivating Example

The number of triangles or other small ‘motifs’ is an important
metric of network connectivity. E.g., important in computing
the network clustering coefficient

How long does it take to exactly compute the number of
triangles in the graph?

18

Motivating Example

Can use the adjacency matrix B ∈ {0, 1}n×n to write the number of
triangles in a linear algebraic way.

• Bij indicates the number of 1-step paths (edges) from i, j

• [B2]ij indicates the number of 2-step paths from i, j

• [B3]ij indicates the number of 3-step paths from i, j

Bii is the number of length 3-paths from i back to i. Thus,
1
6 tr(B

3) = # triangles. 19

Motivating Example

1
6 tr(B

3) = # triangles.

• Explicitly forming B3 and computing tr(B3) takes O(n3) time.

• Can multiply B3 by a vector in 3 · |E| = O(n2) operations.

• So a trace estimation algorithm using m queries, yields an
O(m · |E|) time approximate triangle counting algorithm.

20

Other Examples

Example 2: Hessian/Jacobian matrix-vector products.

• For vector x, ∇f(y)x and ∇2f(y)x can often be computed
efficiently using finite difference methods or explicit
differentiation (e.g., via backpropagation).

• Do not need to fully form ∇f(y) or ∇2f(y).
• Many applications, e.g., in analyzing neural network
convergence.

21

Other Examples

Example 3: A is a function of another (explicit) matrix B, A = f(B) that
can be applied efficiently via an iterative method.

• Repeated multiplication to apply A = B3.

• Conjugate gradient, MINRES, or any linear system solver:

A = B−1.

• Lanczos method, polynomial/rational approximation:

A = exp(B), A =
√
B, A = log(B), etc.

• These methods run in n2 · C time, where C depends on
properties of B. Typically C≪ n so n2 · C≪ n3.

22

Matrix Function Examples

• Log-likelihood computation in Bayesian optimization,
experimental design. tr(log(B)) = log det(B).

• Estrada index, a measure of protein folding degree and
more generally, network connectivity. tr(exp(B)).

• Trace inverse, which is important in uncertainty
quantification and many other scientific computing
applications. tr(B−1)

• Information about the matrix eigenvalue spectrum, since
tr(f(B)) =

∑n
i=1 f(λi), where λi is B’s ith eigenvalue.

• E.g., counting the number of eigenvalues in an interval,
spectral density estimation, matrix norms

• See e.g., [Ubaru, and Saad 2017].

23

Hutchinson’s Method

Hutchinson 1991, Girard 1987:

• Draw x1, . . . , xm ∈ Rn i.i.d. with random {+1,−1} entries.
• Return T = 1

m
∑m

i=1 xTi Axi as an approximation to tr(A).

• One of the earliest examples of a randomized algorithm
for linear algebraic computation.

24

Hutchinson’s Method Error Bound

Theorem
Let T be the trace estimate returned by Hutchinson’s method.
If m = O

(1
δϵ2

)
, then with probability ≥ 1− δ,∣∣T− tr(A)

∣∣ ≤ ϵ∥A∥F

If A is symmetric positive semidefinite (PSD) then

∥A∥F =

√√√√ n∑
i=1

λ2i ≤
n∑
i=1

λi = tr(A).

So for PSD A: (1− ϵ) tr(A) ≤ T ≤ (1+ ϵ) tr(A).

25

Proof Approach

Theorem
Let T be the trace estimate returned by Hutchinson’s method.
If m = O

(1
δϵ2

)
, then with probability ≥ 1− δ,∣∣T− tr(A)

∣∣ ≤ ϵ∥A∥F

1. Show that E[T] = tr(A).
2. Bound Var[T].
3. Apply Chebyshev’s inequality.

A tighter proof that uses the Hanson-Wright inequality, an
exponential concentration inequality for quadratic forms, can
improve the δ dependence to log(1/δ).

26

Expectation Analysis

Hutchinson’s Estimator::

• Draw x1, . . . , xm ∈ Rn i.i.d. with random {+1,−1} entries.

• Return T = 1
m
∑m

i=1 xTi Axi as an approximation to tr(A).

By linearity of expectation, E[T] = E[xTAx] for a single random ±1
vector x.

E[xTAx] = E
n∑
i=1

n∑
j=1

xixjAij =
n∑
i=1

n∑
j=1

Aij · E[xixj] =
n∑
i=1

Aii.

• When i ̸= j, xixj = 1 with probability 1/2 and −1 with probability
1/2, so E[xixj] = 0. When i = j, xixj = 1, so E[xixj] = 1.

• So the estimator is correct in expectation: E[T] = tr(A).

27

Variance Bound

Hutchinson’s Estimator::

• Draw x1, . . . , xm ∈ Rn i.i.d. with random {+1,−1} entries.

• Return T = 1
m
∑m

i=1 xTi Axi as an approximation to tr(A).

Var[T] = 1
m Var[xTAx] = 1

m Var

 n∑
i=1

n∑
j=1

xixjAij


Can we apply linearity of variance here? Almost – need to remove
repeated terms, and then can use pairwise independence.

Var[T] = 1
m Var

 n∑
i=1

Aii +
n∑
i=1

∑
j>i

xixj(Aij + Aji)


=

1
m

n∑
i=1

∑
j>i

Var[xixj] · (Aij + Aji)2 ≤
1
m

n∑
i=1

∑
j>i

2A2ij + 2A2ji ≤
2∥A∥2F
m .

28

Final Analysis

Hutchinson’s Estimator::

• Draw x1, . . . , xm ∈ Rn i.i.d. with random {+1,−1} entries.

• Return T = 1
m
∑m

i=1 xTi Axi as an approximation to tr(A).

Chebyshev’s inequality implies that, for m = 2
δϵ2 :

Pr
[∣∣T− tr(A)

∣∣ ≥ ϵ∥A∥F
]
≤ 2∥A∥2F/m

ϵ2∥A∥2F
= δ.

Could we have gotten a better bound by applying Bernstein’s
inequality to

∑n
i=1
∑

j>i xixj(Aij + Aji)?

Hanson-Wright is an exponential concentration bound that can be
used in the specific case – improves bound to m = O

(
log(1/δ)

ϵ2

)
.

29

Optimality of Hutchinson’s Method

The m = O
(
log(1/δ)

ϵ2

)
bound given by the Hanson-Wright

inequality is tight.

• Any algorithm that only uses queries of the form xTi Axi
requires Ω

(
log(1/δ)

ϵ2

)
samples to estimate tr(A) to error

±ϵ tr(A) for PSD A [Wimmer, Wu, Zhang 2014].
• We recently showed that using the full power of
matrix-vector queries, one can achieve O

(
log(1/δ)

ϵ

)
queries

for PSD matrices – see project topics.

30

