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Logistics

• Reminder that there is a weekly quiz, released after class
on Wednesday and due the next Tuesday 8pm.

• Problem Set 1 was released Monday. Due next Friday 2/11.
Download from the course website.

• See Piazza for a post to organize homework groups.
• Reminder that we encourage you to post your questions
publicly on Piazza – you will receive extra credit for this.
And help your classmates!
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Talk This Week

Thursday at 4pm Talya Eden (BU, MIT) will be giving a Zoom talk
on Sublinear-Time Graph Algorithms: Motif Counting and
Uniform Sampling.

• This is a very cool line of work that heavily uses
randomization.

• Link on CICS Events page.

https://umass-amherst.zoom.us/j/94725490374?
pwd=bGtsa0hjNGx5c1VyNnlGT21WbU5wQT09
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Summary

Last Time:

• Motivation behind randomized algorithms and some classic
examples — polynomial identity testing, Freivald’s algorithm.

• Complexity classes related to randomized algorithms –
P ⊆ ZPP ⊆ RP ⊆ BPP.

• Probability review – linearity of expectation and variance.

Today:

• Concentation bounds – Markov’s and Chebyshev’s inequalities.

• The union bound.

• Exponential concentration bounds – Chernoff and Bernstein

• Applications of tools to Quicksort analysis, coupon collecting,
statistical estimation, random hashing.
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Application 1: Quicksort with Random Pivots
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Quicksort

Quicksort(X): where X = (x1, . . . , xn) is a list of numbers.

1. If X is empty: return X.

2. Else: select pivot p uniformly at random from {1, . . . ,n}.

3. Let Xlo = {i ∈ X : xi < xp} and Xhi = {i ∈ X : xi ≥ xp} (requires
n− 1 comparisons with xp to determine).

4. Return the concatenation of the lists
[Quicksort(Xlo), (xp), Quicksort(Xhi)].

What is the worst case running time of this algorithm?
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Randomized Quicksort Analysis

Theorem: Let T be the number of comparisions performed by
Quicksort(X). Then E[T] = O(n logn).

• For any i, j ∈ [n] with i < j, let Iij = 1 if xi, xj are compared at
some point during the algorithm, and Iij = 0 if they are
not. An indicator random variable.

• We can write T =
∑n−1

i=1
∑n

j=i+1 Iij. Thus, via linearity of
expectation

E[T] =
n−1∑
i=1

n∑
j=i+1

E[Iij] =
n−1∑
i=1

n∑
j=i+1

Pr[xi, xj are compared]

So we need to upper bound Pr[xi, xj are compared].
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Randomized Quicksort Analysis

Upper bounding Pr[xi, xj are compared]:

• Assume without loss of generality that x1 ≤ x2 ≤ . . . ≤ xn. This is
just ‘renaming’ the elements of our list. Also recall that i < j.

• At exactly one step of the recursion, xi, xj will be ‘split up’ with
one landing in Xhi and the other landing in Xlo, or one being
chosen as the pivot. xi, xj are only ever compared in this later
case – if one is chosen as the pivot when they are split up.

• The split occurs when some element between xi and xj is
chosen as the pivot. The possible elements are xi, xi+1, . . . , xj.

• Pr[xi, xj are compared] is equal to the probability that either xi
or xj are chosen as the splitting pivot from this list. Thus,
Pr[xi, xj are compared] = 7



Randomized Quicksort Analysis

So Far: Expected number of comparisons is given as:

E[T] =
n−1∑
i=1

n∑
j=i+1

Pr[xi, xj are compared].

And we computed Pr[xi, xj are compared] = 2
j−i+1 . Plugging in:

E[T] =
n−1∑
i=1

n∑
j=i+1

2
j− i+ 1 =

n−1∑
i=1

n−i+1∑
k=2

2
k

≤
n−1∑
i=1

n∑
k=1

2
k ≤ 2 · (n− 1) ·

n∑
k=1

1
k = 2n · Hn = O(n logn).
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Concentration Inequalities
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Concentration Inequalities

Concentration inequalities are bounds showing that a random
variable lies close to it’s expectation with good probability. Key
tools in the analysis of randomized algorithms.
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Markov’s Inequality

The most fundamental concentration bound: Markov’s
inequality.

For any non-negative random variable X and any t > 0:

Pr[X ≥ t] ≤ E[X]
t .

Proof:
E[X] =

∑
s
Pr(X = u) · u ≥

∑
u≥t

Pr(X = u) · u

≥
∑
u≥t

Pr(X = u) · t

= t · Pr(X ≥ t).

Plugging in t = E[X] · s, Pr[X ≥ s · E[X]] ≤ 1/s. The larger the
deviation s, the smaller the probability.
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Markov’s Inequality

Think-Pair-Share: You have a Las Vegas algorithm that solves
some decision problem in expected running time T. Show how
to turn this into a Monte-Carlo algorithm with worst case
running time 3T and success probability 2/3.

11



Chebyshev’s inequality

With a very simple twist, Markov’s Inequality can be made
much more powerful in many settings.

For any random variable X and any value t > 0:

Pr(|X| ≥ t) = Pr(X2 ≥ t2).

X2 is a nonnegative random variable. So can apply Markov’s:

Pr(|X| ≥ t) = Pr(X2 ≥ t2) ≤ E[X2]
t2 .

Plugging in the random variable X− E[X], gives the standard
form of Chebyshev’s inequality:

Pr(|X− E[X]| ≥ t) ≤ E[(X− E[X])2
t2 =

Var(X)
t2 .
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Chebyshev’s inequality

Pr(|X− E[X]| ≥ t) ≤ Var[X]
t2

What is the probability that X falls s standard deviations from
it’s mean?

Pr(|X− E[X]| ≥ s ·
√
Var[X]) ≤ Var[X]

s2 · Var[X] =
1
s2 .
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Application 2: Statistical Estimation + Law of
Large Numbers
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Concentration of Sample Mean

Theorem: Let X1, . . . , Xn be pairwise independent random
variables with E[Xi] = µ and Var[Xi] = σ2. Let X = 1

n
∑n

i=1 Xn be
their sample average.

For any ϵ > 0, Pr[|X− µ| ≥ ϵσ] ≤ 1
nϵ2 .

• By linearity of expectation, E[X] = 1
n
∑n

i=1 E[Xi] = µ.

• By linearity of variance, E[X] = 1
n2

∑n
i=1 Var[Xi] = σ2

n .

• Plugging into Chebyshev’s inequality:

Pr[|X− µ| ≥ ϵσ] ≤ Var[X]
ϵ2σ2

=
1
nϵ2 .

This is the weak law of large numbers.
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Concentration of Sample Mean

Application to statistical estimation: There is a large population of
individuals. A p fraction of them have a certain property (e.g., 55% of
people support decreased taxation, 10% of people are greater than 6’
tall, etc.). Want to estimate p from a small sample of individuals.

• Sample n individuals uniformly at random, with replacement.

• Let Xi = 1 if the ith individual has the property, and 0 otherwise.
X1, . . . , Xn are i.i.d. draws from Bern(p) – each is 1 with
probability p and 0 with probability 1− p.

• E[Xi] = p and Var[Xi] = p(1− p).

• Thus, letting p̄ = 1
n
∑n

i=1 Xi, E[p̄] = p and Var[p̄] = p(1−p)
n ≤ p

n .

• By Chebyshev’s inequality Pr[|p− p̄| ≥ ϵ] ≤ p
ϵ2n .

Upshot: If we take n = p
ϵ2δ samples, then with probability at least

1− δ, p̄ will be a ±ϵ estimate to the true proportion p. A prototypical
sublinear time algorithm.
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Application to Success Boosting

Think-Pair-Share: You have a Monte-Carlo algorithm with
worst case running time T and success probability 2/3. Show
how to obtain, for any δ ∈ (0, 1), a Monte-Carlo algorithm with
worse case running time O(T/δ) and success probability 1− δ.
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Application 3: Coupon Collecting
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Coupon Collector Problem

There is a set of n unique coupons. At each step you draw a
random coupon from this set. How many steps does it take
you to collect all the coupons?

Think-Pair-Share: Say you have collected i coupons so far. Let
Ti+1 denote the number of draws needed to collect the (i+ 1)st

coupon. What is E[Ti]?
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Coupon Collector Analysis

Think-Pair-Share: Say you have collected i coupons so far. Let
Ti+1 denote the number of draws needed to collect the (i+ 1)st

coupon. What is E[Ti]?

• Ti is a geometric random variable with success probability
pi = n−i

n . I.e., Pr[Ti = j] = pi(1− pi)j−1.
• Exercise: verify that E[Ti] = 1/pi = n

n−i .
• By linearity of expectation, the expected number of draws
to collect all the coupons is:

E[T] =
n−1∑
i=0

E[Ti] =
n
n +

n
n− 1 + . . .

n
2 + . . .

n
1

= n · Hn.

• By Markov’s inequality, Pr[T ≥ cn · Hn] ≤
18



Quiz Question

Consider rolling a fair 6-sided dice, which takes a value in
{1, 2, 3, 4, 5, 6} each with probability 1/6. What is the expected
number of rolls needed to see each odd number (i.e., see each
of {1, 3, 5}) at least once?
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Coupon Collector Analysis

Can get a tighter tail bound using Chebyshev’s inequality in
place of Markov’s.

• We wrote T =
∑n−1

i=0 Ti, which let us compute E[T] = n · Hn.
• Also have Var[T] =

∑n−1
i=0 Var[Ti]. Why?

• Exercise: show that Var[Ti] = 1−pi
p2i
, and recall that pi = n−i

n .
• Putting these together:

Var[T] =
n∑
i=0

1− pi
p2i

=
n∑
i=0

1
p2i

−
n∑
i=0

1
pi

≤ n2 · π
2

6 − n · Hn ≤ n2 · π
2

6 .

• Via Chebyshev’s inequality, Pr[|T− n · Hn| ≥ cn] ≤

20



Application 4: Randomized Load Balancing and
Hashing, and ‘Ball Into Bins’
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Balls Into Bins

I throw m balls independently and uniformly at random into n
bins. What is the maximum number of balls any bin?
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Application: Hash Tables

• hash function h : U→ [n] maps elements to indices of an array.

• Repeated elements in the same bucket are stored as a linked
list – ‘chaining’.

• Worse-case look up time is proportional to the maximum list
length – i.e., the maximum number of ‘balls’ in a ‘bin’.

Note: A ‘fully random hash function’ maps items independently and
uniformly at random to buckets. This is a theoretical idealization of
practical hash functions. 22



Application: Randomized Load Balancing

• m requests are distributed randomly to n servers. Want to
bound the maximum number of requests that a single server
must handle.

• Assignment is often is done via a random hash function so that
repeated requests or related requests can be mapped to the
same server, to take advantages of caching and other
optimizations.
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Balls Into Bins Analysis

Let bi be the number of balls landing in bin i. For n balls into m bins
what is E[bi]?

Pr
[
max
i=1,...,n

bi ≥ k
]
= Pr

[ n∪
i=1

Ai

]
,

where Ai is the event that bi ≥ k.

Union Bound: For any random events A1,A2, ...,An,

Pr (A1 ∪ A2 ∪ . . . ∪ An) ≤ Pr(A1) + Pr(A2) + . . .+ Pr(An).

Exercise: Show that the union bound is a special case of Markov’s
inequality with indicator random variables. 24



Balls Into Bins Direct Analysis

Let bi be the number of balls landing in bin i. If we can prove that for
any i, Pr[Ai] = Pr[bi ≥ k] ≤ p, then by the union bound:

Pr
[
max
i=1,...,n

bi ≥ k
]
= Pr

[ n∪
i=1

Ai

]
≤ n · p.

Claim 1: Assume m = n. For k ≥ c ln n
ln ln n , Pr[bi ≥ k] ≤ 1

nc−o(1) .

• bi is a binomial random variable with n draws and success
probability 1/n.

Pr[bi = j] =
(
n
j

)
· 1
nj

·
(
1− 1

n

)n−j
.

• We have
(n
j
)
≤

(
en
j

)j
, giving Pr[bi = j] ≤

(
e
j

)j
·
(
1− 1

n
)n−j ≤ (

e
j

)j
.

• Summing over j ≥ k we have:

Pr[bi ≥ k] ≤
∑
j≥k

(
e
j

)j
=

(e
k

)k
· 1
1− e/k .
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Balls Into Bins Direct Analysis

We just showed: When n = m (i.e., n balls into n bins)

Pr [bi ≥ k] ≤
(e
k

)k
· 1
1− e/k

For k = c ln n
ln ln n we have:

Pr [bi ≥ k] ≤
(
ln lnn
lnn

) c ln n
ln ln n

· 1
1− (e ln lnn)/(c lnn) =

1
nc−o(1)

.

Upshot: By the union bound, For k = c ln n
ln ln n for sufficiently large c,

Pr
[
max
i=1,...,n

bi ≥ k
]
≤ n · 1

nc−o(1)
=

1
nc−1−o(1)

.

When throwing n balls in to n bins, with very high probability the
maximum number of balls in a bin will be O

( ln n
ln ln n

)
.
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Balls Into Bins Via Chebyshev’s Inequality

In our balls into bins analysis we directly bound
Pr [bi ≥ k] ≤

( e
k
)k · 1

1−e/k .

Think Pair Share: Give an upper bound on this probability
using Chebyshev’s inequality. Hint: write bi as a sum of n
indicator random variables and compute Var[bi].
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Balls Into Bins Via Chebyshev’s Inequality

By Chebyshev’s Inequality: Pr [bi ≥ k] ≤ 2
k2 .

Setting k = c
√
n, Pr

[
bi ≥ c

√
n
]
≤ 2

c2n . So via a union bound:

Pr
[
max
i=1,...,n

bi ≥ c
√
n
]
≤ n · 2

c2n ≤ 2
c2 .

Upshot: Chebyshev’s inequality bounds the maximum load by
O(

√
n) with good probability, as compared to O

(
log n

log log n

)
for

the direct proof. It is quite loose here.

Chebyshev’s and Markov’s inequalities are extremely valuable
because they are very general – require few assumptions on
the underlying random variable. But by using assumptions, we
can often get tighter analysis.
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