COMPSCI 690RA: Randomized Algorithms and Probabilistic Data Analysis

Prof. Cameron Musco University of Massachusetts Amherst. Spring 2022. Lecture 2

- Reminder that there is a weekly quiz, released after class on Wednesday and due the next Tuesday 8pm.
- Problem Set 1 was released Monday. Due next Friday 2/11. Download from the course website.
- See Piazza for a post to organize homework groups.
- Reminder that we encourage you to post your questions publicly on Piazza – you will receive extra credit for this. And help your classmates!

Thursday at 4pm Talya Eden (BU, MIT) will be giving a Zoom talk on Sublinear-Time Graph Algorithms: Motif Counting and Uniform Sampling.

- This is a very cool line of work that heavily uses randomization.
- Link on CICS Events page.

https://umass-amherst.zoom.us/j/94725490374?
pwd=bGtsa0hjNGx5c1VyNnlGT21WbU5wQT09

Summary

Last Time:

- Motivation behind randomized algorithms and some classic examples polynomial identity testing, Freivald's algorithm.
- Complexity classes related to randomized algorithms $P \subseteq ZPP \subseteq RP \subseteq BPP$.
- Probability review linearity of expectation and variance.

Today:

- · Concentation bounds Markov's and Chebyshev's inequalities.
- The union bound.
- Exponential concentration bounds Chernoff and Bernstein
- Applications of tools to Quicksort analysis, coupon collecting, statistical estimation, random hashing.

Application 1: Quicksort with Random Pivots

Quicksort

Quicksort(X): where $X = (x_1, ..., x_n)$ is a list of numbers.

- 1. If X is empty: return X.
- 2. Else: select pivot p uniformly at random from $\{1, \ldots, n\}$.
- 3. Let $X_{lo} = \{i \in X : x_i < x_p\}$ and $X_{hi} = \{i \in X : x_i \ge x_p\}$ (requires n 1 comparisons with x_p to determine).
- Return the concatenation of the lists [Quicksort(X_{lo}), (x_p), Quicksort(X_{hi})].

4	5	2	8	1	3	6	9	7	0	4	5	2	8	1	3	6

What is the worst case running time of this algorithm?

Theorem: Let **T** be the number of comparisions performed by Quicksort(X). Then $\mathbb{E}[T] = O(n \log n)$.

- For any *i*, *j* ∈ [*n*] with *i* < *j*, let I_{ij} = 1 if x_i, x_j are compared at some point during the algorithm, and I_{ij} = 0 if they are not. An indicator random variable.
- We can write $\mathbf{T} = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbf{I}_{ij}$. Thus, via linearity of expectation

$$\mathbb{E}[\mathbf{T}] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbb{E}[\mathsf{I}_{ij}] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \Pr[\mathsf{x}_i, \mathsf{x}_j \text{ are compared}]$$

So we need to upper bound $Pr[x_i, x_j \text{ are compared}]$.

Upper bounding Pr[x_i, x_j are compared]:

- Assume without loss of generality that $x_1 \le x_2 \le \ldots \le x_n$. This is just 'renaming' the elements of our list. Also recall that i < j.
- At exactly one step of the recursion, x_i, x_j will be 'split up' with one landing in X_{hi} and the other landing in X_{lo} , or one being chosen as the pivot. x_i, x_j are only ever compared in this later case – if one is chosen as the pivot when they are split up.
- The split occurs when some element between x_i and x_j is chosen as the pivot. The possible elements are $x_i, x_{i+1}, \ldots, x_j$.

• $Pr[x_i, x_j \text{ are compared}]$ is equal to the probability that either x_i or x_j are chosen as the splitting pivot from this list. Thus, $Pr[x_i, x_j \text{ are compared}] =$

So Far: Expected number of comparisons is given as:

$$\mathbb{E}[\mathsf{T}] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \Pr[x_i, x_j \text{ are compared}].$$

And we computed $Pr[x_i, x_j \text{ are compared}] = \frac{2}{i-i+1}$. Plugging in:

$$\mathbb{E}[\mathbf{T}] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} = \sum_{i=1}^{n-1} \sum_{k=2}^{n-i+1} \frac{2}{k}$$
$$\leq \sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{2}{k} \leq 2 \cdot (n-1) \cdot \sum_{k=1}^{n} \frac{1}{k} = 2n \cdot H_n = O(n \log n).$$

Concentration Inequalities

Concentration inequalities are bounds showing that a random variable lies close to it's expectation with good probability. Key tools in the analysis of randomized algorithms.

Markov's Inequality

The most fundamental concentration bound: Markov's inequality.

For any non-negative random variable X and any t > 0: $Pr[X \ge t] \le \frac{\mathbb{E}[X]}{t}.$

Proof:

$$\mathbb{E}[\mathbf{X}] = \sum_{s} \Pr(\mathbf{X} = u) \cdot u \ge \sum_{u \ge t} \Pr(\mathbf{X} = u) \cdot u$$
$$\ge \sum_{u \ge t} \Pr(\mathbf{X} = u) \cdot t$$
$$= t \cdot \Pr(\mathbf{X} \ge t).$$

Plugging in $t = \mathbb{E}[X] \cdot s$, $\Pr[X \ge s \cdot \mathbb{E}[X]] \le 1/s$. The larger the deviation *s*, the smaller the probability.

Think-Pair-Share: You have a Las Vegas algorithm that solves some decision problem in expected running time *T*. Show how to turn this into a Monte-Carlo algorithm with worst case running time 3*T* and success probability 2/3.

Chebyshev's inequality

With a very simple twist, Markov's Inequality can be made much more powerful in many settings.

For any random variable **X** and any value t > 0:

$$\Pr(|\mathbf{X}| \ge t) = \Pr(\mathbf{X}^2 \ge t^2).$$

X² is a nonnegative random variable. So can apply Markov's:

$$\Pr(|\mathbf{X}| \ge t) = \Pr(\mathbf{X}^2 \ge t^2) \le \frac{\mathbb{E}[\mathbf{X}^2]}{t^2}.$$

Plugging in the random variable $X - \mathbb{E}[X]$, gives the standard form of **Chebyshev's inequality**:

$$\Pr(|\mathbf{X} - \mathbb{E}[\mathbf{X}]| \ge t) \le \frac{\mathbb{E}[(\mathbf{X} - \mathbb{E}[\mathbf{X}])^2}{t^2} = \frac{\operatorname{Var}(\mathbf{X})}{t^2}.$$

Chebyshev's inequality

$$\mathsf{Pr}(|\mathsf{X} - \mathbb{E}[\mathsf{X}]| \ge t) \le rac{\mathsf{Var}[\mathsf{X}]}{t^2}$$

What is the probability that **X** falls *s* standard deviations from it's mean?

$$\Pr(|\mathbf{X} - \mathbb{E}[\mathbf{X}]| \ge s \cdot \sqrt{\operatorname{Var}[\mathbf{X}]}) \le \frac{\operatorname{Var}[\mathbf{X}]}{s^2 \cdot \operatorname{Var}[\mathbf{X}]} = \frac{1}{s^2}.$$

Application 2: Statistical Estimation + Law of Large Numbers

Concentration of Sample Mean

Theorem: Let X_1, \ldots, X_n be pairwise independent random variables with $\mathbb{E}[X_i] = \mu$ and $\operatorname{Var}[X_i] = \sigma^2$. Let $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_n$ be their sample average.

For any $\epsilon > 0$, $\Pr[|\overline{\mathbf{X}} - \mu| \ge \epsilon \sigma] \le \frac{1}{n\epsilon^2}$.

- By linearity of expectation, $\mathbb{E}[\overline{\mathbf{X}}] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[\mathbf{X}_i] = \mu$.
- By linearity of variance, $\mathbb{E}[\overline{\mathbf{X}}] = \frac{1}{n^2} \sum_{i=1}^{n} \operatorname{Var}[\mathbf{X}_i] = \frac{\sigma^2}{n}$.
- Plugging into Chebyshev's inequality:

$$\Pr[|\overline{\mathbf{X}} - \mu| \ge \epsilon \sigma] \le \frac{\operatorname{Var}[\overline{\mathbf{X}}]}{\epsilon^2 \sigma^2} = \frac{1}{n\epsilon^2}.$$

This is the weak law of large numbers.

Concentration of Sample Mean

Application to statistical estimation: There is a large population of individuals. A *p* fraction of them have a certain property (e.g., 55% of people support decreased taxation, 10% of people are greater than 6' tall, etc.). Want to estimate *p* from a small sample of individuals.

- Sample *n* individuals uniformly at random, with replacement.
- Let $X_i = 1$ if the *i*th individual has the property, and 0 otherwise. X_1, \ldots, X_n are i.i.d. draws from Bern(p) – each is 1 with probability p and 0 with probability 1 - p.

Think-Pair-Share: You have a Monte-Carlo algorithm with worst case running time *T* and success probability 2/3. Show how to obtain, for any $\delta \in (0, 1)$, a Monte-Carlo algorithm with worse case running time $O(T/\delta)$ and success probability $1 - \delta$.

Application 3: Coupon Collecting

There is a set of *n* unique coupons. At each step you draw a random coupon from this set. How many steps does it take you to collect all the coupons?

Think-Pair-Share: Say you have collected *i* coupons so far. Let T_{i+1} denote the number of draws needed to collect the $(i + 1)^{st}$ for a standard sector T_{i+1} and T_{i+1}

Think-Pair-Share: Say you have collected *i* coupons so far. Let T_{i+1} denote the number of draws needed to collect the $(i + 1)^{st}$ coupon. What is $\mathbb{E}[T_i]$?

- T_i is a geometric random variable with success probability $p_i = \frac{n-i}{n}$. I.e., $Pr[T_i = j] = p_i(1 p_i)^{j-1}$.
- **Exercise:** verify that $\mathbb{E}[\mathbf{T}_i] = 1/p_i = \frac{n}{n-i}$.
- By linearity of expectation, the expected number of draws to collect all the coupons is:

$$\mathbb{E}[\mathsf{T}] = \sum_{i=0}^{n-1} \mathbb{E}[\mathsf{T}_i] = \frac{n}{n} + \frac{n}{n-1} + \dots + \frac{n}{2} + \dots + \frac{n}{1}$$
$$= n \cdot H_n.$$

• By Markov's inequality, $\Pr[\mathbf{T} \ge cn \cdot H_n] \le$

Quiz Question

Consider rolling a fair 6-sided dice, which takes a value in {1,2,3,4,5,6} each with probability 1/6. What is the expected number of rolls needed to see each odd number (i.e., see each of {1,3,5}) at least once?

Coupon Collector Analysis

Can get a tighter tail bound using Chebyshev's inequality in place of Markov's.

- We wrote $\mathbf{T} = \sum_{i=0}^{n-1} \mathbf{T}_i$, which let us compute $\mathbb{E}[\mathbf{T}] = n \cdot H_n$.
- Also have $Var[T] = \sum_{i=0}^{n-1} Var[T_i]$. Why?
- **Exercise:** show that $Var[\mathbf{T}_i] = \frac{1-p_i}{p_i^2}$, and recall that $p_i = \frac{n-i}{n}$.
- Putting these together:

$$Var[T] = \sum_{i=0}^{n} \frac{1 - p_i}{p_i^2} = \sum_{i=0}^{n} \frac{1}{p_i^2} - \sum_{i=0}^{n} \frac{1}{p_i}$$
$$\leq n^2 \cdot \frac{\pi^2}{6} - n \cdot H_n \leq n^2 \cdot \frac{\pi^2}{6}.$$

• Via Chebyshev's inequality, $\Pr[|\mathbf{T} - n \cdot H_n| \ge cn] \le$

Application 4: Randomized Load Balancing and Hashing, and 'Ball Into Bins' I throw *m* balls independently and uniformly at random into *n* bins. What is the maximum number of balls any bin?

Application: Hash Tables

- hash function $h: U \rightarrow [n]$ maps elements to indices of an array.
- Repeated elements in the same bucket are stored as a linked list 'chaining'.
- Worse-case look up time is proportional to the maximum list length i.e., the maximum number of 'balls' in a 'bin'.

Note: A 'fully random hash function' maps items independently and uniformly at random to buckets. This is a theoretical idealization of practical hash functions.

Application: Randomized Load Balancing

- *m* requests are distributed randomly to *n* servers. Want to bound the maximum number of requests that a single server must handle.
- Assignment is often is done via a random hash function so that repeated requests or related requests can be mapped to the same server, to take advantages of caching and other optimizations.

Balls Into Bins Analysis

Let \mathbf{b}_i be the number of balls landing in bin *i*. For *n* balls into *m* bins what is $\mathbb{E}[\mathbf{b}_i]$?

$$\Pr\left[\max_{i=1,\ldots,n} \mathbf{b}_i \geq k\right] = \Pr\left[\bigcup_{i=1}^n A_i\right],$$

where A_i is the event that $\mathbf{b}_i \geq k$.

Union Bound: For any random events $A_1, A_2, ..., A_n$,

 $\Pr(A_1 \cup A_2 \cup \ldots \cup A_n) \leq \Pr(A_1) + \Pr(A_2) + \ldots + \Pr(A_n).$

Exercise: Show that the union bound is a special case of Markov's inequality with indicator random variables.

Balls Into Bins Direct Analysis

Let \mathbf{b}_i be the number of balls landing in bin *i*. If we can prove that for any *i*, $Pr[A_i] = Pr[\mathbf{b}_i \ge k] \le p$, then by the union bound:

$$\Pr\left[\max_{i=1,\ldots,n}\mathbf{b}_{i}\geq k\right]=\Pr\left[\bigcup_{i=1}^{n}A_{i}\right]\leq n\cdot p.$$

Claim 1: Assume m = n. For $k \ge \frac{c \ln n}{\ln \ln n}$, $\Pr[\mathbf{b}_i \ge k] \le \frac{1}{n^{c-o(1)}}$.

• **b**_{*i*} is a binomial random variable with *n* draws and success probability 1/n.

$$\Pr[\mathbf{b}_i = j] = \binom{n}{j} \cdot \frac{1}{n^j} \cdot \left(1 - \frac{1}{n}\right)^{n-1}$$

• We have $\binom{n}{j} \leq \left(\frac{en}{j}\right)^j$, giving $\Pr[\mathbf{b}_i = j] \leq \left(\frac{e}{j}\right)^j \cdot \left(1 - \frac{1}{n}\right)^{n-j} \leq \left(\frac{e}{j}\right)^j$.

• Summing over $j \ge k$ we have:

$$\Pr[\mathbf{b}_{i} \ge k] \le \sum_{j \ge k} \left(\frac{e}{j}\right)^{j} = \left(\frac{e}{k}\right)^{k} \cdot \frac{1}{1 - e/k}$$

Balls Into Bins Direct Analysis

We just showed: When n = m (i.e., n balls into n bins)

$$\Pr\left[\mathbf{b}_{i} \geq k\right] \leq \left(\frac{e}{k}\right)^{k} \cdot \frac{1}{1 - e/k}$$

For $k = \frac{c \ln n}{\ln \ln n}$ we have:

$$\Pr\left[\mathbf{b}_{i} \geq k\right] \leq \left(\frac{\ln \ln n}{\ln n}\right)^{\frac{c \ln n}{\ln \ln n}} \cdot \frac{1}{1 - (e \ln \ln n)/(c \ln n)} = \frac{1}{n^{c - o(1)}}.$$

Upshot: By the union bound, For $k = c \frac{\ln n}{\ln \ln n}$ for sufficiently large *c*,

$$\Pr\left[\max_{i=1,...,n} \mathbf{b}_{i} \ge k\right] \le n \cdot \frac{1}{n^{c-o(1)}} = \frac{1}{n^{c-1-o(1)}}.$$

When throwing *n* balls in to *n* bins, with very high probability the maximum number of balls in a bin will be $O\left(\frac{\ln n}{\ln \ln n}\right)$.

In our balls into bins analysis we directly bound $\Pr[\mathbf{b}_i \ge k] \le \left(\frac{e}{k}\right)^k \cdot \frac{1}{1-e/k}.$

Think Pair Share: Give an upper bound on this probability using Chebyshev's inequality. Hint: write **b**_i as a sum of *n* indicator random variables and compute Var[**b**_i].

Balls Into Bins Via Chebyshev's Inequality

By Chebyshev's Inequality: $\Pr[\mathbf{b}_i \ge k] \le \frac{2}{k^2}$. Setting $k = c\sqrt{n}$, $\Pr[\mathbf{b}_i \ge c\sqrt{n}] \le \frac{2}{c^2n}$. So via a union bound:

$$\Pr\left[\max_{i=1,\dots,n}\mathbf{b}_i \ge c\sqrt{n}\right] \le n \cdot \frac{2}{c^2n} \le \frac{2}{c^2}.$$

Upshot: Chebyshev's inequality bounds the maximum load by $O(\sqrt{n})$ with good probability, as compared to $O\left(\frac{\log n}{\log \log n}\right)$ for the direct proof. It is quite loose here.

Chebyshev's and Markov's inequalities are extremely valuable because they are very general – require few assumptions on the underlying random variable. But by using assumptions, we can often get tighter analysis.