
COMPSCI 690RA: Problem Set 4

Due: Tuesday, 5/3 by 8pm in Gradescope.

Instructions:

• You are allowed to, and highly encouraged to, work on this problem set in a group of up to
three members.

• Each group should submit a single solution set: one member should upload a pdf to
Gradescope, marking the other members as part of their group in Gradescope.

• You may talk to members of other groups at a high level about the problems but not work
through the solutions in detail together.

• You must show your work/derive any answers as part of the solutions to receive full credit.

1. Randomized Triangle Coloring (6 points)

A graph is k-colorable if there is an assignment of each node to one of k colors such that no two
nodes with the same color are connected by an edge.

1. (2 points) Show that if a graph is 3-colorable then there is a coloring of the graph using just
2 colors such that no triangle in monochromatic. I.e., for any three nodes u, v, w such that
(u, v), (v, w), and (u,w) are all edges, we do not have u, v, w all assigned to the same color.

2. (4 points) Consider the following algorithm for coloring a 3-colorable graph with 2 colors so
that no triangle is monochromatic. Start with an arbitrary 2-coloring (some edges may be
monochromatic, so it’s not necessarily a valid coloring). While there are any monochromatic
triangles, pick one arbitrarily and change the color of a randomly chosen vertex in that
triangle. Give an upper bound on the expected number of steps of this process before a valid
2-coloring with all non-monochromatic triangles is found.

Hint: Shoot for a polynomial, not an exponential number of steps here. Use the fact that
part (1) actually implies the existence of many 2-colorings with non-monochromatic triangles.

2. Move to Top Shuffling (8 points)

Consider shuffling a deck of n unique cards by randomly picking a card and moving it to the top
of the deck. Observe that with probability 1/n, the top card is picked and so the order does not
change from one step to the next.

1. (2 points) Prove that this Markov chain is irreducible and aperiodic.

2. (2 points) Prove that the chain converges to the the uniform distribution over all n! possible
permutations of the cards.
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3. (2 points) In class, we argued that after t = n log(n/ε) steps, the distribution of states qt in
this Markov chain satisfies ‖qt − π‖TV ≤ ε. Say you are a casino, and you offer a game of
pure chance where the customer must wager $1. The game uses the shuffled deck of cards
to determine a pay out somewhere between $0 and $1000. You have calculated that, when
the deck is ordered according to a uniform random permutation (i.e., according to π), your
expected winnings per game are $0.1. How small must you set ε to ensure that your expected
winnings are at least $.09?

4. (2 points) Argue that our mixing time bound is essentially tight. In particular, show that if
we run the Markov chain for t ≤ cn log n steps for small enough constant c, then ‖qt−π‖TV ≥
99/100. I.e., we are very far from a uniformly random permutation.

Hint: Start by arguing that if t ≤ cn log n for small enough c, with high probability there
are
√
n cards which are never swapped in the shuffle. Use the coupon collector analysis from

Lecture 2. Then consider the probability that we have
√
n consecutive cards in order after a

uniform random shuffle, vs. after this shuffle starting from an ordered deck.

3. Random Walks and Leverage Scores (8 points)

Consider a random walk on a connected, undirected graph. Let hu,v be the expected number of
steps required to reach node v when starting from node u. Define hu,u = 0 for all u. We will prove

that the effective resistance of edge u, v, τu,v = bTu,vL
+bu,v is exactly τu,v =

hu,v+hv,u

2m , where m is
the number of edges in the graph.

1. (2 points) Let N (u) be the neighborhood of node u in the graph, and du = |N (u)| be the
degree. Fix some node v and argue that for any u 6= v,

hu,v = 1 +
1

du
·

∑
w∈N (u)

hw,v.

This gives n−1 linear equations (one for each u 6= v) that the hu,v values must satisfy. Argue
that the values of hu,v are the unique solutions to this set of linear equations.

2. (2 points) View the graph as a resistor network with unit resistance on each edge. For any
vertex v, consider an electrical flow in which du units of current are introduced at each vertex
u, and all

∑
u∈V du = 2m units of current are removed at vertex v. I.e., letting B ∈ Rm×n

be the vertex-edge incidence matrix and fe ∈ Rm be the flow, we have BT fe = χv where
χv(v) = dv − 2m and χv(u) = du for u 6= v. Prove that in this flow, letting φ(u) be the
voltage of vertex u,

du = du · [φ(u)− φ(v)]−
∑

w∈N (u)

[φ(w)− φ(v)].

3. (2 points) Use the above to conclude that hu,v = φ(u)−φ(v), where φ(·) is the voltage function
as in part (2) for the electrical flow fe with BT fe = χv.

4. (2 points) Complete the proof, showing that τu,v =
hu,v+hv,u

2m . Hint: Given two electrical
flows f1 = BTx1 and f2 = BTx2, what is the electrical flow with f = BT (x1 − x2)?
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