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- Problem Set 2 is due Wednesday at 11:59pm.
- One page project proposal due Tuesday 3/12.



Last Time:

- Finish up ¢o sampling analysis and applications to distributed
and streaming graph connectivity.

- Start on linear sketching for frequency estimation.
- Count-sketch algorithm.
Today:

- Finish up Count-sketch analysis

- ?



Linear Sketching

- Linear Sketching: Compress data via a random linear function
(i.e, the random matrix A), and prove that we can still recover
useful information from the compression.

Random sketching matrix A

- Linearity is useful because it lets us easily aggregate sketches in
distributed settings and update sketches in streaming settings.
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- May want to recover non-zero entries of x, estimate norms or
other aggregate statistics, find large magnitude entries, sample
entries with probabilities according to their magnitudes, etc.



Linear Sketching for ¢, Heavy-Hitters

Set up: We will show how to estimate each entry of a vector x € R”
up to error +e - ||x||; with probability at least 1— 4§, from a small linear
sketch, of size O (M)

€

- This error guarantee allows recovering the indices of all
‘heavy-hitter’ entries with magnitude > 2¢||x||,.

- What are some possible application of this primitive?



Count Sketch Algorithm - Visually

random hash functions rand
h:[n] - [m]
s:[n] » {-1,1} S

m length arrayy | 0 0 0 0 0 0 0 0|0 0

Estimate: x()) ~ s(i) - y(h() =s(i)- > x(k)-s(k)

=x)+ > xR)-sk)-s(i)
ke£izh;(R)=h; (i)



View as a Linear Sketch

Random sketching matrix A X
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Count Sketch Algorithm - Psuedocode

-« Let m = 0(1/€?) and t = O(log(1/9)).

- Pick t random pairwise independent hash functions
hi,....h¢: [n] = [m].

- Pick t random pairwise independent hash functions
St,...,St: [n] = {-1,1}.

- Compute t independent estimates of x(i) as
Xi(i) = s(i) - Zk:hj(h):hj(i) X(R) - s(R).

- Output the median of {X:(i),...,X:(i)} as our final estimate of

x(1).



Concentration Analysis

Recall: Xj(1) = s(1) - >, (ry=n, (i) X(R) - S(R).
What is E[%(i)]?

E[% ()] =x()) + E [ X(R) - s(R) - S(i)]

k#i:h;(R)=h; (i)
=x()+ Y x(k)-Els(k) - s()]

ketichy (R)=h,(i)



Concentration Analysis

Recall: Xj(1) = s(1) - X, (r)=n, (i) X(R) - S(R).
What is Var[%(i)]?

Var[%(i)] = Var () -s(h)- s(i)]

10



Concentration Analysis

Recall: Xj(1) = s(1) - X (r)=n, (i) X(R) - S(R).

What is an upper bound on Pr[[X;(i) — x(i)| > €||x||2]?

By Chebyshev's inequality:

Var[X;(i)] - 1
ez ~em

Pr{[%(1) = x(D] = ellx]l2] <

If we setm = % then our estimate is good with probability > 2/3.

How large must we set m to increase our success probability to
>1-467

n



Median Trick for Count Sketch

To achieve O(log(1/4)) dependence, Count Sketch uses the ‘median
trick’.
- Set m = 3/€’ so each estimate X;(i) is a %e||x||, approximation to
x(i) with probability at least 2/3.
- If we make t such estimates independently, we expect 2/3 - t of
them to be correct.

- By a Chernoff bound, for t = O(log(1/4)), > 1/2 will be correct
with probability at least 1 — §.

- Thus, the median estimate will be correct with probability at
least 1— 4.
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Approximate Matrix Multiplication



Matrix Multiplication Problem

Given A, B € R™" would like to compute C = AB. Requires n“
time where w ~ 2.373 in theory.

Today: We'll see how to compute an approximation in O(n?)
time via a simple sampling approach.

- One of the most fundamental algorithms in randomized
numerical linear algebra. Forms the building block for
many other algorithms.
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Outer Product View of Matrix Multiplication

Inner Product View: [AB]; = (A ., B;.) 1A - B

=k
Outer Product View: Observe that C, = A. xB.. IS an n x n matrix with

[Celij = Ajk - Bj- SO AB = 34 A. Bk

N | N

Basic Idea: Approximate AB by sampling terms of this sum. »



Canonical AMM Algorithm

Approximate Matrix Multiplication (AMM):

- Fix sampling probabilities p1, ..., p, with p; > 0 and Z[ﬂ] pi=1

- Select iy, ..., ik € [n] independently, according to the
distribution Pr[ij = k] =

- letC=1. Z,wp A B,

Claim 1: E[C] =

—~

n

t t
. 1 1 1
E[C]:E E E[pl lJ IJ] 7% E pka kBk E AB = AB
=1 i j:1

j=1 k=1

Weighting by ﬁ keeps the expectation correct. Key idea behind
importance safnpling based methods.
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