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Logistics

• Problem Set 2 is posted and due next Wednesday.
• One page project proposal due Tuesday 3/12.
• If you have emailed me about project ideas and I haven’t
replied I will shortly.
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Summary

Last Time:
• Random hashing and the Rabin fingerprint.

• Applications to low communication protocol for equality testing
(testing equality of n-bit strings using O(log n) bits), and to
pattern matching (Rabin-Karp algorithm).

Today:
• Sparse recovery/!0 sampling via linear sketching.

• Application to a low-communication protocol for graph
connectivity.
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Quiz Review
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Rabin-Karp for Multiple Pattern Matching

The Rabin-Karp algorithm can be extended to search for k patterns
in just O(n+ km) expected time.

• Significantly better than the naive O((n+m)k) that would
follow from repeating single pattern matching k times.

• Key Idea: Compute fingerprints for all k patterns in O(mk) time
and store them in a hash table.

• Compute the fingerprints of X1, X2, . . . , Xn−m+1 iteratively in O(n)
time via the rolling hash trick.

• At each iteration, check Xj against all patterns by doing a hash
table look-up in O(1) expected time.
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Other Topics in Hashing

There are a ton of interesting topics related to random hashing that I
am not covering.

• Constructions of universal hash functions.

• Constructions of k-wise independent hash functions.

• Concentration bounds and hash table analysis using k-wise
independent hash functions. See Lectures 3-4 of Jelani Nelson’s
course notes for some material on this (link on schedule page).

• Connections to pseudorandom number generators (PRGs).
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!0 Sampling and Graph Sketching
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A Graph Communication Problem

Consider n nodes, each only knows its own neighborhood. They want
to send messages to a central server, who will then determine if the
graph is connected.

How large of messages (# bits) are needed to determine
connectivity with high probability?
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A Graph Communication Problem

Consider n nodes, each only knows its own neighborhood. They want
to send messages to a central server, who will then determine if the
graph is connected.

How large of messages (# bits) are needed to determine
connectivity with high probability? 8
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A Hard Case

• Surprisingly, for any input graph, the problem can be
solved with high probability using just O(logc n) bits per
message!

• Solution will be based on a random linear sketch.
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Key Ingredient 1: !0 Sampling

Theorem: There exists a distribution over random matrices
A ∈ ZO(log2 n)×n such that for any fixed x ∈ Zn, with probability at least
1− 1/nc, we can learn (i, xi) for some xi #= 0 from Ax.

Useful Property 1: Given t vectors x1, . . . , xt ∈ Zn, can recover a
nonzero entry from each with probability ≥ 1− t/nc.

Useful Property 2: Given sketches Ax1 and Ax2, can easily compute
A(x1 + x2) and recover a nonzero entry from x1 + x2 with high
probability.
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Key Ingredient 2: Boruvka’s Algorithm

1. Initialize each node as its own connected component.

2. For each connected component, select an outgoing edge. Merge
any newly connected components.

3. Repeat until no connected component has an outgoing edge. If
at this point, all nodes are in the same component, then the
graph is connected.

Converges in ≤ log2 n rounds.
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Key Ingredient 3: Neighborhood Sketches

Each node i, can compute a vector vi ∈ Z(
n
2). vi has a ±1 for every

edge in the graph and incident to node i. +1 is used for edges (i, j)
and −1 for edges (j, i).

• Given an !0 sampling matrix A ∈ ZO(log2 n)×(n2), each node can
compute Avi ∈ ZO(log2 n) and send it to the central server.

• Using these sketches, with probability ≥ 1− 1/nc, the central
server can identify one edge incident to each node – i.e., they
can simulate the first iteration of Boruvka’s algorithm.
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Simulating Boruvka’s Algorithm via Sketches

• For independent !0 sampling matrices A1, . . . ,Alog2 n, each node
computes Ajvi and sends these sketches to the central server.
O(logc n) bits in total.

• The central server uses A1v1, . . . ,A1vn to simulate the first step
of Boruvka’s algorithm.

• For each subsequent step j, let S1, S2, . . . Sc be the current
connected components. Observe that

∑
i∈Sk vi has non-zero

entries corresponding exactly to the outgoing edges of Sk.

• So, from Aj
∑

i∈Sk vi =
∑

i∈Sk Ajvi, the server can find an outgoing
edge from each connected component Sk. Thus, the server can
simulate the jth round of Boruvka’s algorithm.

• Overall, using the log2 n different sketches from each node, the
server can simulate the full algorithm and determine with high
probability if the graph is connected or not.
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Implementing !0 Sampling
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!0 Sampling Construction

Theorem: There exists a distribution over random matrices
A ∈ ZO(log2 n)×n such that for any fixed x ∈ Zn, with probability at least
1− 1/nc, we can learn (i, xi) for some xi #= 0 from Ax.

Construction:

• Let S0, S1, . . . , Slog2 n be random subsets of [n]. Each element is
included in Sj independently with probability 1/2j.

• For each Sj, compute aj =
∑

i∈Sj xi, bj =
∑

i∈Sj xi · i and
cj =

∑
i∈Sj xi · r

i mod p, where r is a random value in [p] and p is
a prime with p ≥ nc for some large constant c.

• Exercise: Show that the vector
[a1, . . . , alog2 n,b1, . . . ,blog2 n, c1, . . . , clog2 n] can be written as Ax,
where A ∈ Z3 log2 n×n is a random matrix.

14

-

[
-



Construction Intuition

We will recover a nonzero element from a sampling level when
there is exactly one nonzero element at that level.

With good probability, there is will exactly one element at
some level. Can improve success probability via repetition.
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Recovering Unique Nonzeros

Recall: S0, . . . , Slog2 n are random subsets of [n], sampled at rates 1/2j.
aj =

∑
i∈Sj xi, bj =

∑
i∈Sj xi · i and cj =

∑
i∈Sj xi · r

i mod p, where r is a
random value in [p] and p = nc for large enough constant c.

Claim 1: If there is a unique i ∈ Sj with xi #= 0, then aj = xi and
bj = xi · i. So, from these quantities we can exactly determine (i, xj).

Claim 2: cj lets us test if there is a unique such i. In particular, we
check that bj

aj
∈ [n] and that cj = aj · rbj/aj mod p.

• If there is a unique i ∈ Sj with xi #= 0, the test passes.

• If not, it fails with probability at most n
p = 1

nc−1 .

The problem of recovering a unique i ∈ Sj with xi #= 0 is called
1-sparse recovery.
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