3O

COMPSCI 614: Randomized Algorithms with
Applications to Data Science

Prof. Cameron Musco

University of Massachusetts Amherst. Spring 2024.
Lecture 6

-+ Problem Set 1is due tomorrow at midnight.
- I am holding office hours directly after class today.
- No class or office hours on Thursday.

- Problem Set 2 will be posted later this week.

Qot e WJAQ/

Last Time:
- Stronger concentration bounds for sums of independent
random variables. l.e, exponential concentration bounds.

. ernoff and Bernstein bound.
D LA

- Application to balls-into-bins and linear probing analysis.
o

g
I“J)W/‘

Last Time:
- Stronger concentration bounds for sums of independent
random variables. l.e, exponential concentration bounds.

- Chernoff and Bernstein bound.

- Application to balls-into-bins and linear probing analysis.
Today:

- Random hash functions and fingerprinting.

e Y

- Applications to pattern matching and communication
complexity.

Random Hashing and Fingerprinting

Random Hash Functions

A random hash function maps inputs to random outputs.
172.16.2541 —> h —— 6600350107584224908
192.168.1.34 —> h —> 1761402369010350195

16.58.26.164 —> h —> 3180060355715044599
P —— \/—

Random Hash Functions

A random hash function maps inputs to random outputs.
172.16.2541 —> h —— 6600350107584224908
192.168.1.34 —> h —> 1761402369010350195

16.58.26.164 —> h —> 3180060355715044599

h is picked randomly, but after it is picked it is fixed - so a single
input is always mapped to the same output.

Random Hash Functions

A random hash function maps inputs to random outputs.
172.16.2541 —> h —— 6600350107584224908
192.168.1.34 —> h —> 1761402369010350195

16.58.26.164 —> h —> 3180060355715044599

[

h is picked randomly, but after it is picked it is fixed - so a single
input is always mapped to the same output.

import random

a = random.randint(1,100) :
m.randint (1,100)

m.randint (1,100)
retuyn (aXxx+b) 7% 100

b = random.randint(1,100)
def myHash(x):
return (a*xx+b) % 100

Random hash functions are often used to reduce large files
down to hash ‘fingerprints’, which can be used to check
equality of files (deduplication), detect updates/corruptions,
etc.

—> h —| 6600350107584224908 |

—> h —> 1761402369010350195

— h —{ 6600350107584224908 |

s

)

Random hash functions are often used to reduce large files
down to hash ‘fingerprints’, which can be used to check
eq uality of files (deduplication), detect updates/corruptions,

O —> h 6600350107584224908 |

—> h —> 1761402369010350195

—> h 6600350107584224908

- Key requirement is that two distinct files are unlikely to
have the same hash - low collision probability.

IR

Random hash functions are often used to reduce large files
down to hash ‘fingerprints’, which can be used to check
equality of files (deduplication), detect updates/corruptions,
etc.

—> h —| 6600350107584224908 |

—> h —> 1761402369010350195

— h —{ 6600350107584224908 |

)

- Key requirement is that two distinct files are unlikely to
have the same hash - low collision probability.
(-—/In practice h is often a deterministic ‘cryptographic’ hash
function like SHA or MD5 - hard to analyze formally.

Rabin Fingerprint

. .0l 400D .
Rabin Fingerprint: Interpret a bit string x4, X,, ..., X, as the binary
representation of the integer x = S°7, x; - 277", Let N by {—S
h(x) =x mod p, If:)[@'—’) =3 (n)%l,\)
where p is a randomly chosen prime in [1, tn log tn]. w
Kl -
Prime Number Theorem: Thefe are ~ Tt = ©(tn) primes in

[1,tnlogtn]. So p is chosen randomly from ©(tn) possible values.

Claim: For x,y € [0,2"] with x # y, Pr[h(x) = h(y))] = 0(1/t).

Rabin Fingerprint

Rabin Fingerprint: Interpret a bit string x;, x, ..., X, as the binary
representation of the integer x = S°7, x; - 27~ Let

h(x) =x mod p,
where p is a randomly chosen prime in [1, tn log tn].

Prime Number Theorem: There are ~ G960 = ©(tn) primes in

[1,tnlogtn]. So p is chosen randomly from ©(tn) possible values.
Claim: For x,y € [0,2"] with x # y, Pr[h(x) = h(y))] = 0(1/t).

- If h(x) = h(y), then it must be that x —y mod p=0. le, p
divides x —y. So we must bound the probability of this occuring.

X’Ev mQL P

Rabin Fingerprint

Rabin Fingerprint: Interpret a bit string x;, x, ..., X, as the binary
representation of the integer x = S°7, x; - 27~ Let

h(x) =x mod p,
where p is a randomly chosen prime in [1, tn log tn].

Prime Number Theorem: There are ~ G960 = ©(tn) primes in

[1,tnlogtn]. So p is chosen randomly from ©(tn) possible values.

@m:F&rx,y € [0,2"] with x # y, Pr[h(x) = h(y))] = 0(1/1).

- If h(x) = h(y), then it must be that x —y mod p=0. le, p
divides x —y. So we must bound the probability of this occuring.

- Note: This is not a cryptographic hash function - it is relatively
easy to find x,y with h(x) = h(y) given p, or blackbox access to
h. However, this is fine in many applications.

Rabin Fingerprint Analysis

X~y € 2, 0) 21.5
Z:Think—Pair—Share 1: How_many unique prime factors can an integer
i [—2",2"] have?gﬁ |1 D = 9\3.3.5

.o s
mEd3 S Rdrs < |
. . P NN (N A
> H"\'h‘ LU Q\,AUS # Uf\?ly — T
m 7 o v - S
Think-Pair-Share 2: What is the probability that a random prime p
chosen from [1,tn log tn] divides x —y € [-2",2"]? l.e, that

(x) = h(y)? Recall: There are ©(tn) primes in the range [1, tn log tn].

A un\zg\r Ff“QS

- — §' — D \@ Z 0w DC
K“% Y*\Gé.. P) N}LC"YS A PPF-:F’ v 2 rQ —_d‘/l) ;\?:\ r:i,\av_, d)rﬁ
Pr o =l § = —mpé Sn) Y 7

(;} po3 !

Fingerprinting Application 1: Communication
Complexity

Fingerprinting for Equality Testing

Equality Testing Communication Problem: Alice has some bit
string a € {0,1}". Bob has some string b € {0,1}". How many
bits do they need to communicate to determine if a = b with
probability at least 2/3?

communication @

a =100100111001 b =100100111011

Fingerprinting for Equality Testing

Equality Testing Protocol:

- Alice picks a random prime p € [1,tn log tn] for some large
constant t.

- Alice sends p, along with the Rabin fingerprint h(a) :=a
mod p to Bob.

- Bob uses p to compute h(b) :==b mod p.

- If h(a) = h(b), Bob sends 'YES' to Alice. Else, he sends ‘No.

Fingerprinting for Equality Testing

Equality Testing Protocol: &Mwﬁ*'o“\}ﬁ by p A
N S o(h\
* Alice picks a random prime p € [1, tnlog tn] for some large
constant t.
- Alice sends p, along with the Rabin fingerprint h(a) :=a
mod p to Bob.
- Bob uses p to compute h(b) :==b mod p.
- If h(a) = h(b), Bob sends 'YES' to Alice. Else, he sends ‘No.
o \o VV\(A P -0
Correctness: If a = b both Alice and Bob always output 'YES' If
a # b they output ‘NO" with probability 1— O(1/t) > 2/3if tis
set large enough.

Rordies Tuord RAM mokl = 00) i

I PARS LT R 2 O F e abs)

= L (sO(\/\ LQ)

™)

Fingerprinting for Equality Testing

Equality Testing Protocol: I‘JU‘B T \53,"0“ < U~

- Alice picks a random prime p € [1,tn Iogtn] for some laj
constant . laOP - \v&tn 5\3+n = 8(\0\3 n\\sér\> dl%“)
- Alice sends p, along with the Rabin fingerprint h(a) :=a

mod p to Bob. OUW\

- Bob uses p to compute h(b) :==b mod p.

- If h(a) = h(b), Bob sends YES' to Alice. Else, he sends ‘No.

Ol

Correctness: If a = b both Alice and Bob always output 'YES' If
a # b they output ‘NO" with probability 1— O(1/t) > 2/3if tis
set large enough.

(VIRZIN ”’b abil - & -
Complexity: D([og(ﬂ) k n 6 O(l)

rgedr - Ol ‘t)% ‘ A~ l%w)) oliglors)

Fingerprinting for Equality Testing

Equality Testing Protocol:

- Alice picks a random prime p € [1,tn log tn] for some large
constant t.

- Alice sends p, along with the Rabin fingerprint h(a) :=a
mod p to Bob. [O(log p) = O(log n) bits]

- Bob uses p to compute h(b) :==b mod p.

- If h(a) = h(b), Bob sends 'YES' to Alice. Else, he sends ‘No.
[1 bit]

Correctness: If a = b both Alice and Bob always output 'YES' If
a # b they output ‘NO" with probability 1— O(1/t) > 2/3if tis
set large enough.

Complexity: Uses just O(log p) = O(logn) bits of
communication in total.

Deterministic Equality Testing

How many bits must Alice and Bob send if they want to check
equality of a, b € {0,1}" without using randomness?

Deterministic Equality Testing

How many bits must Alice and Bob send if they want to check
equality of a, b € {0,1}" without using randomness?

Claim: Any deterministic protocol for equality testing requires
sending Q(n) bits.

Deterministic Equality Testing

How many bits must Alice and Bob send if they want to check
equality of a, b € {0,1}" without using randomness?

Claim: Any deterministic protocol for equality testing requires
sending Q(n) bits.

- An exponential separation between randomized and
deterministic protocols!

- Unlike for running times, for communication complexity
problems there are often large provable separations
between randomized and deterministic protocols.

Deterministic Equality Testing Lower Bound

Claim: Any deterministic protocol for equality testing requires
sending Q(n) bits.

- Assume without loss of generality that Alice and Bob alternate
sending 1 bit at a time — at most doubles the number of bits.

1

Deterministic Equality Testing Lower Bound

Claim: Any deterministic protocol for equality testing requires
sending Q(n) bits.

- Assume without loss of generality that Alice and Bob alterna
sending 1 bit at a time — at most doubles the number of bits.

< N Dits, in total, there are 2° possible
. -
conversations they may have.

S—)

a=100100111001 b =100100111011

Alice to Bob: 1
Bob to Alice: 0

Alice to Bob: 0
Full Transcript: 10111000010

s < n bits

1

Deterministic Equality Testing Lower Bound

If Alice and Bob send s < n bits, in total, there are 2° possible

conversations they may have.

@—@®

b =100100111011

a=100100111001
Alice to Bob: 1
Bob to Alice: 0

Alice to Bob: 0
Full Transcript: 10111000010

s < n bits

12

Deterministic Equality Testing Lower Bound

If Alice and Bob send s < n bits, in total, there are 2° possible

conversations they may have.

@—@®

b =100100111011

a=100100111001
Alice to Bob: 1
Bob to Alice: 0

Alice to Bob: 0
Full Transcript: 10111000010

s < n bits

* Since there are 2" > 2° possible inputs, there must be two
different inputs vy # v, such thatgivena=b=v,ora=b =v,,
the protocol outputs ‘YES' and has identical transcripts.

12

Deterministic Equality Testing Lower Bound

If Alice and Bob send s < n bits, in total, there are 2° possible
conversations they may have.

@—®

a=v,=100100 b =v,=100100

Alice to Bob: 1
Bob to Alice: 0

Alice to Bob: 0
Full Transcript: 10111000010

s < n bits
- Since there are 2" > 2° possible inputs, there must be two
different inputs vi # vy, such thatgivena=b =viora=>b = v,,
the protocol outputs ‘YES" and has identical transcripts.

12

Deterministic Equality Testing Lower Bound

If Alice and Bob send s < n bits, in total, there are 2° possible (&'DL
conversations they may have.

a=v,=111101 b=v,=111101

Alice to Bob: 1
Bob to Alice: 0

Alice to Bob: 0
Full Transcript: 10111000010

s < n bits
- Since there are 2" > 2° possible inputs, there must be two
different inputs vi # vy, such thatgivena=b =viora=>b = v,,
the protocol outputs ‘YES" and has identical transcripts.

12

Deterministic Equality Testing Lower Bound

If Alice and Bob send s < n bits, in total, there are 2° possible
conversations they may have.

@—®

a=v,=111101 b=v,=111101
- -

Alice to Bob: 1
Bob to Alice: 0

Alice to Bob: 0
Full Transcript: 10111000010

s < n bits
- Since there are 2" > 2° possible inputs, there must be two
different inputs vi # vy, such thatgivena=b =viora=>b = v,,
the protocol outputs ‘YES" and has identical transcripts.

- But then the players will send the same messages and output
‘YES" also when Alice is given a = v; and Bob is given b = v,.
This violates correctness!

12

Deterministic Equality Testing Lower Bound

If Alice and Bob send s < n bits, in total, there are 2° possible
conversations they may have.

et @@

a=v,=100100 b=v,=111101

mT q\} Aw% —Aliceto Bob———

Bob to Alice: 0

Alice to Bob: 0
Full Transcript: 10111000010

s < n bits

- Since there are 2" > 2° possible inputs, there must be two
different inputs vi # vy, such thatgivena=b =viora=>b = v,,
the protocol outputs ‘YES" and has identical transcripts.

- But then the players will send the same messages and output
‘YES" also when Alice is given a = v, and Bob is given b = v,.

—_

This violates correctness! 1

Application 2: Pattern Matching

Pattern Matching

Given some document x = x1x5 ... X, and a pattern <<
Y =V1V>...Ym, find some j such that M

XiXjt1s -+ s Xjgm—1 = Y1Y2 - - Ym-

x = The quick browr@umped across the pond...

y = fox

———

Can assume without loss of generality that the strings are
binary strings.

13

Pattern Matching

Given some document x = x1x5 ... X, and a pattern
Y =WV1y2...Ym, find some j such that

XiXjt1s -+ s Xjgm—1 = Y1Y2 - - Ym-

x = The quick brown fox jumped across the pond...

y = fox
Can assume without loss of generality that the strings are
binary strings.

What is the ‘naive’ rurmmgtlme required to solve this problemy

56)
() <00 0t o) el

Rolling Hash

We will use the fact that the Rabin fingerprint is a rolling hash.

14

Rolling Hash

We will use the fact that the Rabin fingerprint is a rolling hash.

- Letting X; = 75" x;4; - 2"~ be the integer value
represented by the binary string xjXj;4, ..., Xjm—1, We have

Xigr =2-X; — Zij + Xjym-

14

Rolling Hash

We will use the fact that the Rabin fingerprint is a rolling hash.

- Letting X; = 75" x;4; - 2"~ be the integer value
represented by the binary string xjXj;4, ..., Xjm—1, We have

Xj+1 =2 -Xj — Zij + Xigm-

- Thus, since for any X, h(X) =X mod p,
h(Xj11) =2-h(X;)) = 2"X; + Xj;m mod p.

- Given h(X;), this hash value can be computed using just
O(1) arithmetic operations.

14

Rabin-Karp Algorithm

The Rabin-Karp pattern matching algorithm is then:

+ Pick a random prime p € [1,tm log mt], for t = cn.
- Let Y = h(y) be the Rabin fingerprint of the pattern.
- Let H = h(X;) be the Rabin fingerprint of the first block of

text.
- Forj=1,..., Xn—m
- f Y__ H, return j.
U) Else, H=2H — 2"X; + X,y mod p.

15

Rabin-Karp Algorithm

The Rabin-Karp pattern matching algorithm is then:

- Pick a random prime p € [1,tmlog mt], for t = cn.
- Let Y = h(y) be the Rabin fingerprint of the pattern.
- Let H = h(X;) be the Rabin fingerprint of the first block of
text.
- Forj=1,..., Xn—m
+ If Y.==H, return j.
- Else, H=2-H—=2"X; + Xjz;m mod p.

Runtime: Takes O(m + n) time in total. O(m) for the initial
hash computations, and O(1) for each iteration of the for loop.

Correctness: The probability of a false positive at any step is

upper bounded by % = Cin Thus, via a union bound, the

probably of a false positive overall is at most & = %
15

