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- Problem Set 2 is due next Wednesday 2/21 at 11:59pm.

- Next week we do not have class on Thursday, so | will
move my office hours to Tuesday at 11:30am.



Last Time:

- Practice questions on applications of linearity of expectation
and variance from quiz.

- Balls-into-bins analysis showing max load of O(y/n) with
Chebyshev's inequality.

- Start on exponential concentration bounds for sums of
bounded independent random variables.
Today:
- Finish up exponential concentration bounds.
- Applications to balls-into-bins and linear probing analysis.

- Maybe start on hashing/finger printing?



Exponential Concentration Bounds



The Chernoff Bound

Chernoff Bound (simplified version): Consider independent
random variables X, ..., X, taking values in {0,1} and let X =
S X Let u=E[X] = E[> ", X;]. Forany § >0

ek

Chernoff Bound (alternate version): Consider independent
random variables X, ..., X, taking values in {0,1} and let X =
S X Let u=E[X] = E[> ., X;]. Forany § >0
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As ¢ gets larger and larger, the bound falls off exponentially fast.




Balls Into Bins Via Chernoff Bound

Recall that b; is the number of balls landing in bin i, when we
randomly throw n balls into n bins.

- bj =31, 1;j where I;; = 1 with probability 1/n and 0

otherwise. |;4,...1; , are independent.
- Apply Chernoff bound with u = E[bj] = 1:
ok
Prlb; > k] <
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- For k> £l e have:
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Upshot: We recover the right bound for balls into bins.



Bernstein Inequality

Bernstein Inequality: Consider independent random variables
Xi,...,X, each with magnitude bounded by M1 and let X =
ST X Let p = E[X] and o? = Var[X] = 3., Var[X;]. For any

t>0s>0:
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Assume that M =1and plugint=s-o fors <o.
Compare to Chebyshev's: Pr (|37, X; — u| > so) < .

- An exponentially stronger dependence on s! 6



Interpretation as a Central Limit Theorem

Simplified Bernstein: Probability of a sum of independent, bounded
random variables lying > s standard deviations from its mean is
2 exp (—%) Can plot this bound for different s:

AR

- Looks like a Gaussian (normal) distribution — can think of
Bernstein’s inequality as giving a quantitative version of the
central limit theorem.

- The distribution of the sum of bounded independent random
variables can be upper bounded with a Gaussian distribution.



Central Limit Theorem

Stronger Central Limit Theorem: The distribution of the sum of
n bounded independent random variables converges to a
Gaussian (normal) distribution as n goes to infinity.
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- The Gaussian distribution is so important since many
random variables can be approximated as the sum of a
large number of small and roughly independent random
effects. Thus, their distribution looks Gaussian by CLT.



Sampling for Approximation

I have an n x n matrix with entries in [0,1]. | want to estimate
the sum of entries. | sample s entries uniformly at random
with replacement, take their sum, and multiply it by n?/s. How
large must s be so that this method returns the correct answer,
up to error e - n? with probability at least 1 —1/n?

(@) 0(n?) (b)O(n/e) (c)O(logn/e)  (d) O(logn/e?)

Bernstein Inequality: Consider independent random variables
X1,...,Xs each with magnitude bounded by M1 and let X = 37 X;.
Let u = E[X] and o? = Var[X] = }_7, Var[Xj]. For any t > 0:

2
Pr >t)] <2exp —t74 .

n
in —
i=1




Application: Linear Probing



Linear Probing

Linear probing is the simplest form of open addressing for
hash tables. If an item is hashed into a full bucket, keep trying
buckets until you find an empty one.
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Simple and potentially very efficient - but performance can 10

deocrade as the hash table fills 1in



Linear Probing Expected Runtime

Theorem: If the hash table has n inserted items and m > 2n buckets,
then linear probing requires O(1) expected time per insertion/query.

Definition: For any interval | C [m], let L(/) = |{x: h(x) € I}| be the
number of items hashed to the interval. We say [ 'is full if L(I) > |I].
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Which intervals in this table are full? 1



Analysis via Full Intervals

Claim Let T(x) denote the number of steps required for an
insertion/query operation for item x. If T(x) > k, there are at least k
full intervals of different lengths containing h(x).
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Let I; = 1if h(x) lies in some length-j full interval, I; = 0 otherwise.
Operation time for x is can be bounded as T(x) < EL lj.



Expectation Analysis

l; = 1if h(x) lies in some length-j full interval, I; = 0 otherwise.
Expected operation time for any x is:

E[T()] < ) E[L).
J=1

Observe that h(x) lies in at most 1 length-1 interval, 2 length-2
intervals, etc. So we can upper bound this expectation by:
n
E[T(x)] <> _j- Prlany length-j interval is full].
j=1
A length-j interval is full if the number of items hashed into it, L(/) is
at least j. Note that when m > 2n, E[L(/)] = j/2. Applying a Chernoff
bound with § = 1/2, = E[L()] = j/2:
Pr[L(1) =] < PrIL(1) =l = 6 - 1]
1/2)2.j/2 .
< 2e_( 2 207,
13



Finishing the Analysis

Expected operation time for any x is:

n
E[T(x)] <>_j- Prlany length-j interval is full]
=

n

<> j-2e
j=1

— 0(1).

This matches the expected operation cost of chaining when m > 2n.
In practice, linear probing is typically much faster.
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