COMPSCI 614: Randomized Algorithms with
Applications to Data Science

Prof. Cameron Musco

University of Massachusetts Amherst. Spring 2024
Lecture 5

- Problem Set } is due next Wednesday 2/21 at 11:59pm.

- Next week we do not have class on Thursday, so | will
move my office hours to Tuesday at 11:30am.

Last Time:

- Practice questions on applications of linearity of expectation
and variance from quiz. -
! n blls A bing

- Balls-into-bins analysis showing max load of O(y/n) with

Chebyshev's inequality. 13N —
| n’DY\
- Start on exponential concentration bounds for sums of

bounded independent random variables.

Last Time:
- Practice questions on applications of linearity of expectation
and variance from quiz.

- Balls-into-bins analysis showing max load of O(y/n) with
Chebyshev's inequality.

- Start on exponential concentration bounds for sums of
bounded independent random variables.
Today:
- Finish up exponential concentration bounds.
- Applications to balls-into-bins and linear probing analysis.

- Maybe start on hashing/finger printing?

Exponential Concentration Bounds

The Chernoff Bound

Chernoff Bound (simplified version): Consider independent
random variables X, ..., X, taking values in {0,1} and let X =
ST X Let w=E[X] = E[}", X;]. Forany § > 0

ok

Pr(X>(1+0)p) < W

The Chernoff Bound

Chernoff Bound (simplified version): Consider independent

random variables X, ..., X, taking values in {0,1} and let X =
S, X Let = E[X] = E[}.[, X]]. Forany 6 >0 \
\\——i -

op
PrX= (14 4d)u) < U‘Ffsw <I+<9: K

Chernoff Bound (alternate version): Consider independent
random variables Xy, ..., X, taking values in {0,1} and let X =

S X, Let = E[X] = E[S., X;]. Forany 6 > 0 d—o0

Pf()(7 l_/b,U\) X 62#
(Xi— p| > 5u> < 2exp <— 2‘_'_—;5

2, 21%)
As § gets larger and larger, the bound falls off exponentially fast.

—~

O

W

NSV ESINE

Balls Into Bins Via Chernoff Bound

Recall that b; is the number of balls landing in bin i, when we
randomly throw n balls into n bins.

“bi =300 whereﬁi— = 1 with probability 1/n and 0

otherwise. |: 1,...1; , are independent.
INE in p \/ CQP"/'/S(J]L

Balls Into Bins Via Chernoff Bound

Recall that b; is the number of balls landing in bin i, when we

randomly throw n balls into n bins. E[bJ:]
- b= Z;j; l;j where I;; = .1 with probability 1/n and 0
otherwise. l;4,...1; , are independent.
- Apply Chernoff bound with p = E[bi,?]j 1 11d * I So-!
Prlb; > K] < WZ)(W el

< CL§ Q,K
ko i

Balls Into Bins Via Chernoff Bound

Recall that b; is the number of balls landing in bin i, when we
randomly throw n balls into n bins.

bj = >, 1;; where I;; = 1 with probability 1/n and 0

otherwise. l;,...1;, are independent.
- Apply Chernoff bound with u = E[bj] = 1: c
ok

Prlb >R < —— < &
b= f= s (2

- For k> 5% \ye have:

loglog n lob/l/\" ‘Cb(SVL
clogn |}“’
@ loglogn

Prlb; > k] < — ———

clogn

oo(\sﬁ“ﬂsa‘%“) (seen) " Lof PN g

E \‘%\bm /\D?ldb\aﬂ\ lbstlw‘) ol € S
~\v A e

Balls Into Bins Via Chernoff Bound

Recall that b; is the number of balls landing in bin i, when we
randomly throw n balls into n bins.

- by =3"{L,I;j where I;; = 1 with probability 1/n and 0

otherwise. l;,...1;, are independent.
- Apply Chernoff bound with u = E[bj] = 1:
ok
Pr[b; > k] <

(1+ R)R”

. Clogn .
For R > ooiogn We have:
Clogn 1
@ loglogn
Pr[b; > k] < =

Clogn nc—o(1)

Clogn '\ loglogn
loglogn

Balls Into Bins Via Chernoff Bound

Recall that b; is the number of balls landing in bin i, when we
randomly throw n balls into n bins.

- by =3"{L,I;j where I;; = 1 with probability 1/n and 0

otherwise. l;,...1;, are independent.
- Apply Chernoff bound with u = E[bj] = 1:
ok
Pr[b; > k] <

(1+ R)R”

. Clogn .
For R > ooiogn We have:
Clogn 1
@ loglogn
Pr[b; > k] < =

Clogn c—o(1
Clogn '\ loglogn n M
loglogn

Upshot: We recover the right bound for balls into bins.

Bernstein Inequality

7

Bernstein Inequality: Consider independent random variables
Xi,..., X, each with magnitude bounded by M and let X =
ST X Let p = E[X] and o? = Var[X] = S Var[X;]. For any
t>0: N S Men

n tz
Pr(> t) < 2exp (—2—/4> .
20° + 30

S
i=1

Bernstein Inequality

7

Bernstein Inequality: Consider independent random variables
Xi,...,X, each with magnitude bounded by M and let X =
ST X Let u = E[X] and 0% = Var[X] = >_I_, Var[X]]. For any

t>0:
t2
Pr >t) <2exp| —z5——F— |-
- 20’2+§Mt

n
ZX; —p
=1

Assume that M =1and plugint=s-o fors <o.

_

Bernstein Inequality

7

Bernstein Inequality: Consider independent random variables
Xi,...,X, each with magnitude bounded by 1 and let X =
ST X Let u = E[X] and 0% = Var[X] = >_I_, Var[X]]. For any

s> 0:
2
Pr >So | <2exp <4>

n

ZX, — W

i=1

Assume that M =1and plugint=s-o fors <o.

Bernstein Inequality

) Vi ’\‘)0\\,\%\4«\ /ﬁv\b.\} (,‘??,v
Bernstein Inequality: Consider independent random variables
Xi,...,X, each with magnitude bounded by 1 and let X =
ST X Let u = E[X] and 0% = Var[X] = >_I_, Var[X]]. For any

s> 0:
Pr<

Assume that M =1and plugint=s-o fors <o.
Compare to Chebyshev's: Pr (|37, Xj — u| > so) < 2. ("«b g o §

n

ZX/*H Z

i=1

- An exponentially stronger dependence on s!

Interpretation as a Central Limit Theorem

Simplified Bernstein: Probability of a sum of independent, bounded
random variables lying > s standard deviations from its mean is
~ exp (—%) Can plot this bound for different s:

N

/ \'\
/ : _\
— : i - ~——5

Interpretation as a Central Limit Theorem

Simplified Bernstein: Probability of a sum of independent, bounded
random variables lying > s standard deviations from its mean is
~ exp (—%) Can plot this bound for different s:

/TN

/st \
// \\
_,,/ I \\;— s

- Looks like a Gaussian (normal) distribution - can think of
Bernstein’s inequality as giving a quantitative version of the
central limit theorem.

- The distribution of the sum of bounded independent random
variables can be upper bounded with a Gaussian distribution.

Central Limit Theorem

Stronger Central Limit Theorem: The distribution of the sum of
n bounded independent random variables converges to a
Gaussian (normal) distribution as n goes to infinity.

; 5 Fssa,
Jru 0%

39 42 45 48 51 54 57 6.0
Means

- The Gaussian distribution is so important since many
random variables can be approximated as the sum of a
large number of small and roughly independent random
effects. Thus, their distribution looks Gaussian by CLT.

Sampling for Approximation

| have an n x n matrix with entries in [0,1]. | want to estimate
the sum of entries. | sample s entries uniformly at random
with replacement, take their sum, and multiply it by n?/s. How
large must s be so that this method returns the correct answer,
up to error +e - n? with probability at least 1 —1/n?

(@)o(n?) (b)Oo(n/e) (c)O(logn/e) (d) O(logn/e?)

Sampling for Approximation

| have an n x n matrix with entries in [0,1]. | want to estimate
the sum of entries. | sample s entries uniformly at random
with replacement, take their sum, and multiply it by n?/s. How
large must s be so that this method returns the correct answer,
up to error +e - n? with probability at least 1 —1/n?

(@)o(n?) (b)Oo(n/e) (c)O(logn/e) ((d) O(logn/e?)

Bernstein Inequality: Consider independent random variables
Xi,...,Xn each with magnitude bounded by M and let X = Y7, X;.
Let u = E[X] and ¢® = Var[X] = 3_I, Var[X]]. Forany t > 0:

2
Pr >t] <2exp 7t74 .
[~T

ZX,‘*N
T kg seped (S o ——
A e s ° P [-an] > 25) oPlas

e

Sampling for Approximation

| have an n x n matrix with entries in [0,1]. | want to estimate
the sum of entries. | sample s entries uniformly at random
with replacement, take their sum, and multiply it by n?/s. How
large must s be so that this method returns the correct answer,
up to error +e - n? with probability at least 1 —1/n?

(@)o(n?) (b)Oo(n/e) (c)O(logn/e) (d) O(logn/e?)

@P(g%%s B <m5 O<UO<\0>

910
5 7o 7 el Han)

Application: Linear Probing

Linear Probing

Linear probing is the simplest form of open addressing for
hash tables. If an item is hashed into a full bucket, keep trying
buckets until you find an empty one.

00 N o it b W N

Linear Probing

Linear probing is the simplest form of open addressing for
hash tables. If an item is hashed into a full bucket, keep trying

buckets until you find an empty one.

172.16.254.1

00 N o it b W N

Linear Probing

Linear probing is the simplest form of open addressing for
hash tables. If an item is hashed into a full bucket, keep trying
buckets until you find an empty one.

172.16.254.1 —___

> 172.16.254.1

00 N o it b W N

Linear Probing

Linear probing is the simplest form of open addressing for
hash tables. If an item is hashed into a full bucket, keep trying

buckets until you find an empty one.

172.16.254.1

172.16.254 1

16.58.26.164 \

Y

16.58.26.164

00 N o it b W N

Linear Probing

Linear probing is the simplest form of open addressing for
hash tables. If an item is hashed into a full bucket, keep trying

buckets until you find an empty one.

172.16.254.1

16.58.26.164

192.168.1.34

x 172.16.254.1

e

16.58.26.164

00 N o it b W N

Linear Probing

Linear probing is the simplest form of open addressing for
hash tables. If an item is hashed into a full bucket, keep trying

buckets until you find an empty one.

172.16.254.1

16.58.26.164

192.168.1.34

o 172.16.254.1

Na 192.168.1.34

16.58.26.164

00 N o it b W N

Linear Probing

Linear probing is the simplest form of open addressing for
hash tables. If an item is hashed into a full bucket, keep trying

buckets until you find an empty one.

172.16.254.1

16.58.26.164

192.168.1.34

192.168.1.34

a2 172.16.254.1

/

192.168.1.34

16.58.26.164

00 N o it b W N

Linear Probing

Linear probing is the simplest form of open addressing for
hash tables. If an item is hashed into a full bucket, keep trying

buckets until you find an empty one.

172.16.254.1

16.58.26.164

192.168.1.34

192.168.1.34

7 172.16.254.1

As 192.168.1.34

16.58.26.164

00 N o it b W N

Linear Probing

Linear probing is the simplest form of open addressing for
hash tables. If an item is hashed into a full bucket, keep trying

buckets until you find an empty on

e.

—
172.16.254.1 J
= 172.16.254.1
16.58.26.164 As 192.168.1.34
192.168.1.34
16.58.26.164
192.168.1.34
— —

Simple and potentially very efficient - but performance can

degrade as the hash table fills up.

00 N o it b W N

Linear Probing Expected Runtime

Theorem: If the hash table has n inserted items and m > 2n buckets,
then linear probing requires O(1) expected time per insertion/query.

1

Linear Probing Expected Runtime

Theorem: If the hash table has n inserted items and m > 2n buckets,
then linear probing requires O(1) expected time per insertion/query.

Definition: For any interval | C [m], let L(/) = [{x : h(x) € I}| be the
number of items hashed to the interval. We say [is full if L(/) > |I|.

[

T

T

-\/._,@/@/W/
/S Sy

1

Linear Probing Expected Runtime

Theorem: If the hash table has n inserted items and m > 2n buckets,
then linear probing requires O(1) expected time per insertion/query.

Definition: For any interval | [m], let L(/) = |{x : h(x) € I}| be the
number of items hashed to the interval. We say [is full if L(/) > |I|.

172.16.254.1 —_—

172.16.254.1

192.168.1.34 /c_

192.168.1.34

1658.26.164 —

16.58.26.164

(2] [5J

] 4]

Which intervals in this table are full?

0O N OO 1 A W N B

1

Analysis via Full Intervals

Claim Let T(x) denote the number of steps required for an
insertion/query operation for item x. If T(x) > k, there are at least k
full intervals of different lengths containing h(x).

K72 172.16.254.1 \X

N ‘ s o 172.16.254.1

[16.58.26.164 | ® 10.00.12.956
195168134 192.168.1.34 4
. 16.58.26.164 >
10.00.12.956 6
7

)

_ 8

12

Analysis via Full Intervals

Claim Let T(x) denote the number of steps required for an
insertion/query operation for item x. If T(x) > k, there are at least k

full intervals of different lengths containing h(x).

1

72.16.254.1
> 172.16.254.1
16.58.26.164 10.00.12.956
S 192.168.1.34
16.58.26.164
10.00.12.956
——
26.11.34.001 |

0 N O B WIN

12

Analysis via Full Intervals

Claim Let T(x) denote the number of steps required for an
insertion/query operation for item x. If T(x) > k, there are at least k
full intervals of different lengths containing h(x).

172.16.254.1 .
> 172.16.254.1 2

16.58.26.164 100012 058 i
192.168.1.34 192.168.1.34 4
16.58.26.164 5

10.00.12.956 7 / ;

| 26.11.34.001 .
8

Let I; = 1if h(x) lies in some length-j full interval, I; = 0 otherwise.

Opération time for x is can be bounded as T(x) < Zj'; l;.
12

Expectation Analysis

l; = 1if h(x) lies in some length-j full interval, I; = 0 otherwise.
Expected operation time for any x is:

E[T)] < D E[]-

j=1

Expectation Analysis

l; = 1if h(x) lies in some length-j full interval, I; = 0 otherwise.
Expected operation time for any x is:

n
E[T(x)] < ZIEM.
j=1
Observe that h(x) lies in at most 1 length-1 interval, 2 length-2
intervals, etc. So we can upper bound this expectation by:

n
E[T(x)] <> _j-Prlany length-j interval is full].

=1 ~—

3
Z

Expectation Analysis

l; = 1if h(x) lies in some length-j full interval, I; = 0 otherwise.
Expected operation time for any x is:

n
E[T(0] < Y EQ].
j=1
Observe that h(x) lies in at most 1 length-1 interval, 2 length-2
intervals, etc. So we can upper bound this expectation by:

n
E[T(x)] <> _j-Prlany length-j interval is full].
j=1
A length-j interval is full if the number of items hashed into it, L(/) is
at least j. Note that when m > 2n, E[L(/)] = j/2.

Expectation Analysis

l; = 1if h(x) lies in some length-j full interval, I; = 0 otherwise.
Expected operation time for any x is:

n
E[T(0] < Y EQ].
j=1
Observe that h(x) lies in at most 1 length-1 interval, 2 length-2
intervals, etc. So we can upper bound this expectation by:

n
E[T(x)] <> _j-Prlany length-j interval is full].
j=1
A length-j interval is full if the number of items hashed into it, L(/) is
at least j. Note that when m > 2n, E[L(/)] = j/2. Applying a Chernoff
bound with & = (8, 11 = E[L(1)] = j/2: |

i PrL() >] < PrIL() — | > §-]

_y2
yi "d'A—N = =
Lvé < 29*/%54‘% 2 Lo vd Qe 3
-)lb
2.0 13

Expectation Analysis

l; = 1if h(x) lies in some length-j full interval, I; = 0 otherwise.
Expected operation time for any x is:

n
E[T(0] < Y EQ].
j=1
Observe that h(x) lies in at most 1 length-1 interval, 2 length-2
intervals, etc. So we can upper bound this expectation by:

n
E[T(x)] <> _j-Prlany length-j interval is full].
j=1
A length-j interval is full if the number of items hashed into it, L(/) is
at least j. Note that when m > 2n, E[L(/)] = j/2. Applying a Chernoff
bound with 6 =1/2, = E[L(])] = j/2:

PriL(1) > j] < Pr[[L(l) — p| > 6 - 1]

_ /2% :
<2e” i =207,

13

Finishing the Analysis

Expected operation time for any x is:

n
E[T(x)] < Zj - Pr[any length-j interval is full]
j=1

14

Finishing the Analysis

Expected operation time for any x is:

n
E[T(x)] < Zj - Pr[any length-j interval is full]
j=1
Jn / (\}JJ\(M
<> j-2e7%
j=1

14

Finishing the Analysis

m-> CnN 21
O

n
E[T(x)] < Zj - Pr[any length-j interval is full]
M

n

<> j-2e7%
j=1

—0(1).

Expected operation time for any x is:

14

Finishing the Analysis

Expected operation time for any x is:

n
E[T(x)] < Zj - Pr[any length-j interval is full]
j=1

n

<> j-2e7%
j=1

—0(1).

This matches the expected operation cost of chaining when m > 2n.
In practice, linear probing is typically much faster.

14

