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- Problem Setlis due next Wednesday 2/21 at 11:59pm.

- Most people think the lectures are ‘just right’ or "a bit too
fast’ I'll try to slow down a bit. If you feel that you are
really falling behind, let me know.

- If you are confused on something please ask about it -
certainly you are not the only one!
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- Concentration bounds — Markov’'s and Chebyshev's inequalities.

- The union bound. P~ (Q, J. .. \)HAS < ﬁp(ﬂ&
. Cwn_c@ng, statistical estimation.

- Randomized load balancing and ball-into-bins
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Last Time:
- Concentration bounds - Markov's and Chebgshev’s inequalities.

- The union bound.
- Coupon collecting, statistical estimation.
- Randomized load balancing and ball-into-bins

Today:

- Stronger concentration bounds for sums of independent ( ;
random variables. l.e., exponential concentration bounds. lﬁm\
_/x’_,—_

- Applications to balls-into-bins and linear probing analysis.
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Question 4 Let's say | have two biased coins -- one hits heads with probability 1/2 + ¢ and tails with

Not complete probability 1/2 — €. The other hits tails with probability 1/2 + € and heads with

Points out of probability 1/2 — .\ m\,\ harme b"\\/\&’\* | \,-\\PU-"\’U st —‘es‘)-\?
100 How many independent flips of the coins must | perform to distinguish them from each
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other with probability at least 2/3.
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Quiz Questions
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Question 5 ol a fair 6-sided die n times independently. You look at the difference between the

Not complete number of times you rolled a "1" the number of times you rolled a "2". Roughly, how big do } 2 z
Points out of we expect this difference to be in magnitude? Hint: What is the variance of this Vv( )
1.00 difference? X - _H _5 S. d: \j’_ X P
¥ Flag | MX{J 'lF N
question O a. @(n) ’H
£ Edit 7(1_ - f\k}fLS
question O b. O(y/n)

O c. O(ogn) _ < >

\/p\,/ X\ >< V3 3
O d @( ) —_— ™
log loe
- 0 n -
N Xi=%q

Check

_ - 5 \ D‘IZ, w2 I/Jo
X -%Xy = 2 Di g I

=1 7
Vor (4 ) N () 2 Vo) 7 “-P 2/3

Varhon) = Vo (30) 2 0 = B L0
6?[)(, ><7, \M(D.) 5



Balls Into Bins



Balls Into Bins

| throw m balls independently and uniformly at random into n
bins. What is the maximum number of balls any bin?

Bin 1 Bin 2 Bin 3

- Applications to randomized load balancing

- Analysis of hash tables using chaining.
70
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Balls Into Bins

| throw m balls independently and uniformly at random into n
bins. What is the maximum number of balls any bin?

b\—'b vz bg:'l
|cee | |eo | |0e |
Bin 1 Bin 2 Bin 3

- Applications to randomized load balancing

- Analysis of hash tables using chaining.

+ Direct Proof: For any bin i, Pr[b; > &£lnl] < . Thus,
via union bound, the maximum load is exceeds| £ with

probability at most ——.
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Balls Into Bins Via Chebyshev's Inequality

In our balls into bins analysis we directly bound

k
Pribi >kl < ()" =7 N m

Think Pair Share: Give an upper bound on this probability
using Chebyshev’s inequality. Hint: write b; as a sum of n
indicator random variables and compute Var[b;] and/or E[b?].
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Balls Into Bins Via Chebyshev's Inequality

By Chebyshev’s Inequality: Pr[b; > k] < .
Setting k = cy/n, Pr [b; > cy/n] < chn So via a union bound:




Balls Into Bins Via Chebyshev's Inequality

By Chebyshev’s Inequality: Pr[b; > k] < %
Setting k = cy/n, Pr [b; > cy/n] < chn So via a union bound:

Upshot: Chebyshev's inequality bounds the maximum load by
O(y/n) with good probability, as compared to O (Io'g"ﬁ)gn> for
the direct proof. It is quite loose here.
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Balls Into Bins Via Chebyshev's Inequality

By Chebyshev’s Inequality: Pr[b; > k] < .
Setting k = cy/n, Pr [b; > cy/n] < cz% So via a union bound:

becﬁ}gn-zsz

Pr | max .
i=1,..., c2n — ¢?

n
Upshot: Chebyshev's inequality bounds the maximum load by
O(y/n) with good probability, as compared to O (Io'g"ﬁ)gn> for
the direct proof. It is quite loose here.

Chebyshev’s and Markov's inequalities are extremely valuable
because they are very general — require few assumptions on
the underlying random variable. But by using assumptions, we
can often get tighter analysis.



Exponential Concentration Bounds



Higher Moments

Markov's Inequality: Pr[X > t] < % First moment. \=

/

Chebyshev’s Inequality: Pr[X > ] < EX1 Second moment.
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Higher Moments

Markov's Inequality: Pr[X > t] < @. First moment.
Chebyshev's Inequality: Pr[X > t] < %‘2]. Second moment.

Often (not always!) we can obtain tighter bounds by looking to
higher moments of the random variable.



Higher Moments

. First moment.

’ 1 o ]E[X]
Markov’s Inequality: Pr[X > t] < =~

Chebyshev's Inequality: Pr[X > t] < %‘2]. Second moment.

Often (not always!) we can obtain tighter bounds by looking to
higher moments of the random variable.

Moment Generating Function: Consider for any z > 0:
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Higher Moments

. First moment.

? 1 o ]E[X]
Markov’s Inequality: Pr[X > t] < =~

Chebyshev's Inequality: Pr[X > t] < %‘2]. Second moment.

Often (not always!) we can obtain tighter bounds by looking to
higher moments of the random variable.

Moment Generating Function: Consider for any z > 0:
o0 kyk
. "X
MZ(X) - eZX - ?
k=0
e”tis non-negative, and monotonic for any z > 0. So can bound via
Markov's inequality, Pr[X > t] = Pr[M,(X) > 7] < ElM:X)]

e




Higher Moments

. First moment.

? 1 o ]E[X]
Markov’s Inequality: Pr[X > t] < =~

Chebyshev's Inequality: Pr[X > t] < %‘2]. Second moment.

Often (not always!) we can obtain tighter bounds by looking to
higher moments of the random variable.

Moment Generating Function: Consider for any z > 0:
o0 kyk
. "X
MZ(X) - eZX - ?
k=0
e”tis non-negative, and monotonic for any z > 0. So can bound via
Markov's inequality, Pr[X > t] = Pr[M,(X) > 7] < ElM:X)

e
By appropriately picking z and bounding E[M,(X)], we can obtain a
variety of exponential tail bounds. Typically require that X is a sum
of bounded and independent random variables
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The Chernoff Bound

Chernoff Bound (simplified version): Consider independent
random variables X, ..., X, taking values in {0,1} and let X =

S X Let p =E[X] = E[X_, X]. Forany 6 >0 ot
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The Chernoff Bound

Chernoff Bound (simplified version): Consider independent
random variables X, ..., X, taking values in {0,1} and let X =
ST X Let w=E[X] = E[}", X;]. Forany § > 0

ok

Pr(X>(1+0)p) < W

Chernoff Bound (alternate version): Consider independent
random variables Xy, ..., X, taking values in {0,1} and let X =
S X Let w=E[X] = E[>", X;]. Forany § > 0

2
Pr ( > 5u> < 2exp <— 26_’_“5) .

n
ZX; — W
=1
As § gets larger and larger, the bound falls off exponentially fast.



Balls Into Bins Via Chernoff Bound

Recall that b; is the number of balls landing in bin i, when we
randomly throw n balls into n bins.

- by =3"{L,I;j where I;; = 1 with probability 1/n and 0
otherwise. l;,...1;, are independent.

1



Balls Into Bins Via Chernoff Bound

Recall that b; is the number of balls landing in bin i, when we
randomly throw n balls into n bins.

- by =3"{L,I;j where I;; = 1 with probability 1/n and 0

otherwise. l;,...1;, are independent.
- Apply Chernoff bound with u = E[bj] = 1:
ok
Pr[b; > k] <

(1+ R)R”
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Balls Into Bins Via Chernoff Bound

Recall that b; is the number of balls landing in bin i, when we
randomly throw n balls into n bins.

- by =3"{L,I;j where I;; = 1 with probability 1/n and 0

otherwise. l;,...1;, are independent.
- Apply Chernoff bound with u = E[bj] = 1:
ok
Pr[b; > k] <

(1+ R)R”

. Clogn .
For k > loglogn e have:
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