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- Reminder that there is a weekly quiz, released after class
today and due next Monday 8pm.

- Problem Set 1 will be released shortly - hopefully by the
end of the week. Sorry for the delay.

- See Piazza for a post to organize homework groups.



Last Time:
- Review of conditional probability, independence, linearity of
expectation and variance.

- Polynomial identity testing and proof of the Schwartz-Zippel
Lemma.

- Application of linearity of expectation to randomized Quicksort
analysis.

Today:

- Concentation bounds - Markov's and Chebyshev’s inequalities.

+ The union bound.

- Applications to coupon collecting and statistical estimation.



Concentration Inequalities



Concentration Inequalities

Concentration inequalities are bounds showing that a random
variable lies close to it's expectation with good probability. Key
tools in the analysis of randomized algorithms.

Standard Deviations




Markov's Inequality

The most fundamental concentration bound: Markov's
inequality.

For any non-negative random variable X and any t > 0:

Pm>q<Em

EX]=> PrX=u)-u>> Pr(X=

u>t

> Pr(X =

u>t
=t-Pr(X>1).

Pluggingint = E[X] - s, Pr[X > s - E[X]] < 1/s. The larger the
deviation s, the smaller the probability.

Proof:



Markov's Inequality

Think-Pair-Share: You have a Las Vegas algorithm that solves
some decision problem in expected running time T. Show how
to turn this into a Monte-Carlo algorithm with worst case
running time 3T and success probability 2/3.



Chebyshev's inequality

With a very simple twist, Markov's Inequality can be made
much more powerful in many settings.

For any random variable X and any value t > 0:
Pr(|X| > t) = Pr(X*> > t%).
X% is a nonnegative random variable. So can apply Markov's:
Pr(X| > t) = Pr(X* > t*) < E[t>2<2].
Plugging in the random variable X — E[X], gives the standard
form of Chebyshev’s inequality:
E[(X—E[X])? _ Var(X)

Pr(X—B[X| > 1) < = "




Chebyshev's inequality

Var[X]

Pr(X—EX]| > 1) <~

What is the probability that X falls s standard deviations from
it's mean?

Var[X] 1
Pr(X—E[X]| > s-+/Var[X]) < 7 Va5



Application 2: Statistical Estimation + Law of
Large Numbers



Concentration of Sample Mean

Theorem: Let X4,...,X, be pairwise independent random
variables with E[X]] = p and Var[X;] = 2. Let X =1 3" | X, be
their sample average.

Forany e > 0, Pr[[X — pu| > eo] < L.
* By linearity of expectation, EX] = 1 > | E[X]] = p.
+ By linearity of variance, E[X] = & >, Var[X;] = <
- Plugging into Chebyshev's inequality:

- Var|[X] 1
Pr[|X - /,L‘ Z 60'] S 6202 = P

This is the weak law of large numbers.



Concentration of Sample Mean

Application to statistical estimation: There is a large population of
individuals. A p fraction of them have a certain property (e.g,, 55% of
people support decreased taxation, 10% of people are greater than 6’
tall, etc.). Want to estimate p from a small sample of individuals.

- Sample n individuals uniformly at random, with replacement.

- Let X; = 1if the i individual has the property, and 0 otherwise.
X1,..., Xy are i.i.d. draws from Bern(p) - each is 1 with

10
probability p and 0 with probability 1 — p.



Application to Success Boosting

Think-Pair-Share: You have a Monte-Carlo algorithm with
worst case running time T and success probability 2/3. Show
how to obtain, for any § € (0,1), a Monte-Carlo algorithm with
worse case running time O(T/d) and success probability 1 — 4.

n



Application 3: Coupon Collecting



Coupon Collector Problem

There is a set of n unique coupons. At each step you draw a
random coupon from this set. How many steps does it take
you to collect all the coupons?

Your Your
Collection: Collection:

Think-Pair-Share: Say you have collected i coupons so far. Let

T.,; denote the number of draws needed to collect the (i + 1)t 1,
~AtinAn \What e T/IT.1?2



Coupon Collector Analysis

Think-Pair-Share: Say you have collected i coupons so far. Let
T..; denote the number of draws needed to collect the (i + 1)t
coupon. What is E[T;]?

- T, is a geometric random variable with success probability
pi="=L le, PrTy =] = p;(1— pi) "
- Exercise: verify that E[T]] = 1/p; = -~
- By linearity of expectation, the expected number of draws
to collect all the coupons is:
! n n n
1

n
E[T]:ZE[T/]:E-‘FW-F...?-F...
i=0

:an

- By Markov's inequality, Pr[T > cn - Hy] < 13



Coupon Collector Analysis

Can get a tighter tail bound using Chebyshev's inequality in
place of Markov's.

- We wrote T = Z?:_(; T;, which let us compute E[T] = n - Hj.
- Also have Var[T] = 327" Var[T]]. Why?

- Exercise: show that Var[T;] = 1;2’”', and recall that p; = 2=,
- Putting these together: l

n

1=p =1 &1
Var[T]:Z D,-Z :ZPTZ_ZE
=0 =0

i=0

2 2

2 T 2 T
<n.-—-—-n-Hy, <n® - —.
= 6 n = 6

- Via Chebyshev's inequality, Pr[|T—n - Hy| > cn] <

14



Application 4: Randomized Load Balancing and
Hashing, and ‘Ball Into Bins’



Balls Into Bins

| throw m balls independently and uniformly at random into n
bins. What is the maximum number of balls any bin?

Bin 1 Bin 2 Bin 3 Bin 1
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Application: Hash Tables

128-bit IP addresses Hash Table
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- hash function h : U — [n] maps elements to indices of an array.

- Repeated elements in the same bucket are stored as a linked
list = ‘chaining.

- Worse-case look up time is proportional to the maximum list
length - i.e,, the maximum number of ‘balls’ in a ‘bin’.

Note: A ‘fully random hash function” maps items independently and
uniformly at random to buckets. This is a theoretical idealization of
practical hash functions.



Application: Randomized Load Balancing
s @

Cllem Requests

Va / \
AR AR .. AR

(o 11i1) (o 1111] (o 1111)

Server 1 Server 2 Server n

- m requests are distributed randomly to n servers. Want to
bound the maximum number of requests that a single server
must handle.

- Assignment is often is done via a random hash function so that
repeated requests or related requests can be mapped to the
same server, to take advantages of caching and other
optimizations.



Balls Into Bins Analysis

Let b; be the number of balls landing in bin i. For n balls into m bins
what is E[bj]?

n
Pr [i_r?i).(,n b, > /?} =Pr LLJ1 A,-] ,
where A; is the event that b; > k.

Union Bound: For any random events A, A;, ..., Ay,

PF(AW UAU... UAH) < PF(A1)+ Pr(Az) + ...+ Pr(An)

Exercise: Show that the union bound is a special case of Markov's
inequality with indicator random variables.



Balls Into Bins Direct Analysis

Let b; be the number of balls landing in bin i. If we can prove that for
any i, Pr[A;] = Pr[b; > R] < p, then by the union bound:

n
Pr [,r?axn b, > fe} =Pr lU A,-] <n-p.

Claim 1: Assume m = n. For k > &% prb; > k] <

Inlnn’

ne— 0(1

- b;is a binomial random variable with n draws and success
probability 1/n.

AN \"
1) 3 (-3)
- We have (7) < (ej—”)l giving Pr[b; = j] < (jﬁ)} (1- %)”7" < (%)l
- Summing over j > k we have:

Pe[b: > K] < ; (}e>) < (%)k . ﬁ
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Balls Into Bins Direct Analysis

We just showed: When n = m (i.e, n balls into n bins)

Pribi = k] < (%)k' 1 —16/1?

For k= £ we have:
ninn

clnn

Inlnn "0 1 1
>R < - = .
Pribi = Kl < ( Inn ) 1—(elnlnn)/(cinn)  nc—o()

Upshot: By the union bound, For k = cI" for sufficiently large c,

Inlnn

1
= pe—i—o()

When throwing n balls in to n bins, with very high probability the
maximum number of balls in a bin will be O (F32.).

Inlnn
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