COMPSCI 614: Randomized Algorithms with
Applications to Data Science

Prof. Cameron Musco

University of Massachusetts Amherst. Spring 2024.
Lecture 24 (Final Lecture!)



- Optional Problem Set 5 due 5/13 at 11:59pm.

- Final exam will be Tuesday 5/14, 10:30-12:30pm in the
classroom. See Piazza post for info on study materials.

- | will hold additional final review office hours Monday 5/13
from 3-4:30pm.

- Final project due the last day of finals: Friday 5/17 - if you
have questions as you come into the last couple of weeks
of the project feel free to reach out.

- Please fill our SRTIs when you get a chance!



Last Time: Convex relaxation and randomized rounding.

- High level idea of convex relaxation for approximating NP-hard
problems.

- Deterministic rounding for vertex cover. Randomized rounding
for set cover.

- SDP relaxation and hyperplane rounding for max-cut
(Goemans-Williamson algorithm)
Today: The Probabilistic Method (not on the exam)

- From probabilistic proofs to algorithms via the method of
conditional expectations.

- The Lovasz local lemma for events with ‘bounded’ correlation.



The Probabilistic Method

The Basic Idea: Suppose we want to prove that a combinatorial
object satisfying a certain property exists. Then it suffices to exhibit
a random process that produces such an object with probability > 0.

We have already seen examples of this - e.g. the JL Lemma and
Newman's Theorem reducing private coin communication complexity
to public coin communication complexity (Problem Set 2).

A common tool: For a random variable with E[X = ], Pr[X > p] > 0
and Pr[X < pu] > 0.



Example 1: Max-Cut

Prove that for any graph with m edges, there exists a cut containing
at least m/2 edges.

Consider a random partition of the nodes (each node is included
independently in each half with probability 1/2). Let X be the size of
the corresponding cut.

We have E[X] =

Therefore, Pr[X > m/2] > 0. So every graph with m edges has a cut
containing at least m/2 edges.



Example 2: 3-SAT

Prove that for any 3-SAT formula, there is some assignment of the
variables such that at least 7/8 of the clauses are true.

Consider a random assignment of the variables. And let X be the
number of satisfied clauses.

(VX VX)A VXV X)A (X V X3V X)A ...

What is E[X]?

So, Pr[X >7/8m] > 0. So there is an assignment satisfying at least
7/8 of the clauses in every 3-SAT formula.



From Existence to Efficient Algorithms

Simple Max-Cut Approximation: A randomly sampled partition cuts
m/2 edges in expectation. But how many partitions do we need to
sample before finding a cut of size at least m/2 with good
probability?

Let p be the probability of finding a cut of size > m/2. Then:

B =2 <(-p)(5-1)+p-m

<p.

How many attempts do we need to take to find a large cut with
probability at least 1— 7 O(m - log(1/6))



Method of Conditional Expectations

We can also derandomize this algorithm in a very simple way.

Let X1, Xy, ... € {0,1} indicate if the vertices are included on one side
of the random partition.

Consider determining these randsom variables sequentially.

m 1 1

— = E[X] = zE[X|x; =1 —E[X|x; = 0].

7 = BIX] = 5EXx; = 1] + 5EX/x = 0]

Set xq = v; such that E[X|x; = v;] > I Then we have:
m 1 1
?SE[X|X1:V‘\]:§E[X|X1:VW,X2:1]+§E[X‘X1:V1,X2:O]

Set X, = v, such that E[X|x; = v4,X; = vo] > 1. And so on...



Conditional Expectations for Cuts

How can we pick v; such that E[X|x; = v4,...,Xj_; = Vi_4] > 57

X3= X3=0 X3=0
X,= Xx,=1 X,=1

X4= x,=0 X4=0

x;=? x;=1 x,=0

EX[x; =0,...,% =1 =3-10+2=7E[X|x; =0,...,%x, = 0] =
1-10+1=6

Natural greedy approach: add vertex i to the side of the cut to which
it has fewest edges.

Yields a 1/2 approximation algorithm for max-cut. Recall that 16/17is ¢
the best possible assumine P £ NP. and .878 is the best known



Large Girth Graphs

The girth of a graph is the length of its shortest cycle.

Natural Question: How large can the girth be for a graph with m
edges?

Erdos Girth Conjecture: For any k > 1, there exists a graph with
m = Q(n"*"/*) edges and girth 2k + 1.



Relevance to Spanners

A spanner is a subgraph that approximately preserves shortest path
distances. We say G’ is a spanner for G with stretch t if for all u,v
de (u,v) < t-dg(u,v).

G G’ G’

Even when G’ excludes a single edge, t > girth(G) — 1.

Erdos Girth Conjecture = there are no generic spanner

constructions with o(n'*/*) edges and stretch < 2k —1.
1



Large Girth Graphs via Probabilistic Method

Theorem (Weaker Version of Girth Conjecture)

For any fixed kR > 3, there exists a graph with n nodes, Q(n't'/¥)
edges, and girth R + 1.

Sample and Modify Approach: Let G be an Erdds-Renyi random
graph, where each edge is included independently with probability
p = n'/k=1. Remove one edge from every cycle in G with length < k,
to get a graph with girth R+ 1.

Let X be the number of edges in the graph and Y be the number of
cycles of length < k. Suffices to show E[X — Y] = Q(n'+1/k).

nin —1 1 1
e = )-p—z(wn).nm/k.
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Large Girth Graphs via Probabilistic Method

So far: An Erdos-Renyi random graph with p = n'/®=1 has expected
number of edges (X) and cycles of length < k —1(Y) bounded by:

L U I WS
E[X] = > (1 n) n
E[Y] <k-n.
When k is fixed and n is sufficiently large, k- n < n'"*'/k. Thus,

E[X — Y] = QE[X]) = Q(n™""),

proving the theorem.

13



Lovasz Local Lemma



Probabilities of Correlated Events

Suppose we want to sample a random object that avoids n ‘bad
events' k..., Ep.

E.g., we want to sample a random assignment for variables that
satisfies a a R-SAT formula with n clauses. E; is the event that clause
Iis not satisfied.

If the E; are independent, and Pr[E;] < 1 for all i then:

n

Pr [ﬂOEi] =[Jo-£)>o0.

i=1

What if the events are not independent?

If S, Pr[E]] < 1then by a union bound,

n n
Pr PUE,} >1-) E>0.
i=1 i=1

As n gets large, the union bound gets very weak — each event has to

occur with probability < 1/n on average. 1



Bounded Correlation

Consider events Eq, ..., E, where E; is independent of any j ¢ I'(i)
(the neighborhood of i in the dependency graph)

E.g., consider randomly assigning variables in a k-SAT formula with n
clauses, and let E; be the event that clause i is unsatisfied.

(Xj\/)_(z\/X3)/\(X2 \/)_(4\/X3)/\(Xz, \/X5\/X6)/\(ﬁXz, \/X@\/X7)...

Theorem (Lovasz Local Lemma)

Suppose for a set of events Ey, E,, ..., E,, Pr[Ej] < p forall i, and
that each E; is dependent on at most d other events E; (i.e,,
IF(i)| < d, then if 4dp

PrT—'UE] (1-2p)" > 0.

In the worse case, d = n — 1 and this is similar to the union bound.
But it can be much stronger. 15



LLL Application: k-SAT

Theorem

If no variable in a R-SAT formula appears in more than z—z clauses,
then the formula is satisfiable.

Let E; be the event that clause i is unsatisfied by a random

assignment. Pr[E] < 5 = p.
ri <k -ZH=%=
So 4dp =4+ 5 - % <1,and thus Pr[={J, E] > 0. l.e, a random

assignment satisfies the formula with non-zero probability.



Algorithmic LLL

Important Question: Given an Lovasz Local Lemma based proof of
the existence, can we convert it into an efficient algorithm?

Moser and Tardos [2010] prove that a very natural algorithm can be
used to do this.

Let Ey,..., E, be events determined by a set of independent random
variables V= {w,...,vn}. Let v(E;) be the set of variables that E;
depends on.

Resampling Algorithm:

1. Assign v4,...,V, random values.

2. While there is some E; that occurs, reassign random values to all
varables in v(E;).

3. Halt when an assignment is found such that no E; occurs.



Algorithmic LLL

Theorem (Algorithmic Lovasz Local Lemma)

Consider a set of events Eq, E,, ..., E, determined by a finite set of
random variables V. If for all i, Pr[E;] < p and |I'(i)| < d, and if
ep(d + 1) <1, then RESAMPLING finds an assignment of the
variables in V such that no event E; occurs. Further, the algorithm
makes O(§) iterations in expectation.

Application to R-SAT: Consider a k-SAT formula where no variable
appears in more than % clauses. Let E; be the event that clause i is
unsatisfied by a random assignment

PrE] < - =p and |F(i) <k 2 _2
el =P ST T

Have ep(d +1) < £ + 5z < 1aslongas k > 3, so the theorem applies,

giving a polynomial time algorithm for this variant of kR-SAT.



Thanks for a great semester!
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