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COMPSCI 614: Randomized Algorithms with
Applications to Data Science

Prof. Cameron Musco

University of Massachusetts Amherst. Spring 2024.
Lecture 24 (Final Lecture!)



- Optional Problem Set 5 due 5/13 at 11:59pm.

- Final exam will be Tuesday 5/14, 10:30-12:30pm in the
classroom. See Piazza post for info on study materials.

- | will hold additional final review office hours Monday 5/13
from 3-4:30pm.

- Final project due the last day of finals: Friday 5/17 - if you
have questions as you come into the last couple of weeks
of the project feel free to reach out.

- Please fill our SRTIs when you get a chance!



Last Time: Convex relaxation and randomized rounding.

- High level idea of convex relaxation for approximating NP-hard
problems.

- Deterministic rounding for vertex cover. Randomized rounding
for set cover.

- SDP relaxation and hyperplane rounding for max-cut
(Goemans-Williamson algorithm) Z 1,18 = X gﬂ,
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Last Time: Convex relaxation and randomized rounding.

- High level idea of convex relaxation for approximating NP-hard
problems.

- Deterministic rounding for vertex cover. Randomized rounding
for set cover.

- SDP relaxation and hyperplane rounding for max-cut
(Goemans-Williamson algorithm)
Today: The Probabilistic Method (not on the exam)

- From probabilistic proofs to algorithms via the method of
conditional expectations.

- The Lovasz local lemma for events with ‘bounded’ correlation.



The Probabilistic Method

The Basic Idea: Suppose we want to prove that a combinatorial
object satisfying a certain property exists. Then it suffices to exhibit
a random process that produces such an object with probability > 0.
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The Basic Idea: Suppose we want to prove that a combinatorial
object satisfying a certain property exists. Then it suffices to exhibit
a random process that produces such an object with probability > 0.

We have already seen examples of this - e.g. the JL Lemma and
Newman’s Theorem reducing private coin communication complexity
to public coin communication complexity (Problem Set 2).
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The Probabilistic Method

The Basic Idea: Suppose we want to prove that a combinatorial
object satisfying a certain property exists. Then it suffices to exhibit
a random process that produces such an object with probability > 0.

We have already seen examples of this - e.g. the JL Lemma and
Newman’s Theorem reducing private coin communication complexity
to public coin communication complexity (Problem Set 2).

A common tool: For a random variable with E[X = p], Pr[X > u] > 0
and Pr[X < u] > 0.



Example 1: Max-Cut

Prove that for any graph with m edges, there exists a cut containing
at least m/2 edges. y )
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Consider a random partition of the nodes (each node is included
independently in each half with probability 1/2). Let X be the size of
the corresponding cut.
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Prove that for any graph with m edges, there exists a cut containing
at least m/2 edges.

Consider a random partition of the nodes (each node is included
independently in each half with probability 1/2). Let X be the size of
the corresponding cut.
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Example 1: Max-Cut

Prove that for any graph with m edges, there exists a cut containing
at least m/2 edges.

Consider a random partition of the nodes (each node is included
independently in each half with probability 1/2). Let X be the size of
the corresponding cut.
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Therefore, Pr[X > m/2] > 0. So every graph with m edges has a cut
containing at least m/2 edges.



Example 2: 3-SAT

Prove that for any 3-SAT formula, there is some assignment of the
variables such that at least 7/8 of the clauses are true.



Example 2: 3-SAT

Prove that for any 3-SAT formula, there is some assignment of the
variables such that at least 7/8 of the clauses are true.

Consider a random assignment of the variables. And let X be the
number of satisfied clauses
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Example 2: 3-SAT

Prove that for any 3-SAT formula, there is some assignment of the
variables such that at least 7/8 of the clauses are true.

Consider a random assignment of the variables. And let X be the
number of satisfied clauses.

(X1 VX VX)) A (X2 VX VX3)A (VX3 V X)) AL

What is E[X]?

So, Pr[X >7/8m] > 0. So there is an assignment satisfying at least
7/8 of the clauses in every 3-SAT formula.



From Existence to Efficient Algorithms

Simple Max-Cut Approximation: A randomly sampled partition cuts
m/2 edges in expectation. But how many partitions do we need to

sample before finding a cut of size at least m/2 with good
probability?
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From Existence to Efficient Algorithms

Simple Max-Cut Approximation: A randomly sampled partition cuts
m/2 edges in expectation. But how many partitions do we need to

sample before finding a cut of size at least m/2 with good
probability?

Let p be the probability of finding a cut of size > m/2. Then:
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From Existence to Efficient Algorithms

Simple Max-Cut Approximation: A randomly sampled partition cuts
m/2 edges in expectation. But how many partitions do we need to

sample before finding a cut of size at least m/2 with good
probability?

Let p be the probability of finding a cut of size > m/2. Then:

BN =2 <(1-p)- (5 -1)+p-m

How many attempts do we need to take to find a large cut with
probability at least 17— 6?7 O(m - log(1/0))



Method of Conditional Expectations

We can also derandomize this algorithm in a very simple way.

Let X1, Xz, ... € {0,1} indicate if the vertices are included on one side
of the random partition.
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of the random partition.

Consider determining these random variables sequentially.
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Method of Conditional Expectations

We can also derandomize this algorithm in a very simple way.

Let X1, Xz, ... € {0,1} indicate if the vertices are included on one side
of the random partition.

Consider determining these randsom variables sequentially.
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Set x; = v; such that E[X|x; = v4] > 7 Then we have:
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Method of Conditional Expectations

We can also derandomize this algorithm in a very simple way.

Let X1, Xz, ... € {0,1} indicate if the vertices are included on one side
of the random partition.

Consider determining these randsom variables sequentially.

m 1 1

Set xq = v; such that E[X|x; = v4] > 2 Then we have:

m 1 1
> S EXx =vi] = SEXx = vi,% = 1]+ SE[X|x) = v1,x, = 0]
Set x; = v, such that E[X|x; = v4,%; = v;] > 2. And so on...
_ 2mMm
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Conditional Expectations for Cuts

How can we pick v; such that E[X|x; = vq,...,Xj_y = vi_q] > 37
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Conditional Expectations for Cuts

How can we pick v; such that E[X|x; = vq,...,Xj_y = vi_q] > 37
[ ——
=0
X,=1 %3

X4=

x,=0

u
EX[x;=0,...,x=0]=3-10+1=6
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Conditional Expectations for Cuts

How can we pick v; such that E[X|x; = vq,...,Xj_y = vi_q] > 37

X3=0
X,=1 2

X4=

x,=0

Natural greedy approach: add vertex i to the side of the cut to which
it has fewest edges.



Conditional Expectations for Cuts
S Xiog = Vi) > 37

How can we pick v; such that E[X|x; = vy, ..
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Natural greedy approach: add vertex i to the side of the cut to which

it has fewest edges.
Yields a 1/2 approximation algorithm for max-cut.



Conditional Expectations for Cuts

How can we pick v; such that E[X|x; = vq,...,Xj_y = vi_q] > 37

X3=0
X,=1 2

X4=

x,=0

Natural greedy approach: add vertex i to the side of the cut to which
it has fewest edges.

Yields a 1/2 approximation algorithm for max-cut. Recall that 16/17 is

the best possible assuming P # NP, and .878 is the best known
(Goemans, Williamson) from last lecture, and optimal under unique
games conjecture 9
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The girth of a graph is the length of its shortest cycle.
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Large Girth Graphs

The girth of a graph is the length of its shortest cycle.
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Natural Question: How large can the girth be for a graph with m
edges?

Erdos Girth Conjecture: For any k > 1, there exists a graph with
m = Q(n"*"/*) edges and girth 2k + 1.



Relevance to Spanners

A spanner is a subgraph that approximately preserves shortest path
distances. We say G’ is a spanner for G with stretch t if for all u,v
de (u,v) < t-dgs(u,v).
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Relevance to Spanners

A spanner is a subgraph that approximately preserves shortest path
distances. We say G’ is a spanner for G with stretch t if for all u,v
de (u,v) < t-dgs(u,v). U

G!

Even when G’ excludes a single edge, t > girth(G) — 1.
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Relevance to Spanners

A spanner is a subgraph that approximately preserves shortest path
distances. We say G’ is a spanner for G with stretch t if for all u,v
de (u,v) < t-dgs(u,v).

G!

Even when G’ excludes a single edge, t > girth(G) — 1.

Erdos Girth Conjecture = there are no generic spanner
constructions with o(n"*"/*) edges and stretch < 2k —1.
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Large Girth Graphs via Probabilistic Method

Theorem (Weaker Version of Girth Conjecture)

For any fixed k > 3, there exists a graph with n nodes, Q(rﬂ“/k)
edges, and girth R + 1.
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Large Girth Graphs via Probabilistic Method

Theorem (Weaker Version of Girth Conjecture)

For any fixed k > 3, there exists a graph with n nodes, Q(n"*+/¥)
edges, and girth R + 1.

Sample and Modify Approach: Let G be an Erdds-Renyi random
graph, where each edge is included independently with probability
p = n'/k=1. Remove one edge from every cycle in G with length < k,
( to get a graph with girth k + 1.
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Let X be the number of edges in the graph and Y be the number of
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edges, and girth R + 1.

Sample and Modify Approach: Let G be an Erdds-Renyi random
graph, where each edge is included independently with probability
p = n'/k=1. Remove one edge from every cycle in G with length < k,
to get a graph with girth k + 1.

Let X be the number of edges in the graph and Y be the number of
cycles of length < k. Suffices to show E[X — Y] = Q(n'+1/%).
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Large Girth Graphs via Probabilistic Method

Theorem (Weaker Version of Girth Conjecture)

For any fixed k > 3, there exists a graph with n nodes, Q(n"*+/¥)
edges, and girth R + 1.

Sample and Modify Approach: Let G be an Erdds-Renyi random
graph, where each edge is included independently with probability
p = n'/k=1. Remove one edge from every cycle in G with length < k,
to get a graph with girth k + 1.

Let X be the number of edges in the graph and Y be the number of
cycles of length < k. Suffices to show E[X — Y] = Q(n'+1/%).
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Large Girth Graphs via Probabilistic Method

Theorem (Weaker Version of Girth Conjecture)

For any fixed k > 3, there exists a graph with n nodes, Q(n"*+/¥)
edges, and girth R + 1.

Sample and Modify Approach: Let G be an Erdds-Renyi random
graph, where each edge is included independently with probability
p = n'/k=1. Remove one edge from every cycle in G with length < k,
to get a graph with girth k + 1.

Let X be the number of edges in the graph and Y be the number of
cycles of length < k. Suffices to show E[X — Y] = Q(n'+1/%).
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Large Girth Graphs via Probabilistic Method

So far: An Erdos-Renyi random graph with p = n'/#=" has expected
number of edges (X) and cycles of length < k — 1 (Y) bounded by:

EX] = 7 - (1 _ “) e

n
E[Y] < k-n.
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Large Girth Graphs via Probabilistic Method

So far: An Erdos-Renyi random graph with p = n'/#=" has expected
number of edges (X) and cycles of length < k — 1 (Y) bounded by:

E[X] = 1 (1 _ 1) .tk
2 n
E[Y] < k-n.
When k is fixed and n is sufficiently large, k- n < n™/k Thus,

E[X — Y] = QE[X]) = Q(n™"/"),

proving the theorem.
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Lovasz Local Lemma



Probabilities of Correlated Events

Suppose we want to sample a random object that avoids n ‘bad
events' Ey, ..., Ep.

E.g, we want to sample a random assignment for variables that
satisfies a a R-SAT formula with n clauses. E; is the event that clause
I is not satisfied.
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Probabilities of Correlated Events

Suppose we want to sample a random object that avoids n ‘bad
events' Ey, ..., Ep.

E.g, we want to sample a random assignment for variables that
satisfies a a R-SAT formula with n clauses. E; is the event that clause
I is not satisfied.

If the E; are independent, and Pr[E] < 1for all i then:

n

Pr lﬂLﬂJE,-] =[Ja-€)>o.
i=1

i=1
What if the events are not independent?

If YL, Pr[E]] < 1then by a union bound,

n n
Pr [ﬂUE,-] > —ZE,— > 0.
i=1 =1

As n gets large, the union bound gets very weak — each event has to

occur with probability < 1/n on average. 14



Bounded Correlation

Consider events Ey, ..., E, where E; is independent of any j ¢ (i)
(the neighborhood of i in the dependency graph)
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Consider events Ey, ..., E, where E; is independent of any j ¢ (i)
(the neighborhood of i in the dependency graph)

E.g., consider randomly assigning variables in a k-SAT formula with n
clauses, and let £; be the event that clause i is unsatisfied.
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Bounded Correlation

Consider events £;, ..., E, where E; is independent of any j ¢ (/)
(the neighborhood of i in the dependency graph)

E.g., consider randomly assigning variables in a k-SAT formula with n
clauses, and let £; be the event that clause i is unsatisfied.

(X1 VXoVX3)A (X2 VXe VX3)A(Xe VX5 VX)) A (X V XV X7) ..

Theorem (Lovasz Local Lemma)

Suppose for a set of events Eq, E,, ..., E,, PrlEj] < p foralli, and
that each E; is dependent on at most d other events E; (ie,
IT(i)| < d, then if 4dp

oo

In the worse case, d = n — 1and this is similar to the union bound.
But it can be much stronger. =



LLL Application: k-SAT

Theorem

If no variable in a R-SAT formula appears in more than % clauses,
then the formula is satisfiable.
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1
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LLL Application: k-SAT

Theorem

If no variable in a R-SAT formula appears in more than % clauses,
then the formula is satisfiable.

Let E; be the event that clause i is unsatisfied by a random

assignment. Pr[E] < 5; = p.

(i) <k 2% =2=d

So4dp =45 - % < 1,and thus Pr[=J_, E;] > 0. l.e, a random

assignment satisfies the formula with non-zero probability.
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Algorithmic LLL

Important Question: Given an Lovasz Local Lemma based proof of
the existence, can we convert it into an efficient algorithm?

Moser and Tardos [2010] prove that a very natural algorithm can be
used to do this.

Let Ey,..., E, be events determined by a set of independent random
variables V= {w,...,vn}. Let v(E;) be the set of variables that E;
depends on.

Resampling Algorithm:

1. Assign vy, ..., Vv, random values.

2. While there is some E; that occurs, reassign random values to all
varables in v(E;).

3. Halt when an assignment is found such that no E; occurs.

17



Algorithmic LLL

Theorem (Algorithmic Lovasz Local Lemma)

Consider a set of events Ey, E;, ..., E, determined by a finite set of
random variables V. If for all i, Pr[Ej]] < p and | (i)| < d, and if
ep(d + 1) <1, then RESAMPLING finds an assignment of the
variables in V such that no event E; occurs. Further, the algorithm
makes O(§) iterations in expectation.
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Theorem (Algorithmic Lovasz Local Lemma)

Consider a set of events Ey, E;, ..., E, determined by a finite set of
random variables V. If for all i, Pr[Ej]] < p and | (i)| < d, and if
ep(d + 1) <1, then RESAMPLING finds an assignment of the
variables in V such that no event E; occurs. Further, the algorithm
makes O(§) iterations in expectation.

Application to k-SAT: Consider a k-SAT formula where no variable
appears in more than é—z clauses. Let E; be the event that clause i is
unsatisfied by a random assignment

1 .
Pr[E,-]gz—k:p and [I()<k-—=—=d.
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Algorithmic LLL

Theorem (Algorithmic Lovasz Local Lemma)

Consider a set of events Ey, E;, ..., E, determined by a finite set of
random variables V. If for all i, Pr[Ej]] < p and | (i)| < d, and if
ep(d + 1) <1, then RESAMPLING finds an assignment of the
variables in V such that no event E; occurs. Further, the algorithm
makes O(§) iterations in expectation.

Application to k-SAT: Consider a k-SAT formula where no variable
appears in more than é—z clauses. Let E; be the event that clause i is
unsatisfied by a random assignment

2k ok

1 .
Pr[Ej] < % =P and F(i) <k EE = E d

Have ep(d +1) < € 4+ 5 < 1aslongas k > 3, so the theorem applies,
giving a polynomial time algorithm for this variant of k-SAT.
18



Thanks for a great semester!
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