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- Optional Problem Set 5 due 5/13 at 11:59pm.

- Final exam will be Tuesday 5/14, 10:30-12:30pm in the
classroom. See Piazza post for info on study materials.

- | will hold additional final review office hours Monday 5/13
from 3-4:30pm.

- Final project due the last day of finals: Friday 5/17 - if you
have questions as you come into the last couple of weeks
of the project feel free to reach out.



Last Time:
- Finish Markov chain unit.
- Analysis of Metropolis Hastings algorithm

- Example sampling to counting reduction for independent sets.

Today:
- Convex relaxation + randomized rounding for NP-Hard problems.

- Example application to vertex cover and set cover.



Combinatorial Optimization

Many NP-hard optimization problems can be formulated as convex
optimization problems subject to integral constraints.

Example 1: Vertex cover — find a minimum set of vertices such that
any edge in a graph is covered by at least one vertex.

n
min va st X, +x,>1forall (u,v) e E
i=1
x; € {0,1} for all i € [n].



Combinatorial Optimization

Many NP-hard optimization problems can be formulated as convex
optimization problems subject to integral constraints.

Example 2: Set cover - given a universe of elements [n] and a
collection of sets $1, S5, ..., Sm C [n], find the minimum number of
sets that cover all items in [n].

min Zx,- s.t. Z x; > 1forallj e [n]

=1 ij€S;
xi € {0,1} for all i € [m].



Applications Beyond Theory

Convex optimization problems with non-convex constraints arise all
over the place outside of algorithms textbooks.

- Sparse linear regression: miny i < [|AX — bl|3.
+ Low-rank matrix completion: miny.rank(my<k Z(f,/)eQ[B/’.,j — M )%

- Matching matrices with permutations:
min |A — P1BP,||2. Recently, these types of

permutation matrices Pq,P;
problems are very relevant e.g. in identifying permutation

invariances in neural networks.



Convex Relaxation

- Step 1: ‘Relax’ the non-convex constraint to be a related (and
weaker) convex constraint.

- Step 2: Solve the resulting convex problem in polynomial time.

- Step 3: Map the relaxed solution back to a solution to the
original problem. For integral constraints this is called
‘rounding’.

Key Challenge: Need to argue that the rounding step both gives a
feasible solution and does not increase the cost of the relaxed
solution too much.

Applications: This very general approach yields the best known
approximation algorithms for a huge range of problems: set cover,
vertex cover, max-cut (Goemans-Williamson SDP), etc. In many cases,
the approximation ratios obtained are known to be optimal under
complexity theoretic assumptions.



Vertex Cover Relaxation

n

min va sit. xy+x, > 1forall (u,v) € E
i=1

x;i € {0,1}[0,1] for all i € [n].

- This is now a linear program. It can be solved in polynomial

time.

- A solution may no longer be a valid vertex cover.

- How should be round to solution to obtain a true vertex cover?



Vertex Cover Relaxation

Deterministic Rounding for Vertex Cover: Given a fractional solution
X1,...,Xp, Obtain integral solution xq,...,x, by applying the rule: if
Xy >1/2,setx, =1.if X, <1/2,set x, = 0.

Claim 1: The rounded solution is feasible.

Proof: For any (u,v) € E, we must have x, + x, > 1, and thus at least

one of x, or x, > 1/2. So all edges are covered in the rounded
solution.

Claim 2: The rounded solution is within a 2-factor of optimal.

Proof: 37 x; <237 X =2 OPTeax < 2 - OPT.



Vertex Cover Integrality Gap

Could we do any better than a 2-approximation for vertex cover via
this approach?

- There exist graphs for which OPT,¢ox < OPT/2. l.e, this

relaxation has an integrality gap of 2.

- So any rounding scheme must at least double OPT g in the
worst case, or would have to be infeasible on such graphs.

- Since there also exist solutions where OPT,zox = OPT, this
makes it unlikely to get an approximation factor better than 2
for this problem.

- Assuming the unique games conjecture, vertex cover is hard to
approximate to a factor better than 2 in general [Khot, Regev
‘08]]. Assuming P # NP it cannot be approximated to a factor
better than ~ 1.36 [Dinur, Safra ‘05].

10



Set Cover Relaxation

m
min» x st > x >1forallje [n]
=

i:jES,'
x; € {0,1}[0,1] for all i € [m].

Will deterministic rounding work here?

123 124

134 234

n



Randomized Rounding for Set Cover

Naive Randomized Rounding: Given a fractional set cover solution
X1,...,Xm, obtain integral solution xq,..., Xy, by independently
setting x; = 1 with probability X; and 0 otherwise.

- What is the expected cost E[Y 1", x;]?

- Is the rounded solution feasible?

- No with pretty good probability. Consider an item that is
covered by t sets, each with weight 1/t.
Pr[not feasible] = (1—1/t)' ~ 1/e.

+ How could we fix this issue?
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Randomized Rounding for Set Cover

Scaled Randomized Rounding: Given a fractional set cover solution
X1,...,Xm, obtain integral solution xq, ..., Xy by independently
setting x; = 1 with probability min(1, « - X;) and 0 otherwise.

- Expected cost:

ET x] =Y " min(1,a%) < ad ", % < a-OPT.

- Feasibility: For any given item j, if there is some S; > j with
X; =1,and so j is covered.

- Otherwise, E[Y - ics Xi] = o+ 32 cs Xi > a.

- How big must we set « such that, with probability at least
T=1/n% 31 s Xi = 17 a= O(log n) suffices via a Chernoff
bound

- By a union bound over all n items, the solution will be feasible
with probability at least 1 —1/n°~".

13



Set Cover Approximation Via Randomized Rounding

Upshot: We obtain a O(log n) approximation algorithm for Set Cover
via relaxation + randomized rounding.

- The natural Set Cover LP relaxation has an integrality gap of
Q(logn).

- Assuming P # NP this approximation factor is optimal up to
constants [Raz, Safra ‘97].

- A simple deterministic greedy algorithm also gives an O(log n)
approximation factor: at each step pick the set that covers the
most number of previously uncovered elements.

14



Bonus Slides: Semidefinite Programming
Relaxation of Max-Cut



Given a graph G output the sets of vertices S such that the number
of edges between S and V'\ S is maximized.

- Decision version is NP-Hard.

- If P # NP no algorithm gives better than 16/17 approximation.

- Best known algorithm is the Goemans-Williamson algorithm,
which is based on convex relaxation and randomized rounding.
Gives ~ 0.878 approximation.

- This is optimal assuming the Unique Games Conjecture.
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Max-Cut SDP Formulation

.
max > Z (1—=xuxy) st x,e{-11}forallveV.

- If we just relax x, € [-1,1], this problem is not convex.

- Instead, Goemans and Williamson relax the problem by letting
the x, be unit vectors in R":

:
max > (1= (wx)) st x eR"|x[,=1forallveV.

(u,v)eE

- This is a valid relaxation - given an integral solution could set
X, =[x,,0,0,0,...] and achieve the same cost.

- Further it can be solved in polynomial time as a semidefinite
program (SDP).



Max-Cut Rounding

To round the Max-Cut SDP relaxation, Goemans and Williamson use
the following procedure:

- Let r € R" be a uniform random point with ||r]j; = 1.

- Letx, =1if X, : (x,,r) >0, and x, = 0 otherwise.

Note that the output solution is always a valid cut. So the main
challenge is to prove the approximation ratio.



Max-Cut Approximation Ratio

- Focusing on just a single edge (u, v), the relaxed solution gives
value w = 1=22f where ¢ is the angle between x, and x,.

- The rounded solution gives value 1if x, and x, are rounded to
different sides of the cut (and value 0 otherwise). What is the

probability of this happening? 8/x.

] X,

X
3 Xg

- Thus, summing over all edges, the Goemans Williamson
algorithm has expected approximation ratio at least

ming 2T ~ 0.878.
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Max-Cut Approximation Ratio

Input interpretation
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- If you took 514 you may recognize that this analysis is very
closely related to the SimHash locality sensitive hashing
algorithm, and in turn the JL Lemma.

- In fact SimHash, which is used e.g. for high dimensional
approximate near neighbor search is exactly the rounding
scheme from Goemans Williamson. 19



