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- Optional Problem Set 5 due 5/13 at 11:59pm.

- Final exam will be Tuesday 5/14, 10:30-12:30pm in the
classroom. See Piazza post for info on study materials.

- | will hold additional final review office hours Monday 5/13
from 3-4:30pm.

- Final project due the last day of finals: Friday 5/17 - if you
have questions as you come into the last couple of weeks
of the project feel free to reach out.



Last Time: 2
A
- Finish Markov chain unit. (&“9/5&‘}1% oy
/
- Analysis of Metropolis Hastings algorithm

- Example sampling to counting reduction for independent sets.
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Last Time:
- Finish Markov chain unit.
- Analysis of Metropolis Hastings algorithm

- Example sampling to counting reduction for independent sets.

Today:
- Convex relaxation + randomized rounding for NP-Hard problems.

- Example application to vertex cover and set cover.
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Combinatorial Optimization

Many NP-hard optimization problems can be formulated as convex
optimization problems subject to integral constraints.
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Combinatorial Optimization

Many NP-hard optimization problems can be formulated as convex
optimization problems subject to integral constraints.

Example 2: Set cover - given a universe of elements [n] and a
collection of sets $4,S,,...,Sm C [n], find the minimum number of
sets that cover all items in [n].




Combinatorial Optimization

Many NP-hard optimization problems can be formulated as convex
optimization problems subject to integral constraints.

Example 2: Set cover - given a universe of elements [n] and a
collection of sets $4,S,,...,Sm C [n], find the minimum number of
sets that cover all items in [n].

min» X st. Y x >1forallj e [n]
i=1 i:jeS;
xi € {0,1} for all i € [m].
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Applications Beyond Theory

Convex optimization problems with non-convex constraints arise all
over the place outside of algorithms textbooks.

- Sparse linear regression: miny.j, <k [|AX — b|J3.
+ Low-rank matrix completion: minu. ank(m)<r Z(,DGQ[B,J - M,-J]z.

- Matching matrices with permutations:
min |A — P1BP,||2 Recently, these types of

permutation matrices Pq,P,
problems are very relevant e.g. in identifying permutation
invariances in neural networks.
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Convex Relaxation

- Step 1: ‘Relax’ the non-convex constraint to be a related (and
weaker) convex constraint. X, € {o 3 = Xy € [0, )3

- Step 2: Solve the resu&mg convex proble |n po Xnogla 5ne

- Step 3: Map the rel axed solutlon back to a solu’uon to the
original problem. For integral constraints this is called
‘rounding’.
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feasible solution and does not increase the cost of the relaxed
solution too much.



Convex Relaxation

- Step 1: ‘Relax’ the non-convex constraint to be a related (and
weaker) convex constraint.

- Step 2: Solve the resulting convex problem in polynomial time.

- Step 3: Map the relaxed solution back to a solution to the
original problem. For integral constraints this is called
‘rounding’.

Key Challenge: Need to argue that the rounding step both gives a
feasible solution and does not increase the cost of the relaxed
solution too much.

Applications: This very general approach yields the best known
approximation algorithms for a huge range of problems: set cover,
vertex cover, max-cut (Goemans-Williamson SDP), etc. In many cases,
the approximation ratios obtained are known to be optimal under
complexity theoretic assumptions.



Vertex Cover Relaxation
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- Thisis now a linear program. It can be solved in polynomial
time.



Vertex Cover Relaxation

Meachms)

n e x, ek’
min va sit. Xy +x,>1forall (u,v) e E

i=1

xi € [0,1] for all i € [n].

- Thisis now a linear program. It can be solved in polynomial
time.

- Asolution may no longer be a valid vertex cover.
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Vertex Cover Relaxation

O ~pprosinde o ol el

min va sit. Xy +x,>1forall (u,v) e E

i=1

xi € [0,1] for all i € [n].

- Thisis now a linear program. It can be solved in polynomial

time.
- Asolution may no longer be a valid vertex cover.
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- How should be round to solution to obtain a true vertex cover?
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Vertex Cover Relaxation

Deterministic Rounding for Vertex Cover: Given a fractional solution
?1 X1,...,Xn, obtain integral solution xq, ..., x, by applying the rule: if
S Ry > 1/2,setx, = 1. if X, < 1/2,setx, = 0.
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Deterministic Rounding for Vertex Cover: Given a fractional solution
X1,...,Xn, obtain integral solution xq, ..., x, by applying the rule: if
Xy >1/2,setx, =1 if X, <1/2, set x, = 0.

Claim 1: The rounded solution is feasible.

\(?(\)(\/)QE ) Xvﬁ&/éz



Vertex Cover Relaxation

Deterministic Rounding for Vertex Cover: Given a fractional solution
X1,...,Xn, obtain integral solution xq, ..., x, by applying the rule: if
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one of x, or x, > 1/2. So all edges are covered in the rounded
solution.
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Vertex Cover Relaxation

Deterministic Rounding for Vertex Cover: Given a fractional solution
X1,...,Xn, obtain integral solution xq, ..., x, by applying the rule: if
Xy >1/2,setx, =1 if X, <1/2, set x, = 0.

Claim 1: The rounded solution is feasible.

Proof: For any (u,v) € E, we must have x, + x, > 1, and thus at least

one of x, or x, > 1/2. So all edges are covered in the rounded
solution.

Claim 2: The rounded solution is within a 2-factor of optimal.

Proof: > x; <237 X =2 OPTyeix < 2- OPT.
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Vertex Cover Integrality Gap
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this approach?

relaxation has an integrality gap of 2.

- There exist graphs for which OPT,qx < OPT/2. le,, this



Vertex Cover Integrality Gap

Could we do any better than a 2-approximation for vertex cover via
this approach?

relaxation has an integrality gap of 2.

- There exist graphs for which OPT,qx < OPT/2. le,, this

- So any rounding scheme must at least double OPT, e in the
worst case, or would have to be infeasible on such graphs.



Vertex Cover Integrality Gap

Could we do any better than a 2-approximation for vertex cover via
this approach?

- There exist graphs for which OPT,qx < OPT/2. le,, this

relaxation has an integrality gap of 2.

- So any rounding scheme must at least double OPT, e in the
worst case, or would have to be infeasible on such graphs.

- Since there also exist solutions where OPT,z0x = OPT, this
makes it unlikely to get an approximation factor better than 2

for this problem. 5
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Vertex Cover Integrality Gap

Could we do any better than a 2-approximation for vertex cover via
this approach?

- There exist graphs for which OPT,qx < OPT/2. le,, this

relaxation has an integrality gap of 2.

- So any rounding scheme must at least double OPT, e in the
worst case, or would have to be infeasible on such graphs.

- Since there also exist solutions where OPT,z0x = OPT, this
makes it unlikely to get an approximation factor better than 2
for this problem.

- Assuming the unique games conjecture, vertex cover is hard to
approximate to a factor better than 2 in general [Khot, Regev
‘08]]. Assuming P # NP it cannot be approximated to a factor
better than ~ 1.36 [Dinur, Safra ‘05].



Set Cover Relaxation
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Set Cover Relaxation

m
min» x; st. > x;>1forallje[n]
i=1 fijES,‘

xj € [0,1] forall i € [m].

Will deterministic rounding work here?
IE © n_ O
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Randomized Rounding for Set Cover

Naive Randomized Rounding: Given a fractional set cover solution
X1,...,Xm, obtain integral solution xq,..., Xy, by independently
setting x; = 1 with probability X; and 0 otherwise.
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Naive Randomized Rounding: Given a fractional set cover solution
X1,...,Xm, obtain integral solution xq,..., Xy, by independently
setting x; = 1 with probability X; and 0 otherwise.

- What is the expected cost E[}_7", x]? = iEX; Z)(| ﬁz,\m
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Randomized Rounding for Set Cover

Naive Randomized Rounding: Given a fractional set cover solution
X1,...,Xm, obtain integral solution xq,..., Xy, by independently
setting x; = 1 with probability X; and 0 otherwise.

- What is the expected cost E[}_", x;]?

- Is the rounded solution feasible?

- No with %retty good probability. Consider an item that is
covered by t sets, each with weight 1/t.
Pr[not feasible] = (1 - 1/t)! = 1/e.
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Randomized Rounding for Set Cover

Naive Randomized Rounding: Given a fractional set cover solution
X1,...,Xm, obtain integral solution xq,..., Xy, by independently
setting x; = 1 with probability X; and 0 otherwise.

- What is the expected cost E[}_", x;]?

- Is the rounded solution feasible?

- No with pretty good probability. Consider an item that is
covered by t sets, each with weight 1/t.
Pr[not feasible] = (1 - 1/t)! = 1/e.

- How could we fix this issue? ., 'I'“:j O~ a L C\,bC;.XV
- LG\%)AU ﬂ*"\\\»@ -
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Randomized Rounding for Set Cover

Scaled Randomized Rounding: Given a fractional set cover solution
X1,...,Xm, obtain integral solution X, ..., Xy by independently
setting x; = 1 with probability min(1, « - X;) and 0 otherwise.
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Randomized Rounding for Set Cover

Scaled Randomized Rounding: Given a fractional set cover solution
X1,...,Xm, obtain integral solution X, ..., Xy by independently
setting x; = 1 with probability min(1, « - X;) and 0 otherwise.

- Expected cost:
E[Zg Xi] = Z/m:1 n(1, akj) < O‘Z:Zw X < a-OPT.
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Randomized Rounding for Set Cover

Scaled Randomized Rounding: Given a fractional set cover solution
X1,...,Xm, obtain integral solution X, ..., Xy by independently
setting x; = 1 with probability min(1, « - X;) and 0 otherwise.

- Expected cost:
E", x] =" min(1,a%) < a> " % < a- OPT.
- Feasibility: For any given item j, if there is some S; > j with
Xf=_.and so j is covered.
oL
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Randomized Rounding for Set Cover

Scaled Randomized Rounding: Given a fractional set cover solution
X1,...,Xm, obtain integral solution X, ..., Xy by independently
setting x; = 1 with probability min(1, « - X;) and 0 otherwise.

- Expected cost:
E", x] =" min(1,a%) < a> " % < a- OPT.

+ Feasibility: For any given item j, if there |s some S; 3 j with
X; =1,and so j is covered. X <d~ v S 2 )

. ~
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Randomized Rounding for Set Cover

Scaled Randomized Rounding: Given a fractional set cover solution
X1,...,Xm, obtain integral solution X, ..., Xy by independently
setting x; = 1 with probability min(1, « - X;) and 0 otherwise.

- Expected cost:
E", x] =" min(1,a%) < a> " % < a- OPT.

- Feasibility: For any given item j, if there is some S; > j with
X; =1,and so j is covered.

- Otherwise, E[} ;o5 Xl = - 301 cs Xi > a.

- How big must we set « such that, with probability at least
1—1/n¢, Z jes Xi > 17 Or\w\//'o%pp
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Randomized Rounding for Set Cover

Scaled Randomized Rounding: Given a fractional set cover solution
X1,...,Xm, obtain integral solution X, ..., Xy by independently
setting x; = 1 with probability min(1, « - X;) and 0 otherwise.

- Expected cost:
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- How big must we set « such that, with probability at least
1=1/n% 321 cs Xi = 17 a = O(log n) suffices via a Chernoff
bound
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Randomized Rounding for Set Cover

Scaled Randomized Rounding: Given a fractional set cover solution
X1,...,Xm, obtain integral solution X, ..., Xy by independently
setting x; = 1 with probability min(1, « - X;) and 0 otherwise.

- Expected cost:
E", x] =" min(1,a%) < a> " % < a- OPT.

- Feasibility: For any given item j, if there is some S; > j with
X; =1,and so j is covered.

- Otherwise, E[} ;o5 Xl = - 301 cs Xi > a.

- How big must we set « such that, with probability at least
1=1/n% 321 cs Xi = 17 a = O(log n) suffices via a Chernoff
bound

- By a union bound over all n items, the solution will be feasible
with probability at least 1 —1/n=".
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Set Cover Approximation Via Randomized Rounding

Upshot: We obtain a O(logn) approximation algorithm for Set Cover
via relaxation + randomized rounding.
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Set Cover Approximation Via Randomized Rounding

Upshot: We obtain a O(logn) approximation algorithm for Set Cover
via relaxation + randomized rounding.

- The natural Set Cover LP relaxation has an integrality gap of
Q(log n).

- Assuming P # NP this approximation factor is optimal up to
constants [Raz, Safra ‘97].

- Asimple deterministic greedy algorithm also gives an O(log n)
approximation factor: at each step pick the set that covers the
most number of previously uncovered elements.
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Bonus Slides: Semidefinite Programming
Relaxation of Max-Cut



Given a graph G output the sets of vertices S such that the number
of edges between S and V'\ S is maximized.

- Decision version is NP-Hard.

- If P # NP no algorithm gives better than 16/17 approximation.

- Best known algorithm is the Goemans-Williamson algorithm,
which is based on convex relaxation and randomized rounding.
Gives ~ 0.878 approximation.

- This is optimal assuming the Unique Games Conjecture.
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Max-Cut SDP Formulation
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max > (1—xx) st x e{-11}forallveV.
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Max-Cut SDP Formulation

1
max > (1—xx) st xe{-T1}forallveV.

- If we just relax x, € [—1,1], this problem is not convex.
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Max-Cut SDP Formulation

1
max > (1—xx) st xe{-T1}forallveV.

- If we just relax x, € [—1,1], this problem is not convex.

- Instead, Goemans and Williamson relax the problem by letting
the x, be unit vectors in R":

1
max3 Z (1—ux)) st x eR™[x[=1forallveV.
(u,v)eE
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Max-Cut SDP Formulation

max > Z (T—xuxy) st xy,e{-N1}forallveV.

- If we just relax x, € [—1,1], this problem is not convex.
- Instead, Goemans and Williamson relax the problem by letting
the x, be unit vectors in R":

1
max3 Z (1—ux)) st x eR™[x[=1forallveV.
(u,v)eE

- This is a valid relaxation - given an integral solution could set
X, = [xy,0,0,0,...] and achieve the same cost.
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Max-Cut SDP Formulation

max > Z (T—xuxy) st xy,e{-N1}forallveV.

- If we just relax x, € [—1,1], this problem is not convex.

- Instead, Goemans and Williamson relax the problem by letting
the x, be unit vectors in R":

1
max= Y (1—(x,X)) st x €R"|x.=1forallveV.
2 S ——

(u,v)eE
—_—
- This is a valid relaxation - given an integral solution could set
X, = [xy,0,0,0,...] and achieve the same cost.

- Further it can be solved in polynomial time as a semidefinite
program (SDP).
16



Max-Cut Rounding

To round the Max-Cut SDP relaxation, Goemans and Williamson use
the following procedure:

- Letr € R" be a uniform random poir?t with ||r]l; = 1.

- Lletx, =1if %, : (x,,r) >0, and x, =@ otherwise.
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Max-Cut Rounding

To round the Max-Cut SDP relaxation, Goemans and Williamson use
the following procedure:

- Letr € R" be a uniform random point with ||r]|; = 1.

- Letx, =1if X, : (x,,r) > 0, and x, = 0 otherwise.

Note that the output solution is always a valid cut. So the main

challenge is to prove the approximation ratio. .



Max-Cut Approximation Ratio

- Focusing on just a single edge (u, v), the relaxed solution gives

value M = 1=2f where ¢ is the angle between x, and x,.
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Max-Cut Approximation Ratio

- Focusing on just a single edge (u, v), the relaxed solution gives
value % = 1=2f where ¢ is the angle between x, and x,.

- The rounded solution gives value 1if x, and x, are rounded to
different sides of the cut (and value 0 otherwise). What is the
probability of this happening?
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Max-Cut Approximation Ratio

- Focusing on just a single edge (u, v), the relaxed solution gives
value % = 1=2f where ¢ is the angle between x, and x,.

- The rounded solution gives value 1if x, and x, are rounded to
different sides of the cut (and value 0 otherwise). What is the
probability of this happening? 8/.

- Thus, summing over all edges, the Goemans Williamson
algorithm has expected approximation ratio at least
ming 2T ~ 0.878.

2
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Max-Cut Approximation Ratio

Input interpretation

plot

M=y =

(1 = cos(x))

/ .

- If you took 514 you may recognize that this analysis is very
closely related to the SimHash locality sensitive hashing
algorithm, and in turn the JL Lemma.

- In fact SimHash, which is used e.g. for high dimensional
approximate near neighbor search is exactly the rounding

scheme from Goemans Williamson. 19



