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- Optional Problem Set 5 due 5/13 at 11:59pm.

- Final exam will be Tuesday 5/14, 10:30-12:30pm in the
classroom. Study materials to be posted soon.

- Final project due the last day of finals: Friday 5/17.



Last Time:

- Finish up coupling. Example applications to shuffling, random
walks on hypercubes, and exponential convergence of TV
distance.

- Markov Chain Monte Carlo - example of sampling random
independent sets.

- Start on Metropolis Hastings algorithms and application to
sampling from the hardcore model.
Today:
- Finish the Metropolis Hastings algorithm.

- Sampling to counting reduction for independent sets.



Mixing Time and Eigenvalues

A Markov chain is reversible if w(i)P; = mw(j)P;; for all i,j. lLe, if the
probability of transitioning from state i to state j is equal to the
probability of transitioning from state j to state i in the steady state
distribution. 'Detailed balance’ condition.

- If the chain is irreducible and reversible, P has all real
gigenvalues, 1= X\ > X\y... > Ap.
- The eigenvalue gap is v = A\ — max{|Aa|, |An|}-

- The mixing time is equal to 7(e) = (")(%).



Mixing Time and Eigenvalues

Claim: If a Markov chain is reversible (i.e., w(i)P; = =(j)P; for all i, ),
then P has all real eigenvalues.

Proof:
- Let D = diag(w). Then D='/2PD"/? is symmetric (and thus has
real eigenvalues)

- The above is a similarity transform. The eigenvalues of P are
identical to the eigenvalues of D~/2PD'/2 and are thus real.



MCMC Methods Continued



Achieving a Non-Uniform Stationary Distribution

Suppose we want to sample an independent set X from our
graph with probability:
AN
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for some ‘fugacity’ parameter A > 0.

7(X)

Known as the ‘hard-core model’ in statistical physics.
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Metropolis-Hastings Algorithm

A very generic way of designing a Markov chain over state space [m]
with stationary distribution 7 € [0,1]™.
- Assume the ability to efficiently compute a density p(X) o m(X).

- Assume access to some symmetric transition function with
transition probability matrix Q € [0, 1]"*™.

- At step t, generate a ‘candidate’ state X¢,1 from X; according to Q.

- With probability min (1, pé’&j;)), ‘accept’ the candidate. Else

‘reject’ the candidate, setting X¢.q = X¢.



Metropolis-Hastings Intuition




Metropolis-Hastings Analysis

Need to check that for the Metropolis-Hastings algorithm, 7P = 7.

Suffices to show that pP = p where p(i) o «(i) is our efficiently
computable density.

[pPI(i) Zp - Qj; - min (1 ZS;) +p(i)- D Qi (1 — min (m%))
aceptances rejections

=Y Q- min(p() p(0)) +p(i) - Y Qij— Y Q- min(p(i). p(j))
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Metropolis-Hastings for the Hard-Core Model

Want to sample an independent set X with probability
1X|
TF(X) - vadei\endent)“y‘ ’
- Let p(X) = AXl and let the transition function Q be given by:

- Pick a random vertex v.
< Ifv e X, set Xepr = Xe \ {v} with probability min(1,1/X\).
- Ifv ¢ X, and X; U {v} is independent, set X;1 = X; U {v}.
- Else set Xiy1 = X; with probability min(1, A).

- Need to accept the transition with probability min (1., "é&;)).

The key challenge then becomes to analyze the mixing time.

For the related Glauber dynamics, Luby and Vigoda showed that for
graphs with maximum degree A, when \ < ﬁ, the mixing time is
O(nlogn). But when A > £ for large enough constant ¢, it is NP-hard
to approximately sample from the hard-core model.
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MCMC for Approximate Counting



Counting to Sampling Reductions

Often if one can efficiently sample from the distribution

m(X) = Z(Dg 7y, One can efficiently approximate the normalizing

constant Z =Y, p(Y) (often called the partition function).

- If Zis hard to approximate, then this can give a proof that
sampling is hard, and thus it is unlikely that any simple MCMC
method for sampling from « mixes rapidly.

- This is e.g, how one can show that sampling from the hard-core
model is hard when A = Q(1/A).

- Let's consider the simple case of A = 1. l.e, we want to sample a
uniformly random independent set.

- In this case, Z = |S(G)|, the number of independent sets in G. It
is known that approximating |S(G)| even up to a poly(n) factor is
NP-Hard.

n



Counting Independent Sets

How can we count the number of independent sets |S(G)| in a graph,
given an oracle for sampling a uniform random independent set?

Let Go, Gy, ...,Gpy be a sequence of graphs with G, = G and G;
obtained by removing an arbitrary edge from G 1.

G G G G G
0 ° 1 PY 2 ° 3 ° 1

We can write:
_ISGm)| [S(Gm—1)[ - [S(G)]
O = 1G] 156 2) 7 15(Go)
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Counting Independent Sets

‘S(Gm” ’S(Gm—W)‘ ‘S(GT)’ n n [m
5(G)| = : JS(Go))2" = 2"-M™ .1,
O = 5G] 156l 15G0) ) o
where r; = |S‘?éim,),‘)\ If we can estimate each r; with 7; satisfying
€ ~ €
). r<F< — ) .r:
(1 2m> islis (1+2m) fis
then:

(1—€)-15(G) < 2" - MLT; < (1+¢€) - [S(G)|

since (1+55)" <1+eand (1- 5)" >1—e
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Independent Set Ratios

Consider the ratio r; = IS‘?é,Gl)w‘)l

Observe that r; < 1.
Further, r; > 1/2. Let (u, V) be the edge removed from G; to obtain
Gj_1. Then each independent set in S(G;_1) \ S(G;), must contain both

uand v.
Gi G4

So, we can map each set in S(Gj_4) \ S(G;) to a unique set in S(G;) by
simply removing v.
15(Gy)| 1S(Gi) 1

"= 5G] T ISGY + 186 \ 5G] © 2
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Independent Set Ratios

So Far: We have written [S(G)| = 2" - M, r; where r; = %
Need to get a 14 €¢/m estimate to each rj to get a 1+ € estimate

to [S(G)].

Let X be a random variable generated as follows: pick a
random independent set from G;_; and let X = 1if the set is
also independent in G;. Otherwise let X = 0.

What is E[X]?

How many samples of X do we need to take to obtaina 1+e/m
approximation to r; with high probability?
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Counting Independent Sets

Upshot: For a graph G with m edges, making O(m?/€?) calls to
a uniform random independent set sampler on G or its
subgraphs suffices to approximate the number of independent
setsin G up to 1= € relative error.

- So a polynomial time algorithm for uniform random
independent set sampling, would lead to a polynomial
time algorithm for counting independent sets, and hence
the collapse of NP to P.

- Observe that near-uniform sampling (as would be
obtained e.g.,, with an MCMC method) would also suffice.



