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- Optional Problem Set 5 due 5/13 at 11:59pm.

- Final exam will be Tuesday 5/14, 10:30-12:30pm in the
classroom. Study materials to be posted soon.

- Final project due the last day of finals: Friday 5/17.



Last Time:

- Finish up coupling. Example applications to shuffling, random
walks on hypercubes, and exponential convergence of TV

distance. (( E,> < ’C((_) -lvDU(Q < <l
- Markov Chain Monte Carlo — example of sampling random
independent sets.

- Start on Metropolis Hastings algorithms and application to
sampling from the hardcore model.



Last Time:

- Finish up coupling. Example applications to shuffling, random
walks on hypercubes, and exponential convergence of TV
distance.

- Markov Chain Monte Carlo — example of sampling random
independent sets.

- Start on Metropolis Hastings algorithms and application to
sampling from the hardcore model.
Today:
- Finish the Metropolis Hastings algorithm.

- Sampling to counting reduction for independent sets.



Mixing Time and Eigenvalues
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A Markov chain is reversible if 7(i)P; = w(j)P; for alli,j. l.e, if the
probability of transitioning from state i to state j is equal to the

probability of transitioning from state j to state i in the steady state
distribution. 'Detailed balance’ condition.
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Mixing Time and Eigenvalues

A Markov chain is reversible if w(i)P; = w(j)P;; for all /,j. lLe, if the
probability of transitioning from state i to state j is equal to the

probability of transitioning from state j to state i in the steady state
distribution. 'Detailed balance’ condition.

- If the chain is irreducible and reversible, P has all real
eigenvalues, 1=\ > 2. > \p. 27
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Mixing Time and Eigenvalues
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A Markov chain is reversible if w(i)P; = w(j)P;; for all /,j. lLe, if the
probability of transitioning from state i to state j is equal to the
probability of transitioning from state j to state i in the steady state
distribution. 'Detailed balance’ condition.

- If the chain is irreducible and reversible, P has all real 51«-/ ;\;va,

eigenvalues, 1= X\ > A\y... > Ap.
- The eigenvalue gap is v = A\ — max{| Az}, | \n| }-

- The mixing time is equal to T(E)—O(%). |
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Mixing Time and Eigenvalues

Claim: If a Markov chain is reversible (i.e., 7(i)P; = m(j)P;i for all i, ),
then P has all real eigenvalues.



Mixing Time and Eigenvalues
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Claim: If a Markov chain is reversible (i.e., m(i )P,, = n(j)P; for all i,)),
then P has all real eigenvalues. G )p) e
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+ Let D = diag(r). Then SMWEIRBN? is symmetric (and thus has
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Mixing Time and Eigenvalues

Claim: If a Markov chain is reversible (i.e., 7(i)P; = m(j)P;i for all i, ),
then P has all real eigenvalues.

Proof:
- Let D = diag(w). Then D='/2pD'/? is symmetric (and thus has
real eigenvalues)

* The above is a similarity transform. The eigenvalues of P are
identical to the eigenvalues of D*/2PD'/2 and are thus real.
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MCMC Methods Continued



Achieving a Non-Uniform Stationary Distribution

Suppose we want to sample an independent set X from our
graph with probability:

) A
s = = ,
ZYindependent )\|Y|

for some ‘fugacity’ parameter A > 0.

Known as the ‘hard-core model’ in statistical physics.
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Metropolis-Hastings Algorithm

A very generic way of designing a Markov chain over state space [m]
with stationary distribution 7 € [0, 1]™.
- Assume the ability to efficiently compute a density p(X) o 7(X).

- Assume access to some symmetric transition function with
transition probability matrix Q € [0, 1]"*™.

- At step t, generate a ‘candidate’ state X;1 from X; according to Q.

- With probability min (1, pﬁ())&f;)) ‘accept’ the candidate. Else

‘reject’ the candidate, setting X¢ 11 = X.. ?(Q ?,P(D
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Metropolis-Hastings Intuition
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Metropolis-Hastings Analysis

Need to check that for the Metropolis-Hastings algorithm, 7P = 7.
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computable density.



Metropolis-Hastings Analysis

Need to check that for the Metropolis-Hastings algorithm, 7P = 7.

Suffices to show that pP = p where p(i) o 7(i) is our efficiently
computable density.
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Metropolis-Hastings Analysis

Need to check that for the Metropolis-Hastings algorithm, 7P = 7.

Suffices to show that pP = p where p(i) o 7(i) is our efficiently
computable density.
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Metropolis-Hastings Analysis

Need to check that for the Metropolis-Hastings algorithm, 7P = 7.

Suffices to show that pP = p where p(i) o 7(i) is our efficiently
computable density.
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Metropolis-Hastings Analysis

Need to check that for the Metropolis-Hastings algorithm, 7P = 7.

Suffices to show that pP = p where p(i) o 7(i) is our efficiently
computable density.
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Metropolis-Hastings for the Hard-Core Model

Want to sample an independent set X with probability
X1
") = &
- Let p(X) = M and let the transition function Q be given by:

- Pick a random vertex v.
- Ifve X, set XE-H =X \ {V}
- Ifv¢ X;and X; U {v} is independent, set Xi11 = X U {v}.
- Else set Xe1 = X



Metropolis-Hastings for the Hard-Core Model

Want to sample an independent set X with probability
7T(X) A

= 7\/ .
vadependem AlM

- Let p(X) = AX and let the transition function Q be given by:

- Pick a random vertex v.

- IfveX,set Xepr =X \ {v}

- Ifv¢ X;and X; U {v} is independent, set Xi11 = X U {v}.
- Else set Xe1 = X

- Need to accept the transition with probability min (1, p[())&;)).
i
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Metropolis-Hastings for the Hard-Core Model

Want to sample an independent set X with probability
IX|
ﬂ-(X) - vadei\endem AV
- Let p(X) = AX and let the transition function Q be given by: )q )

- Pick a random vertex v. o
“If v € Xy, Set Xexr = Xe \ {v} with probability min(1,1/).  N>J
- Ifv¢ X;and X; U {v} is independent, set Xi11 = X U {v}.
- Else set X1 = X with probability min(1, A).

- Need to accept the transition with probability min (1, p[())&;)).



Metropolis-Hastings for the Hard-Core Model

Want to sample an independent set X with probability %
"0 = s dna §
- Let p(X) = A¥ and let the transition function Q be given by: ¢
- Pick a random vertex v.
- Ifv e X, set Xepr = Xe \ {v} with probability min(1,1/X).
- Ifv¢ X;and X; U {v} is independent, set Xi11 = X U {v}.
- Else set X1 = X with probability min(1, A).

- Need to accept the transition with probability min <1, pé)&;)).

The key challenge then becomes to analyze the mixing time.

For the related Glauber dynamics, Luby and Vigoda showed that for
graphs with maximum degree A, when A < ﬁ, the mixing time is
O(nlogn). But when A > £ for large enough constant ¢, it is NP-hard

to approximately sample from the pard—core model.
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MCMC for Approximate Counting



Counting to Sampling Reductions

Often if one can efficiently sample from the distribution

m(X) = 5 (pz 7y, One can efficiently approximate the normalizing
constantZ = 3", p(Y) (often called the partition function).

- If Zis hard to approximate, then this can give a proof that
sampling is hard, and thus it is unlikely that any simple MCMC

method for sampling from 7 mixes rapidly.
- This is e.g,, how one can show that sampling from the hard-core
model is hard when A = Q(1/A).
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Counting to Sampling Reductions

Often if one can efficiently sample from the distribution

m(X) = 5 (pz 7y, One can efficiently approximate the normalizing

constantZ = 3", p(Y) (often called the partition function).

- If Zis hard to approximate, then this can give a proof that
sampling is hard, and thus it is unlikely that any simple MCMC
method for sampling from 7 mixes rapidly.

- This is e.g,, how one can show that sampling from the hard-core
model is hard when A = Q(1/A).

- Let's consider the simple case of A = 1. l.e,, we want to sample a
uniformly random independent set.

- In this case, Z = |S(G)|, the number of independent sets in G. It
is known that approximating |S(G)| even up to a poly(n) factor is

NP-Hard. / NA - \1
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Counting Independent Sets

How can we count the number of independent sets |S(G)| in a graph,
given an oracle for sampling a uniform random independent set?
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Counting Independent Sets

How can we count the number of independent sets |S(G)| in a graph,
given an oracle for sampling a uniform random independent set?

Let Gy, Gy,...,Gpy be a sequence of graphs with G, = G and G;
obtained by removing an arbitrary edge from G;.
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Counting Independent Sets

How can we count the number of independent sets |S(G)| in a graph,
given an oracle for sampling a uniform random independent set?

Let Gy, Gy,...,Gpy be a sequence of graphs with G, = G and G;
obtained by removing an arbitrary edge from G;.

G11

A\ e Sonpl

Q:'\
SGu)l 1S(6)
5Gm) T TG PGl

We can write:

15(6)| =

1S(Gm)|
1S(Gm-1)
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Counting Independent Sets

5(6)[ = 1@l 1S(Gn)l - 1S(G)]

~IS(Gm=1)] 1S(Gm—2)| 15(Go)| - [S(Go)|
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Counting Independent Sets

= 5G] 5G] 15Go)]
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Counting Independent Sets

SG)| 1SGmd)| IS o
5(6)| = : 2" =2"-n"r;,
SO = [5Gl 5Gma)] " 15(Go)] =
where r; = L2Cmlr

__15Gm-p)l”
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Counting Independent Sets

‘S(Gm” . |S(Gm—1)| . |S(G1)|

S(G)| = 20 =2".n"r,
SO = 186 T5(Gm ) 15(G0) =i
where r; = ‘;féfz)l‘” If we can estimate each r; with F; satisfying
€ ~ €
V. <t< —).r
(1 Zm) i=his (1+ 2m) i
then:

(1—€)-[S(G) < 2" - MLF; < (1+¢€) - [S(G)|

since (1+55)" <1+eand (1- 5)" >1-e
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Independent Set Ratios

— 1566
EREGEN

Further, r; > 1/2. Let (u,Vv) be the edge removed from G; to obtain

Gj_1. Then each independent set in S(G;_1) \ S(G;), must contain both
uandv.

Consider the ratio r;

Observe that r; < 1.

G Gi4
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Independent Set Ratios

— 1566
EREGEN

Further, r; > 1/2. Let (u, V) be the edge removed from G; to obtain

Gj_1. Then each independent set in S(G;_1) \ S(G;), must contain both
uandv.

Consider the ratio r;

Observe that r; < 1.

G Gi4

So, we can map each set in S(G;_;) \ S(G;) to a unique set in S(G;) by
simply removing v.

14



Independent Set Ratios

— 1566
EREGEN

Consider the ratio r; Observe that r; < 1.

Further, r; > 1/2. Let (u, V) be the edge removed from G; to obtain
Gj_1. Then each independent set in S(G;_1) \ S(G;), must contain both

uand v.

G Gi4

So, we can map each set in S(G;_;) \ S(G;) to a unique set in S(G;) by
simply removing v.

) 15(G)| 1
CIS(G)lIS(G)] A+ 1S(Gi) \ S(G)] T 2

Y
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Independent Set Ratios

So Far: We have written |S(G)| = 2" -, r; where r; = %

Need to get a 14 ¢/m estimate to each rj to get a 1+ € estimate
to [S(G)|.
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So Far: We have written |S(G)| = 2" -, r; where r; = %
Need to get a 14 ¢/m estimate to each rj to get a 1+ € estimate

t0 [S(G)|.

Let X be a random variable generated as follows: pick a
random independent set from G;_; and let X = 1if the set is
also independent in G;. Otherwise let X = 0.
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Independent Set Ratios

So Far: We have written |S(G)| = 2" -, r; where r; = %
Need to get a 14 ¢/m estimate to each rj to get a 1+ € estimate

t0 [S(G)|.

Let X be a random variable generated as follows: pick a
random independent set from G;_; and let X = 1if the set is
also independent in G;. Otherwise let X = 0.

Whatis EXJ? = Pr(x 1) ~ |5(ér5 o
S(ei-d)

15



Independent Set Ratios

So Far: We have written |S(G)| = 2" -, r; where r; = %
Need to get a 14 ¢/m estimate to each rj to get a 1+ € estimate

t0 [S(G)|.

Let X be a random variable generated as follows: pick a
random independent set from G;_; and let X = 1if the set is
also independent in G;. Otherwise let X = 0.

What is E[X]?

How many samples of X do we need to take to obtaina 14+¢/m
approximation to r; with high probability?
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Counting Independent Sets

Upshot: For a graph G with m edges, making O(m?/€?) calls to
a uniform random independent set sampler on G or its
subgraphs suffices to approximate the number of independent
setsin G up to 1+ € relative error.

16



Counting Independent Sets

Upshot: For a graph G with m edges, making O(m?/€?) calls to
a uniform random independent set sampler on G or its
subgraphs suffices to approximate the number of independent
setsin G up to 1+ € relative error.

-+ So a polynomial time algorithm for uniform random
independent set sampling, would lead to a polynomial
time algorithm for counting independent sets, and hence
the collapse of NP to P.
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Counting Independent Sets

Upshot: For a graph G with m edges, making O(m?/€?) calls to
a uniform random independent set sampler on G or its
subgraphs suffices to approximate the number of independent
setsin G up to 1+ € relative error.

-+ So a polynomial time algorithm for uniform random
independent set sampling, would lead to a polynomial
time algorithm for counting independent sets, and hence
the collapse of NP to P.

- Observe that near-uniform sampling (as would be
obtained e.g.,, with an MCMC method) would also suffice.
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