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Last Time: Markov Chain Fundamentals
- The gambler’s ruin problem.
- Aperiodicity and stationary distribution of a Markov chain.
- The fundamental theorem of Markov chains.

- Example of a uniform stationary distribution for a symmetric
Markov chain (shuffling).



Last Time: Markov Chain Fundamentals
- The gambler’s ruin problem.
- Aperiodicity and stationary distribution of a Markov chain.
- The fundamental theorem of Markov chains.

- Example of a uniform stationary distribution for a symmetric
Markov chain (shuffling).

Today: Mixing Time Analysis

- How quickly does a Markov chain actually converge to its
stationary distribution?

- Mixing time and its analysis via coupling.



Stationary Distribution Example 2

Random Walk on an Undirected Graph: Consider a random
walk on an undirected graph. If it is at node | at step t, then it
moves to any of i's neighbors at step t + 1 with probability di/_.

- What is the state space of this chain? nGéVf DF oy &Pb\

- What is the transition probability P;;? |
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Stationary Distribution Example 2

Random Walk on an Undirected Graph: Consider a random
walk on an undirected graph. If it is at node | at step t, then it
moves to any of i's neighbors at step t + 1 with probability di/_.

- What is the state space of this chain?
- What is the transition probability P;;?
- Is this chain aperiodic?

- If the graph is not bipartite, then there is at least one odd
cycle, making the chain aperiodic. Ve,
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Stationary Distribution Example 2

Random Walk on an Undirected Graph: Consider a random walk on
an undirected graph. If it is at node i at step t, then it moves to any
of I's neighbors at step t + 1 with probability .

Claim: When the graph is not bipartite, the unique stationary

distribution of this Markov chain is given by (i) = .
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Stationary Distribution Example 2

Random Walk on an Undirected Graph: Consider a random walk on
an undirected graph. If it is at node i at step t, then it moves to any

of I's neighbors at step t + 1 with probability .

Claim: When the graph is not bipartite, the unique stationary
d;

distribution of this Markov chain is given by «(i) = T
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Stationary Distribution Example 2

Random Walk on an Undirected Graph: Consider a random walk on
an undirected graph. If it is at node i at step t, then it moves to any
of I's neighbors at step t + 1 with probability .

Claim: When the graph is not bipartite, the unique stationary

distribution of this Markov chain is given by (i) = .
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l.e., the probability of being at a given node i is dependent only on
the node’s degree, not on the structure of the graph in any other way.
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Stationary Distribution Example 2
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Random Walk on an Undirected Graph: Consider a random walk on
an undirected graph. If it is at node i at step t, then it moves to any
of I's neighbors at step t + 1 with probability .

Claim: When the graph is not bipartite, the unique stationary

distribution of this Markov chain is given by (i) = .
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l.e., the probability of being at a given node i is dependent only on
the node’s degree, not on the structure of the graph in any other way.
What is the stationary distribution over the edges? ~ —
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Mixing Times



Total Variation Distance

Definition (Total Variation (TV) Distance)

For two distributions p, g € [0, 1]™ over state space [m], the total
variation distance is given by:

Ip = qllv = le q(D)] = max |p(A) - a(A).
»e[m]
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Total Variation Distance

Definition (Total Variation (TV) Distance)

For two distributions p, g € [0, 1]™ over state space [m], the total
variation distance is given by:

Ip = qllv = le (i)l = max [p(A) — q(A)].

)e[m] AC[m]

Kontorovich-Rubinstein duality: Let P,Q be possibly correlated

random variables with marginal distributions p,g. Then 2T
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Definition (Mixing Time)

Consider a Markov chain Xg, X4, ... with unique stationary
distribution 7. Let g;; be the distribution over states at time t
assuming Xo = i. The mixing time is defined as:

7(€) = min {t :max [|gy — v < 6} .
ie[m]

l.e., what is the maximum time it takes the Markov chain to converge
to within e in TV distance of the stationary distribution?



Definition (Mixing Time)

Consider a Markov chain Xg, X4, ... with unique stationary
distribution 7. Let g;; be the distribution over states at time t
assuming Xo = i. The mixing time is defined as:

7(€) = min {t s max||qj s — 7|y < 6} .
e T

l.e., what is the maximum time it takes the Markov chain to converge
to within e in TV distance of the stationary distribution?

Note: If ||g;; — 7|ty < ethenforany t’ >t ||giv — 7l|7v < e. .
Gi s v < yt' >t |Gi¢ llv < el ‘Qf
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Mixing Time Convergence

Typically, it suffices to focus on the mixing time for e = 1/2. We have:
(—\_

Claim: If Xo, X1, ... is finite, irreducible, and aperiodic, then
7(e) < 7(1/2) - clog(1/€) for large enough constant c.
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Coupling Motivation
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Coupling Motivation

Claim: maxicm [1Gi,c — 7llrv < max;jem 119i,e — jellv-
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Coupling Motivation

Claim: maxicm [1Gi,c — 7llrv < max;jem 119i,e — jellv-

lGie — wllrv = llgie — 7Pl

= llgic = Y_w()eP'llv

J

= llqic = Y _7()ajllwv
j

<> lIm()aic — 7()ajellv
j

<> " 70) - 9 — Gellrv
j

< max |G — qj el
Je[m]

Coupling: A common technique for bounding the mixing time by
showing that max; jcim [19ic — Gj,¢ll7v is small.



Formal Coupling Definition

Definition (Coupling)
For a finite Markov chain Xo, X, ... with transition matrix P € R™*™,
a coupling is a joint process (Xo, Yo), (X1, Y1), ... such that:

1. Xo =iand Yy =j for some i,j € [m].

2. PI’[Xt :j|Xt_1 = I] = PI’[Y[ :j‘Yt_’\ = I] = P,"j

3. If X = Y, then Xeyq = Yoo
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Formal Coupling Definition

Definition (Coupling)
For a finite Markov chain Xo, X, ... with transition matrix P € R™*™,
a coupling is a joint process (Xo, Yo), (X1, Y1), ... such that:

1. Xo =iand Yy =j for some i,j € [m].

2. PI’[Xt :j|Xt_1 = I] = PI’[Y[ :j‘Yt_’\ = I] = P,"j
3. If Xe = Yy, then Xepr = Yeyo.
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Formal Coupling Definition

Definition (Coupling)

For a finite Markov chain Xo, X, ... with transition matrix P € R™*™,

a coupling is a joint process (Xo, Yo), (X1, Y1), ... such that:
1. Xo =iand Yy =j for some i,j € [m].
2. PI’[Xt :j|Xt_1 = I] = PI’[Y[ :j‘Yt_’\ = I] = P,"j
V)
3. If X; = Yy, then Xepq = Yepa. 3(0 Te
¢
1 43 5V
ﬂ:j 06— &
05 5D
g S 5
X4 Y, B -
\ P (Ty=l)* 2

P (=2 )=

1l

\O



Formal Coupling Definition

Definition (Coupling)
For a finite Markov chain Xo, X, ... with transition matrix P € R™*™,
a coupling is a joint process (Xo, Yo), (X1, Y1), ... such that:

1. Xo =iand Yy =j for some i,j € [m].

2. PI’[Xt :j|Xt_1 = I] = PI’[Y[ :j‘Yt_’\ = I] = P,"j

3. If X = Y, then Xeyq = Yoo

Theorem (Mixing Time Bound via Coupling)

For a finite, irreducible, and aperiodic Markov chain Xg,Xs, ... and
any valid coupling (Xo, Yo), (X1, Y1), ... letting
T/ﬂ,j = mln{t . Xt = Yt|X0 = i,Yo :j},

max || — mllrv < max [|Git — Gjellrv < max Pr[T;; > t].
ie[m] ijelm] i,je[m]



Coupling Theorem Proof

Theorem (Mixing Time Bound via Coupling)

For a finite, irreducible, and aperiodic Markov chain Xg, X1, . ..
and any valid coupling (Xo, Yo), (X1, Y1), ... letting
T[,j - minit o Xt - Yt|XO - i,YO :j

o 1V )2 12

max [|g;; — w||rv < max [|qj — qjillv <
[m] ] i

max Pr[T;; > t].
e I,je[m Je[m] ’
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Follows from Kontorovich-Rubinstein duality.



Coupling Theorem Proof

Theorem (Mixing Time Bound via Coupling)

For a finite, irreducible, and aperiodic Markov chain Xg, X1, . ..
and any valid coupling (Xo, Yo), (X1, Y1), ... letting
T;ij = min{t: X¢ = Y¢|Xo =i, Yo = j},

max [|g;; — w||rv < max [|qj — qjillv <
[m] ] i

max Pr[T;; > t].
e I,je[m Je[m] ’

Follows from Kontorovich-Rubinstein duality.

For X;, Y; distributed by evolving the chain for t steps starting
from state i or j respectively, we have:

max ||q;r — qj¢lltv < max Pr[X; # Y] = max Pr[T;; > {]
i,je[m] , \7 ij€[m] [m] ’
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Coupling Example: Mixing Time of Shuffling

How many times do we need to swap a random card to the top of the
deck so that the distribution of orderings on our cards is e-close in
TV distance to the uniform distribution over all permutations?
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How many times do we need to swap a random card to the top of the
deck so that the distribution of orderings on our cards is e-close in
TV distance to the uniform distribution over all permutations?
Coupling:
- Let Xp, Xy, ... be the Markov chain where a random card is
moved to the top in each step.

- Let Yo, Y; be a correlated Markov chain. When card S is swapped
to the top in the X chain, swap S to the top in the Y chain as well.
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How many times do we need to swap a random card to the top of the
deck so that the distribution of orderings on our cards is e-close in
TV distance to the uniform distribution over all permutations?

Coupling:
- Let Xp, Xy, ... be the Markov chain where a random card is
moved to the top in each step.

- Let Yo, Y; be a correlated Markov chain. When card S is swapped
to the top in the X chain, swap S to the top in the Y chain as well.
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Coupling Example: Mixing Time of Shuffling

How many times do we need to swap a random card to the top of the
deck so that the distribution of orderings on our cards is e-close in
TV distance to the uniform distribution over all permutations?

Coupling:
- Let Xp, Xy, ... be the Markov chain where a random card is
moved to the top in each step.

- Let Yo, Y; be a correlated Markov chain. When card S is swapped
to the top in the X chain, swap S to the top in the Y chain as well.
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Coupling Example: Mixing Time of Shuffling

How many times do we need to swap a random card to the top of the
deck so that the distribution of orderings on our cards is e-close in
TV distance to the uniform distribution over all permutations?

Coupling:
- Let Xp, Xq, ... be the Markov chain where a random card is
moved to the top in each step.

- Let Yo, Y; be a correlated Markov chain. When card S is swapped
to the top in the X chain, swap S to the top in the Y chain as well.

- Can check that this is a valid coupling since X;, Y; have the
correct marginal distributions, and since
Xe=Y: = Xep1 = Yy
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Coupling Example: Mixing Time of Shuffling

How many times do we need to swap a random card to the top of the
deck so that the distribution of orderings on our cards is e-close in
TV distance to the uniform distribution over all permutations?

Coupling:
- Let Xp, Xy, ... be the Markov chain where a random card is
moved to the top in each step.
- Let Yo, Y; be a correlated Markov chain. When card S is swapped
to the top in the X chain, swap S to the top in the Y chain as well.

- Can check that this is a valid coupling since X;, Y; have the
correct marginal distributions, and since
Xe=Y: = Xepr = Yy

- Observe that X; = Y; as soon as all c unique cards have been
swapped at least once. How many swaps does this take?
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Coupling Example: Mixing Time of Shuffling

max || — 7|[rv < max Pr[T;; > {]
ie[m] i,je[m] ’

< Pr[< c unique cards are swapped in t swaps]
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Coupling Example: Mixing Time of Shuffling

max [[qit — 7|[rv < max PrT;; > ]
ie[m] ijem] ’
< Pr[< c unique cards are swapped in t swaps]

By coupon collector analysis for t > clIn(c/e), this probability is
bounded by e. In particular, by the fact that (1— %)C'"C/e < <plusa
union bound over c cards.
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Coupling Example: Mixing Time of Shuffling

max [[qit — 7|[rv < max PrT;; > ]
[m] ijem] ’
< Pr[< c unique cards are swapped in t swaps]

By coupon collector analysis for t > clIn(c/e), this probability is
bounded by e. In particular, by the fact that (1— 1)6'“/6 < <plusa

C
union bound over c cards.

Thus, for t > clIn(c/e),

maXic(m 191 — 7llrv < max;jem [1Gie — Gjellrv < e

l.e, 7(e) < clIn(c/e).
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