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Last Class:

- Course logistics/overview of planned content.
- Intro to randomized algorithms: Las Vegas vs. Monte Carlo

- Randomized complexity classes including RP, ZPP, BPP, PP.
This Class: Basic probability review with algorithmic applications.
- Conditional probability, Baye's theorem, and independence.
Application to polynomial identity testing.

- Linearity of expectation and variance. Application to
randomized Quicksort analysis.

- Maybe start on concentration inequalities (Markov's and
Chebyshev’s).



Basic Probability Review



Conditional Probability Review

Consider two random events A and B.

- Conditional Probability:

Pr(A|B) = PrF(fr\(g)B).
- Baye’s Theorem:
Pr(BJA) — Pr(APB})A-)P(B)

- Independence: A and B are independent if:
Pr(A|B) = Pr(A).
Using the definition of conditional probability, independence means:

Pr(A N B)

sE) = A = PrANE) = Pr(A) - Pr(B).



Independence

Sets of events: For a set of n events, A, ..., A, the events are k-wise
independent if for any subset S of at most k events,

Pr<(]A>-—IIP4AJ
i€es i€es

For k = n we just say the events ‘are independent’.

Random Variables: Two random variables X, Y are independent if for

all s,t, X=sand Y =t are independent events. In other words:

PriX=snY=t)=Pr(X=5) Pr(Y=1).



Application 1: Polynomial Identity Testing



Polynomial Identity Testing

Given an n-variable degree-d polynomial p(x1, X2, ..., X,), determine

if the polynomial is identically zero. lLe,, if p(x1,X2,...,X,) = 0 for all
X1,...,Xp. E.8, you are given:
p(Xq,Xz. . ,X3) = X}(Xj — X2)3 + (Xj + 2X; — X3)2 — X‘\(Xz +X3)2.

- Can expand out all the terms and check if they cancel. But the
number of terms can be as large as (”gd) - i.e,, exponential in

the number of variables n and the degree d.

Extremely Simple Randomized Algorithm: Just pick random values

for x1,...,x, and evaluate the polynomial at these values. With high
probability, if p(xa,...,x,) = 0, the polynomial is identically 0!
p(5,2,...,~1) ==15-2)+(5+2-2+1)* =52 —1)* = 68.

What style algorithm is this? BPP, ZPP, RP, something else?



Polynomial Identity Testing Proof

Schwartz-Zippel Lemma: For any n-variable degree-d polynomial
p(x1,...,%,) and any set S, if z,...,z, are selected independently

and uniformly at random from S, then Prlp(z,...,2y) #0] 21— 5.

Proof: Via induction on the number of variables n

Base Case n = T:Induction Step n > 1

- Let k be the max degree of x; in p(---). Assume w.l.o.g. that
k> 0. Write p(xq,...,Xn) = xf <q(Xa, ..y Xn) +r(Xa, ..., Xn). EE,
X2Xy 4 X2X3 + XaXoX3 4 XoX3 = Xo - (X2 + X3) 4 X1X2X3 + XoXa.
—_—— S———
q(--+) r(-)
- Observe: g(+) is non-zero, with n — 1 variables and degree d — k.

- So, by inductive assumption, Pr[q(z,...,2,) # 0] > 1 — %.

- Assuming q(zy,...,2,) # 0, then p(x1, 25, ...,2,) is a degree R
non-zero univariate polynomial in x;.



Polynomial Identity Testing Proof

Assuming q(zy,...,2,) # 0, then p(x1,22,...,2,) IS a degree R
non-zero univariate polynomial in x;.
Example:

2 2 2
P(X1, X2, X3) = XiX2 4+ X1X3 + XaXoX3 + XoX3 = X7 - (X2 + X3) + X1XoX3 + XoX3.
N— —_—

a(-) ()
p(x1,22,23) = p(x1,2,1) :qu <34 2X + 2.

Next Step: Again applying the inductive hypothesis,

k
Prip(z1,...20) #0|q(22,...,27) #0] > 1— —.
: ||
Overall:

Prip(z1,...20) # 0] > Prlp(z1,...20) #0Nq(z2,...,2n) # 0]
= Prip(...) # 0[q(...) # 0] - Pr[q(...) # O]

k) ( d—l?) d
>(1-= ) (1-—)>1- —.
( S| sl /= IS

This completes the proof of Schwartz-Zippel. 7



Expectation and Variance Review



Expectation and Variance

Consider a random X variable taking values in some finite set
S C R. E.g, for a random dice roll, S = {1,2,3,4,5,6}.

- Expectation: EX] =3 scs Pr(X=5s) -s.
- Variance: Var[X] = E[(X — E[X])?].

T

Exercise: Verify that for any scalar o, E[a - X] = o - E[X] and
Var[a - X] = o - Var[X].



Linearity of Expectation

E[X + Y] = E[X] + E[Y] for any random variables X and Y. No
matter how correlated they may be!

Proof:

EX+Y] =Y ) Pr(X=snY=1t)-(s+1)
—§§Pr(x—smY—t)~S+ZZPr(X—SﬂY—t)~t
= ElierEX:S)-S+ZPr(Y: tt)e-TtSGS
:Isﬁle[j(]JrE[Y]. .

Maybe the single most powerful tool in the analysis of
randomized algorithms.



Linearity of Variance

Var[X + Y] = Var[X] + Var[Y] when X and Y are independent.

Claim 1: (exercise) Var[X] = E[X?] — E[X]? (via linearity of
expectation)

Claim 2: (exercise) E[XY] = E[X] - E[Y] (i.e., X and Y are
uncorrelated) when X,Y are independent.

Together give:
Var[X + Y] = E[(X + Y)?] — E[X + Y]?
= E[X’] + 2E[XY] + E[Y?] — (E[X] + E[Y])?
= E[X?] + 2E[XY] + E[Y?] — E[X]* — 2E[X] - E[Y] — E[Y]?
= E[X?’] + E[Y?] — E[X]* — E[Y]?
= Var[X] + Varl[Y].

10



Linearity of Variance

Exercise: Verify that for random variables X, ..., X,

Var (Zn: X,-) = Zn:Var(Xi),

whenever the variables are 2-wise independent (also called
pairwise independent).

n



Application 2: Quicksort with Random Pivots



Quicksort(X): where X = (x1,...,X,) is a list of numbers.

1. If Xis empty: return X.
2. Else: select pivot p uniformly at random from {1,...,n}.

3. LetXp = {i € X:xi <xp}and Xy = {i € X: x; > x,} (requires
n — 1 comparisons with x, to determine).

4. Return the concatenation of the lists
[Quicksort(X;), (Xp), Quicksort(Xy)].

[2]s]2]s]a]s]e]of7]o]a]s|2]e][2]s]s

What is the worst case running time of this algorithm?

12



Randomized Quicksort Analysis

Theorem: Let T be the number of comparisions performed by
Quicksort(X). Then E[T] = O(nlogn).

- Foranyi,j € [n]with i <, letl; = 1if x;, x; are compared at
some point during the algorithm, and I;; = 0 if they are
not. An indicator random variable.

- We canwrite T= 77" S1 1. Thus, via linearity of
expectation

n—1 n—1

E[T] =) zn: Ellj] = Zn: Pr[x;, x; are compared]

=1 j=i+1 =1 j=i+1

So we need to upper bound Pr[x;, x; are compared].

13



Randomized Quicksort Analysis

Upper bounding Pr[x;, x; are compared]:

- Assume without loss of generality that x; < x; < ... < X,. Thisis
just ‘renaming’ the elements of our list. Also recall that i < .

- At exactly one step of the recursion, x;, x; will be ‘split up” with
one landing in X,; and the other landing in X,,, or one being
chosen as the pivot. x;, x; are only ever compared in this later
case - if one is chosen as the pivot when they are split up.

- The split occurs when some element between x; and x; is
chosen as the pivot. The possible elements are x;, X1, . . ., X;.

[a]s[2]2]s]ofefefo]7]

- Pr[x;,x; are compared] is equal to the probability that either x;
or x; are chosen as the splitting pivot from this list. Thus,

Pr[x;, x; are compared] = "



Randomized Quicksort Analysis

So Far: Expected number of comparisons is given as:

n—=1 n

E[T] =Y ) Prlx;,x are compared].

=1 j=i+1

And we computed Prlx;, x; are compared] = = ,JH Plugging in:
n—1n—i+1 2
E[T] = ZZ I+1:ZZE

=1 j= l+'| =1 k=2
n—1 n n

_sz (n—1) %:2n~Hn:O(nlogn).

=1 k=1 k=

=y
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Questions?
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