
COMPSCI 614: Randomized Algorithms with
Applications to Data Science

Prof. Cameron Musco
University of Massachusetts Amherst. Spring 2024.
Lecture 2

1

Summary

Last Class:

• Course logistics/overview of planned content.

• Intro to randomized algorithms: Las Vegas vs. Monte Carlo

• Randomized complexity classes including RP, ZPP, BPP, PP.

This Class: Basic probability review with algorithmic applications.

• Conditional probability, Baye’s theorem, and independence.
Application to polynomial identity testing.

• Linearity of expectation and variance. Application to
randomized Quicksort analysis.

• Maybe start on concentration inequalities (Markov’s and
Chebyshev’s).

2

Basic Probability Review

2

Conditional Probability Review

Consider two random events A and B.

• Conditional Probability:

Pr(A|B) = Pr(A ∩ B)
Pr(B) .

• Baye’s Theorem:

Pr(B|A) = Pr(A|B) · P(B)
P(A) .

• Independence: A and B are independent if:

Pr(A|B) = Pr(A).

Using the definition of conditional probability, independence means:
Pr(A ∩ B)
Pr(B) = Pr(A) =⇒ Pr(A ∩ B) = Pr(A) · Pr(B).

3

Independence

Sets of events: For a set of n events, A1, . . . , An, the events are k-wise
independent if for any subset S of at most k events,

Pr

(⋂
i∈S

Ai

)
=
∏
i∈S

Pr(Ai).

For k = n we just say the events ‘are independent’.

Random Variables: Two random variables X, Y are independent if for
all s, t, X = s and Y = t are independent events. In other words:

Pr(X = s ∩ Y = t) = Pr(X = s) · Pr(Y = t).

4

Application 1: Polynomial Identity Testing

4

Polynomial Identity Testing

Given an n-variable degree-d polynomial p(x1, x2, . . . , xn), determine
if the polynomial is identically zero. I.e., if p(x1, x2, . . . , xn) = 0 for all
x1, . . . , xn. E.g., you are given:

p(x1, x2, . . . , x3) = x3(x1 − x2)3 + (x1 + 2x2 − x3)2 − x1(x2 + x3)2.

• Can expand out all the terms and check if they cancel. But the
number of terms can be as large as

(n+d
d
)
– i.e., exponential in

the number of variables n and the degree d.

Extremely Simple Randomized Algorithm: Just pick random values
for x1, . . . , xn and evaluate the polynomial at these values. With high
probability, if p(x1, . . . , xn) = 0, the polynomial is identically 0!

p(5, 2, . . . ,−1) = −1(5− 2)3 + (5+ 2 · 2+ 1)2 − 5(2− 1)2 = 68.

What style algorithm is this? BPP, ZPP, RP, something else?

5

Polynomial Identity Testing Proof

Schwartz-Zippel Lemma: For any n-variable degree-d polynomial
p(x1, . . . , xn) and any set S, if z1, . . . , zn are selected independently
and uniformly at random from S, then Pr[p(z1, . . . , zn) ̸= 0] ≥ 1− d

|S| .

Proof: Via induction on the number of variables n

Base Case n = 1:Induction Step n > 1:

• Let k be the max degree of x1 in p(· · ·). Assume w.l.o.g. that
k > 0. Write p(x1, . . . , xn) = xk1 · q(x2, . . . , xn) + r(x1, . . . , xn). E.g.,

x21x2 + x21x3 + x1x2x3 + x2x3 = x21 · (x2 + x3)︸ ︷︷ ︸
q(···)

+ x1x2x3 + x2x3︸ ︷︷ ︸
r(···)

.

• Observe: q(·) is non-zero, with n− 1 variables and degree d− k.

• So, by inductive assumption, Pr[q(z2, . . . , zn) ̸= 0] ≥ 1− d−k
|S| .

• Assuming q(z2, . . . , zn) ̸= 0, then p(x1, z2, . . . , zn) is a degree k
non-zero univariate polynomial in x1. 6

Polynomial Identity Testing Proof

Assuming q(z2, . . . , zn) ̸= 0, then p(x1, z2, . . . , zn) is a degree k
non-zero univariate polynomial in x1.
Example:

p(x1, x2, x3) = x21x2 + x21x3 + x1x2x3 + x2x3 = x21 · (x2 + x3)︸ ︷︷ ︸
q(···)

+ x1x2x3 + x2x3︸ ︷︷ ︸
r(···)

.

p(x1, z2, z3) = p(x1, 2, 1) = x21 · 3+ 2x1 + 2.

Next Step: Again applying the inductive hypothesis,

Pr[p(z1, . . . zn) ̸= 0|q(z2, . . . , zn) ̸= 0] ≥ 1− k
|S| .Overall:

Pr[p(z1, . . . zn) ̸= 0] ≥ Pr[p(z1, . . . zn) ̸= 0 ∩ q(z2, . . . , zn) ̸= 0]
= Pr[p(. . .) ̸= 0|q(. . .) ̸= 0] · Pr[q(. . .) ̸= 0]

≥
(
1− k

|S|

)
·
(
1− d− k

|S|

)
≥ 1− d

|S| .

This completes the proof of Schwartz-Zippel. 7

Expectation and Variance Review

7

Expectation and Variance

Consider a random X variable taking values in some finite set
S ⊂ R. E.g., for a random dice roll, S = {1, 2, 3, 4, 5, 6}.

• Expectation: E[X] =
∑

s∈S Pr(X = s) · s.

• Variance: Var[X] = E[(X− E[X])2].

Exercise: Verify that for any scalar α, E[α · X] = α · E[X] and
Var[α · X] = α2 · Var[X].

8

Linearity of Expectation

E[X+ Y] = E[X] + E[Y] for any random variables X and Y. No
matter how correlated they may be!

Proof:

E[X+ Y] =
∑
s∈S

∑
t∈T

Pr(X = s ∩ Y = t) · (s+ t)

=
∑
s∈S

∑
t∈T

Pr(X = s ∩ Y = t) · s+
∑
t∈T

∑
s∈S

Pr(X = s ∩ Y = t) · t

=
∑
s∈S

Pr(X = s) · s+
∑
t∈T

Pr(Y = t) · t

= E[X] + E[Y].

Maybe the single most powerful tool in the analysis of
randomized algorithms.

9

Linearity of Variance

Var[X+ Y] = Var[X] + Var[Y] when X and Y are independent.

Claim 1: (exercise) Var[X] = E[X2]− E[X]2 (via linearity of
expectation)

Claim 2: (exercise) E[XY] = E[X] · E[Y] (i.e., X and Y are
uncorrelated) when X, Y are independent.

Together give:

Var[X+ Y] = E[(X+ Y)2]− E[X+ Y]2

= E[X2] + 2E[XY] + E[Y2]− (E[X] + E[Y])2

= E[X2] + 2E[XY] + E[Y2]− E[X]2 − 2E[X] · E[Y]− E[Y]2

= E[X2] + E[Y2]− E[X]2 − E[Y]2

= Var[X] + Var[Y].
10

Linearity of Variance

Exercise: Verify that for random variables X1, . . . , Xn,

Var

(n∑
i=1

Xi

)
=

n∑
i=1

Var(Xi),

whenever the variables are 2-wise independent (also called
pairwise independent).

11

Application 2: Quicksort with Random Pivots

11

Quicksort

Quicksort(X): where X = (x1, . . . , xn) is a list of numbers.

1. If X is empty: return X.

2. Else: select pivot p uniformly at random from {1, . . . ,n}.

3. Let Xlo = {i ∈ X : xi < xp} and Xhi = {i ∈ X : xi ≥ xp} (requires
n− 1 comparisons with xp to determine).

4. Return the concatenation of the lists
[Quicksort(Xlo), (xp), Quicksort(Xhi)].

What is the worst case running time of this algorithm?

12

Randomized Quicksort Analysis

Theorem: Let T be the number of comparisions performed by
Quicksort(X). Then E[T] = O(n log n).

• For any i, j ∈ [n] with i < j, let Iij = 1 if xi, xj are compared at
some point during the algorithm, and Iij = 0 if they are
not. An indicator random variable.

• We can write T =
∑n−1

i=1
∑n

j=i+1 Iij. Thus, via linearity of
expectation

E[T] =
n−1∑
i=1

n∑
j=i+1

E[Iij] =
n−1∑
i=1

n∑
j=i+1

Pr[xi, xj are compared]

So we need to upper bound Pr[xi, xj are compared].

13

Randomized Quicksort Analysis

Upper bounding Pr[xi, xj are compared]:

• Assume without loss of generality that x1 ≤ x2 ≤ . . . ≤ xn. This is
just ‘renaming’ the elements of our list. Also recall that i < j.

• At exactly one step of the recursion, xi, xj will be ‘split up’ with
one landing in Xhi and the other landing in Xlo, or one being
chosen as the pivot. xi, xj are only ever compared in this later
case – if one is chosen as the pivot when they are split up.

• The split occurs when some element between xi and xj is
chosen as the pivot. The possible elements are xi, xi+1, . . . , xj.

• Pr[xi, xj are compared] is equal to the probability that either xi
or xj are chosen as the splitting pivot from this list. Thus,
Pr[xi, xj are compared] =

14

Randomized Quicksort Analysis

So Far: Expected number of comparisons is given as:

E[T] =
n−1∑
i=1

n∑
j=i+1

Pr[xi, xj are compared].

And we computed Pr[xi, xj are compared] = 2
j−i+1 . Plugging in:

E[T] =
n−1∑
i=1

n∑
j=i+1

2
j− i+ 1 =

n−1∑
i=1

n−i+1∑
k=2

2
k

≤
n−1∑
i=1

n∑
k=1

2
k ≤ 2 · (n− 1) ·

n∑
k=1

1
k = 2n · Hn = O(n log n).

15

Questions?

16

