COMPSCI 614: Randomized Algorithms with
Applications to Data Science

Prof. Cameron Musco

University of Massachusetts Amherst. Spring 2024.
Lecture 2

Last Class:
- Course logistics/overview of planned content.
- Intro to randomized algorithms: Las Vegas vs., Mont rlo !
- Randomized complexity classejcludin%@?%% -~
m\!-‘s'\ég) errer
N

6\,\\)\/-& (,Q‘(G_GR’ CX e L\
(uﬁ_z/m&:\ ~ o

R’y |
PP TP C RP C P LTV
ke ®-
PP

Last Class:

- Course logistics/overview of planned content.
- Intro to randomized algorithms: Las Vegas vs. Monte Carlo

- Randomized complexity classes including RP, ZPP, BPP, PP.
This Class: Basic probability review with algorithmic applications.

- Conditional probability, Baye's theorem, and independence.
Applicati nomial identity testing.

- Linearity of expectation and variance. Application to
randomized Quicksort analysis.

-/ Maybe start on concentration inequalities (Markov's and
Chebyshev's).

Basic Probability Review

Conditional Probability Review

Consider two random events A and B. B Re =\ I
e A : e e 02
- Conditional Probability:

2 (AR V@) “PrAb)

prang) = S -

\
PrAB) = 55 R

- Baye’s Theorem: P(BAR)
Pr(BJA) = %

- Independence: A and B are independent if:

Pr(A|B) = Pr(A).

—_—

Using the definition of conditional probability, independence means:
?(H\@ - Prgr\(g)B) = Pr(A) Pr(A N B) = Pr(A) - Pr(B)

Sets of event§: For a set of n events, Mthe events are k-wise
independent if for any subset S of at most k events,

Pr (QA,) = gPr(A,-). O _/\\
For kR = n we just say the events ‘are independent’. Q%:’/\
0 D~ T |
| b | P(A D) KD
0= Dl—_ﬂq/ D(ﬂ> TQ, -/\7@7 p{6>
2 0, * Dq) ’PL%?";

. Pl PAAR 2Oy
C DO 7)Y P(0) 4

Sets of events: For a set of n events, A,..., Ay, the events are k-wise
independent if for any subset S of at most k events,

Pr (ﬂA,—) = [Pr(a).
ies i€es
For kR = n we just say the events ‘are independent’.

Random Variables: Two random variables X, Y are independent if for
all s,t, X=sand Y =t are independent events. In other words:

PriX=snY=t)=Pr(X=35s)-Pr(Y=1).

Application 1: Polynomial Identity Testing

Polynomial Identity Testing

Given an n-variable degree-d polynomial p(x1, X2, ..., X,), determine
if the polynomial is identically zero. Le,, if p(x1,X2,...,X,) = 0 for all
X1y .oy Xn.

Polynomial Identity Testing

Given an n-variable degree-d polynomial p(x1, X2, ..., X,), determine
if the polynomial is identically zero. Le,, if p(x1,X2,...,X,) = 0 for all
X1,...,Xp. E.g, you are given:

P(X1, X255 X3) = X3(X1 — X2) + (X1 4+ 2% — X3)% — x1(%; +x3/;2.

7<“J7<\L‘X5‘7-\“X1 ... 7O

Polynomial Identity Testing

Given an n-variable degree-d polynomial p(x1, X2, ..., X,), determine
if the polynomial is identically zero. Le,, if p(x1,X2,...,X,) = 0 for all
X1,...,Xp. E.g, you are given:
P(X1, X251 X3) = X3(X1 — ngg + (X1 + 2% — x3)? — x1(%2 + x3)°.
Ky X4 K7
- Can expand out all the terms and check if they cancel. But the

number of terms can be as large as ("}%) - i.e, expogential in

the number of variables n and the degree d. =N

Polynomial Identity Testing

Given an n-variable degree-d polynomial p(x1, X2, ..., X,), determine
if the polynomial is identically zero. Le,, if p(x1,X2,...,X,) = 0 for all
X1,...,Xp. E.g, you are given:

P(X1, X2y s X3) = X3(X1 — X2) + (X1 + 2% — X3)% — X1(X2 + X3)%.
- Can expand out all the terms and check if they cancel. But the

number of terms can be as large as ("}°) - i.e, exponential in
the number of variables n and the degree d.

Extremely Simple Randomized Algorithm: Just pick random values
for x4,...,x, and evaluate the polynomial at these values. With h|gh r)
probab|l|ty, ifp(x1,...,Xn) = 0, the polynomial is identically 0!

?51
P52, 1) = =1(5 -2+ (5+2-2+1)? =52 1) =68, 627
Mﬁﬁ\‘;“u‘wf

Polynomial Identity Testing

Given an n-variable degree-d polynomial p(x1, X2, ..., X,), determine
if the polynomial is identically zero. Le,, if p(x1,X2,...,X,) = 0 for all
X1,...,Xp. E.g, you are given:

P(X1, X2y s X3) = X3(X1 — X2) + (X1 + 2% — X3)% — X1(X2 + X3)%.

- Can expand out all the terms and check if they cancel. But the

number of terms can be as large as (”gd) - i.e., exponential in

the number of variables n and the degree d.

Extremely Simple Randomized Algorithm: Just pick random values

for x4,...,x, and evaluate the polynomial at these values. With high
probability, if p(xy,...,x,) = 0, the polynomial is identically 0!
p(5,2,...,—1) ==15-2)°+(5+2-2+1)*—-52—1)* = 68.

What style algorithm is this? BPP, ZPP, RP, something else?

o~ 5

Polynomial Identity Testing Proof

Schwartz-Zippel Lemma: For any n-variable degree-d polynomial

D£ p(x1,...,X,) and any set S, if z;,...,z, are selected independently
and uniformly at random from S, then Pr[p(zy,...,2,) #0] > 1— I%\'
d (0 $=dv1,1,5,..9
Ny I _

(- — =< ("loj CDO% ib\.sll,l.S-->

Polynomial Identity Testing Proof

Schwartz-Zippel Lemma: qu anyﬂ—\@h[rig\?kl/e‘ d%g\/ree.—d polynomial
p(x1,...,%,) and any set 'S, |fzj_,¢n_are selecteﬁ independently

and uniformly at random from S, then Pr[p(zy,...,2,) #0] > 1— I%\'
_—

Proof: Via induction on the number of variables n
— P T rarerEe

Base Case n = 1: 5 .
@L\Q} X, 4t A+ kﬂ[’h‘ .
hes o wmost d o dbs
?ﬂo S0 @ A mosh Qe EX

A cate, Ao e A S

? [b\I) 6\,\0-\\‘(& ‘)ﬂé\k}V /}, 'S r~ r‘cb\" go P[?J 2

.|
Pr(@S iO)l Sl/ | ~i<) 6

Polynomial Identity Testing Proof

Schwartz-Zippel Lemma: For any n-variable degree-d polynomial
p(x1,...,X,) and any set S, if z;,...,z, are selected independently

and uniformly at random from S, then Pr[p(zy,...,2,) #0] > 1— I%\'

Proof: Via induction on the number of variables n

Induction Step n > 1

Polynomial Identity Testing Proof

Schwartz-Zippel Lemma: For any n-variable degree-d polynomial
p(x1,...,X,) and any set S, if z;,...,z, are selected independently

and uniformly at random from S, then Pr[p(z1,...,2z,) #0] > 1— I%\'

Proof: Via induction on the number of variables n

Induction Step n > 1

- Let k be the max degree of x; in p(---). Assume w.l.o.g. that
kR > 0. Write p(x1,...,X,) = X5 - q(xa, ..., X0) +r(x1,..., X,). Eg.

2 2 2
XPXo + XiX3 + XiXoXs + XoX3 = X7 - (Xo + X3) + XaXoX3 + XoXs.
= S—— V

Pr—

=2 Wy

Polynomial Identity Testing Proof

Schwartz-Zippel Lemma: For any n-variable degree-d polynomial
p(x1,...,X,) and any set S, if z;,...,z, are selected independently

and uniformly at random from S, then Pr[p(z1,...,2z,) #0] > 1— I%\'

Proof: Via induction on the number of variables n

Induction Step n > 1
—_——
- Let k be the max degree of x; in p(---). Assume w.l.o.g. that
k> 0. Write p(x1,...,X,) = X5 - q(xa, ..., X0) + r(x1,...,X,). Eg.
XiXa XiX3 + XiXoXa + XoX3 = X - (X 4 X3) + X1XoX3 + XoXs.
N—— N——
q(--) r(-)

- Observe: g(+) is non-zero, with|n — 1 yariables and degree d — k.

Polynomial Identity Testing Proof

Schwartz-Zippel Lemma: For any n-variable degree-d polynomial
p(x1,...,X,) and any set S, if z;,...,z, are selected independently
d

and uniformly at random from S, then Pr[p(z1,...,2z,) #0] > 1— TS

Proof: Via induction on the number of variables n

Induction Step n > 1

- Let k be the max degree of x; in p(---). Assume w.l.o.g. that
k> 0. Write p(x1,...,X,) = X5 - q(xa, ..., X0) + r(x1,...,X,). Eg.
XiXa XiX3 + XiXoXa + XoX3 = X - (X 4 X3) + X1XoX3 + XoXs.
N—— N——
q(--) r(-)
- Observe: g(-) is non-zero, with n —1variables and degree d — k.

N
|

- So, by inductive assumption, Pr[q(z, . ..,2,) # 0] > 1 — 9=k

Polynomial Identity Testing Proof

Schwartz-Zippel Lemma: For any n-variable degree-d polynomial

and uniformly at random from S, then Pr[p(z1,...,2,) # 0] > 1— &

...,Xp)and any set S, if z1,...,z, are selected independently

IS[*

Proof: Via induction on the number of variables n

Induction Step n > 1

- Let k be the max degree of x; in p(---). Assume w.l.o.g. that
k> 0. Write p(x1,...,X,) = X5 - q(xa, ..., X0) + r(x1,...,X,). Eg.

XiXa XiX3 + XiXoXa + XoX3 = X - (X 4 X3) + X1XoX3 + XoXs.
N—— N———
q(--) r(-)
- Observe: g(+) is non-zero, with n — 1 variables and degree d — k.

- So, by inductive assumption, Pr[q(zz,...,2n) # 0] > 1 — dl%\k'

- Assuming q(zy,...,2,) # 0, then p()ﬁ_,zz, ...,Zn) Is a degree k

non-zero univariate polynomial in x;.
A

Polynomial Identity Testing Proof

Assuming q(zy,...,2,) # 0, then p(x1,25,...,2,) is a degree R
non-zero univariate polynomial in x;.
Example: LAV ¢

P(X1, X2, X3) = XiXo + XiX3 + XiXoX3 + XoX3 = X] X1XoX3 + XaX3.
- %/_/

p(x,22,23) = p(x1,2,0) = X4 - 3+ 2x1 +2.
ﬂ (.?'L"' i }V\B
/

Polynomial Identity Testing Proof

Assuming q(zy,...,2,) # 0, then p(x1,25,...,2,) is a degree R
non-zero univariate polynomial in x;.
Example:

P(X1, X2, X3) = X3X0 + X2X3 + XiXoX3 + XoX3 = X5 - (Xo + X3) + XiXoX3 + XoXs.
—_—— N—— ——

i))
p(X1,22,23) = p(x1,2,1) = X2 -3+ 2 + 2. — e ¥
1

Next Step: Again applying the inductive hypothesis, | - du
k
Prip(z1,...20) #019(22, ..., 2n) £ 0] 21— Gk

T

Polynomial Identity Testing Proof

Assuming q(zy,...,2,) # 0, then p(x1,25,...,2,) is a degree R
non-zero univariate polynomial in x;.
Example:

P(X1, X2, X3) = X3X0 + X2X3 + XiXoX3 + XoX3 = X5 - (Xo + X3) + XiXoX3 + XoXs.
—_—— N—— ——

o))
p(x1,22,23) = p(x1,2,1) = X3 - 3+ 2x7 + 2.

N
Next Step: Again applying the inductive hypothesis, S
k
Prip(z1,...21) #0|q(22,...,20) #0] > 1— Gk
Overall:
Prlp(z1,..20) # 0] = Prlp(21,- .. 20) 0N (2o, -, 20) # 0]
S o\ Ak =Prip(c.) #0[g(...) # 0] - Prlq(...) # 0]
ple) T8 (- 7(1 ¢ Ry
N YNV —;E
NV e e e S

(s\ BE 1S

Polynomial Identity Testing Proof

Assuming q(zy,...,2,) # 0, then p(x1,25,...,2,) is a degree R
non-zero univariate polynomial in x;.
Example:

P(X1, X2, X3) = X3X0 + X2X3 + XiXoX3 + XoX3 = X5 - (Xo + X3) + XiXoX3 + XoXs.
—_—
a(-) ()
p(x1,22,23) = p(x1,2,1) = X3 - 3+ 2x7 + 2.
Next Step: Again applying the inductive hypothesis,

Prip(z1,...20) #0|q(22, ..., 2n) £ 0] > 1~ i

ot (5172 i

ALY pin(ze, . 20) £ 0] > PHp(z. .. 20) £ 0N Q(2as .., 22) # O]
5 iwg = Pr[p(...) #0[q(...) # 0] - Prlq(....) # 0]
- e s

k d—k d
. ey ZQ_).O_)Zw_.
= 5] 5] g

This completes the proof of Schwartz-Zippel.

Expectation and Variance Review

Expectation and Variance

Consider a random X variable taking values in some finite set
S CR. Eg, forarandom diceroll, S = {1,2,3.4,5,6}.< 1%‘1, éIIO)T)}

\)’—‘_4\
- Expectation: EX] = > ses Pr(X=5) - s..
- Variance: Var[X] = E[(X — E[X])?].

Exercise: Verify that for any scalar o, E[a- X] = o - E[X] and
Var[a - X] = o? - Var[X].

Linearity of Expectation

EX+Y] = w for any random variables X and Y. No
matter how correlated they may be!

Linearity of Expectation

E[X + Y] = E[X] + E[Y] for any random variables X and Y. No
matter how correlated they may be!

Proof: NAY wier X244 Y4
EX+Y]=>) Pr(X=snY=t)(s+1)

seS teT

Linearity of Expectation

E[X + Y] = E[X] + E[Y] for any random variables X and Y. No
matter how correlated they may be!

Proof:

EX+Y]=>) Pr(X=snY=t)-(s+1)

seS tel
:Z(ZPr(X:SﬂY:t)'-s+ZZPr(X:sﬂY:t)-t

ses{tel_~~_—~/ (€T seS

@rb’\"5> Y
= P(x=3)°S E(Y]

LARY

Linearity of Expectation

E[X + Y] = E[X] + E[Y] for any random variables X and Y. No
matter how correlated they may be!

Proof:

EX+Y]=>) Pr(X=snY=t)(s+1)
sesS teT
_ZZPr _smY_t s+ZZPr _smY_t)
seS teT tel _SeS

_ZPr =5) S—i—ZPr =1)

SES teT ——

Linearity of Expectation

E[X + Y] = E[X] + E[Y] for any random variables X and Y. No
matter how correlated they may be!

Proof:
EX+Y]=>) Pr(X=snY=t)(s+1)
seS teT
=D > Pr(X=snY=1)-s+ > Y Pr(X=snY=t1)-t
ses teT teT ses
= Pr(X=s)-s+) Pr(Y=1)-t
ses teT

= E[X] + E[Y].

Linearity of Expectation

E[X + Y] = E[X] + E[Y] for any random variables X and Y. No
matter how correlated they may be!

Proof:

EX+Y]=> Y Pr(X=snY=t)-(s+1)
:§§Pr(X:sﬂY:t)-S+ZZPr(X:sﬂY:t)-t
= SIZGrEX—S)-S—i—ZPr(Y— tt)e-TtSES
:];;[f(]+E[Y]. -

Maybe the single most powerful tool in the analysis of
randomized algorithms.

Linearity of Variance

Var[X + Y] = Var[X] + Var[Y] when X and Y are independent.

_—

Linearity of Variance

Var[X + Y] = Var[X] + Var[Y] when X and Y are independent.

Claim 1: (exercise) Var[X] = E[X’] — E[X]* (via linearity of
expectation) T (-)

Claim 2: (exercise) E[XY] = E[X] - E[Y] (i.e, X and Y are
uncorrelated) when X,Y are independent.

Linearity of Variance

Var[X + Y] = Var[X] + Var[Y] when X and Y are independent.

Claim 1: (exercise) Var[X] = E[X?] — E[X]? (via linearity of
expectation)

Claim 2: (exercise) E[XY] = E[X] - E[Y] (i.e, X and Y are
uncorrelated) when X,Y are independent.

Together give:
Var[X + Y] = E[(X + Y)?] — E[X + Y]?

Linearity of Variance

Var[X + Y] = Var[X] + Var[Y] when X and Y are independent.

Claim 1: (exercise) Var[X] = E[X?] — E[X]? (via linearity of
expectation)

Claim 2: (exercise) E[XY] = E[X] - E[Y] (i.e, X and Y are
uncorrelated) when X,Y are independent.

Together give: [[« ¥ X7 3 LB
Var[X + Y] = E[(X + Y)?] — E[X + Y]?
= E[X] + 2E[XY] + E[Y’] - (E[X] + E[Y])’

—_—

Linearity of Variance

Var[X + Y] = Var[X] + Var[Y] when X and Y are independent.

Claim 1: (exercise) Var[X] = E[X?] — E[X]? (via linearity of
expectation)

Claim 2: (exercise) E[XY] = E[X] - E[Y] (i.e, X and Y are
uncorrelated) when X,Y are independent.

Together give:
Var[X + Y] = E[(X + Y)*] — E[X + Y]*
= E[X?] + 2E[XY] + E[Y?] — (E[X] + E[Y])?
= E[X?] + 2E[XY] + E[Y?] - E[X]* — 2E[X] - E[Y] — E[Y]?

Vert) VAN e 2B/ 2EXEY

] O by clwn

Linearity of Variance

Var[X + Y] = Var[X] + Var[Y] when X and Y are independent.

Claim 1: (exercise) Var[X] = E[X?] — E[X]? (via linearity of
expectation)

Claim 2: (exercise) E[XY] = E[X] - E[Y] (i.e, X and Y are
uncorrelated) when X,Y are independent.

Together give:

Var[X + Y] = E[(X + Y)?] — E[X + Y]?
= E[X?] + 2E[XY] + E[Y?] — (E[X] + E[Y])?
= E[X?] 4 2E[XY] 4+ E[Y?] — E[X]? — 2E[X] - E[Y] — E[Y]?
= E[X?] + E[Y)] — E[X]* — E[Y]

Linearity of Variance

Var[X + Y] = Var[X] + Var[Y] when X and Y are independent.

Claim 1: (exercise) Var[X] = E[X?] — E[X]? (via linearity of
expectation)

Claim 2: (exercise) E[XY] = E[X] - E[Y] (i.e, X and Y are
uncorrelated) when X,Y are independent.

Together give:
Var[X + Y] = E[(X + Y)?] — E[X + Y]?
= E[X?] + 2E[XY] + E[Y?] — (E[X] + E[Y])?
= E[X?] 4 2E[XY] 4+ E[Y?] — E[X]? — 2E[X] - E[Y] — E[Y]?
= E[X?] + E[Y)] — E[X]* — E[Y]
= Var[X] + Varl[Y].

Linearity of Variance

Exercise: Verify that for random variables Xq, ..., X,

n n
Var (Z X,) = ZVar(X/),
==

whenever the variables are 2-wise independent (also called
pairwise independent).

1

Application 2: Quicksort with Random Pivots

Quicksort

Quicksort(X): where X = (x1,...,X,) is a list of numbers.

—_—

1. If X is empty: return X.

—_—

2. Else: select pivot p uniformly at random from {1,...,n}.

3. LetXp = {i € X:xi < xp}and Xy = {i € X: x; > x,} (requires
n — 1 comparisons with x, to determine).

4. Return the concatenation of the lists
[Quicksort(Xy), (Xp), Quicksort(Xy)].

—_—

12

Quicksort

Quicksort(X): where X = (x1,...,X,) is a list of numbers.
1. If X is empty: return X.
2. Else: select pivot p uniformly at random from {1,...,n}.

Let Xip = {i € X: X < Xp} and Xu; = {i € X: x; > x,} (requires
n — 1 comparisons with x, to determine).

Return the concatenation of the lists
[Quicksort(Xy), (Xp), Quicksort(Xy)].

[a]s2]efzfsfe]o]7]o]

12

Quicksort

Quicksort(X): where X = (x1,...,X,) is a list of numbers.
1. If X is empty: return X.
2. Else: select pivot p uniformly at random from {1,...,n}.

Let Xip = {i € X: X < Xp} and Xu; = {i € X: x; > x,} (requires
n — 1 comparisons with x, to determine).

Return the concatenation of the lists
[Quicksort(Xy), (Xp), Quicksort(Xy)].

[a]s2]efzfsfe]ol7]o]

12

Quicksort

Quicksort(X): where X = (x1,...,X,) is a list of numbers.

1.
2.

If X is empty: return X.
Else: select pivot p uniformly at random from {1,...,n}.

Let Xip = {i € X: X < Xp} and Xu; = {i € X: x; > x,} (requires
n — 1 comparisons with x, to determine).

Return the concatenation of the lists
[Quicksort(Xy), (Xp), Quicksort(Xy)].

[als]2]a1]sfofe]8fo]7]
e —
X\% *H\

12

Quicksort

Quicksort(X): where X = (x1,...,X,) is a list of numbers.

1. If X is empty: return X.

2. Else: select pivot p uniformly at random from {1,...,n}.

3. LetXp = {i € X:xi < xp}and Xy = {i € X: x; > x,} (requires
n — 1 comparisons with x, to determine).

4. Return the concatenation of the lists
[Quicksort(Xy), (Xp), Quicksort(Xy)].

[of2]2]3fa]s[ef7]a]s]

BH1 Q)

12

Quicksort

Quicksort(X): where X = (x1,...,X,) is a list of numbers.

1. If X is empty: return X.
2. Else: select pivot p uniformly at random from {1,...,n}.

3. LetXp = {i € X:xi < xp}and Xy = {i € X: x; > x,} (requires
n — 1 comparisons with x, to determine).

4. Return the concatenation of the lists
[Quicksort(Xy), (Xp), Quicksort(Xy)].

o[x]z]=]+]s [el7]ele)

What is the worst case running time of this algorithm?

D(nl>

12

Randomized Quicksort Analysis

Theorem: Let T be the number of comparisions performed by
Quicksort(X). Then E[T] = O(nlogn).

13

Randomized Quicksort Analysis

Theorem: Let T be the number of comparisions performed by
Quicksort(X). Then E[T] = O(nlogn).

-+ Foranyi,j € [n]with i <, letl; = 1if X, x; are compared at
some point during the algorithm, and 1; = 0 if they are
_nat, An indicator random variable.

13

Randomized Quicksort Analysis

Theorem: Let T be the number of comparisions performed by
Quicksort(X). Then E[T] = O(nlogn).
- Foranyi,j € [n]with i <, letl; = 1if X, x; are compared at
some point during the algorithm, and 1; = 0 if they are
not. An indicator random variable.

- We canwrite T=372157 1y

13

Randomized Quicksort Analysis

Theorem: Let T be the number of comparisions performed by
Quicksort(X). Then E[T] = O(nlogn).
- Foranyi,j € [n]with i <, letl; = 1if X, x; are compared at
some point during the algorithm, and I; = 0 if they are
not. An indicator random variable. C wre R A)

- We canwrite T= """ Z/ i+1 lj- Thus, via linearity of
expectation

RS Z Z E[lj]

=1 j=i+1

13

Randomized Quicksort Analysis

Theorem: Let T be the number of comparisions performed by
Quicksort(X). Then E[T] = O(nlogn).

- Foranyi,j € [n]with i <, letl; = 1if X, x; are compared at
some point during the algorithm, and 1; = 0 if they are
not. An indicator random variable.

- We canwrite T= 377" S°7 1. Thus, via linearity of
expectation

n—1 n n—1
EM=> > Elj=) Pr[x;,x; are compared]
L <

=1 j=i+1 i—1 j=

13

Randomized Quicksort Analysis

Theorem: Let T be the number of comparisions performed by
Quicksort(X). Then E[T] = O(nlogn).

- Foranyi,j € [n]with i <, letl; = 1if X, x; are compared at
some point during the algorithm, and 1; = 0 if they are
not. An indicator random variable.

- We canwrite T= 377" S°7 1. Thus, via linearity of
expectation

n—1 n n—1 n
E[T =YY Ellj=>_ > Prix,x are compared]

i=1 j=i+1 i=1 j=i+1

So we need to upper bound Prx;, x; are compared)].

13

Randomized Quicksort Analysis

Upper bounding Pr([x;, x; are compared]:
— T

14

Randomized Quicksort Analysis

Upper bounding Pr[x;, x; are compared]: Xy < ><)

* Assume without loss of generality that x; < x, < ... < Xx,. This is

just ‘renaming’ the elements of our list. Also recall thati < J.

14

Randomized Quicksort Analysis

Upper bounding Pr([x;, x; are compared]:
AR

- Assume without loss of generality that x; < x, < ... < X,. This is
just ‘renaming’ the elements of our list. Also recall thati < J.

- At exactly one step of the recursion, x;, x; will be ‘split up” with
one landing in Xp; and the other landing in X, or one being
chosen as the pivot. x;,x; are onw@d in this later
case — if one is chosen as the pivot when they are split up.

7<\ S<)
- =
[a]s|2f2]s|o(6)8fo]7]
pas—e
Xi K

J

14

Randomized Quicksort Analysis

Upper bounding Pr([x;, x; are compared]:

- Assume without loss of generality that x; < x, < ... < X,. This is
just ‘renaming’ the elements of our list. Also recall thati < J.

- At exactly one step of the recursion, x;, x; will be ‘split up” with
one landing in Xy; and the other landing in X,,, or one being
chosen as the pivot. x;, x; are only ever compared in this later
case — if one is chosen as the pivot when they are split up.

- The split occurs when some element between x; and x; is
chosen as the pivot. The possible elements arw

e[[2]:z]oelao]r] '
1
?F<X(’\s><) ~ L,OY\F'\/-ES\/> _l+\

14

Randomized Quicksort Analysis

Upper bounding Pr([x;, x; are compared]:

- Assume without loss of generality that x; < x, < ... < X,. This is
just ‘renaming’ the elements of our list. Also recall thati < J.

- At exactly one step of the recursion, x;, x; will be ‘split up” with
one landing in Xy; and the other landing in X,,, or one being
chosen as the pivot. x;, x; are only ever compared in this later
case — if one is chosen as the pivot when they are split up.

- The split occurs when some element between x; and x; is
chosen as the pivot. The possible elements are x;, Xj41, . . ., X;.

[4]sl2]s]sfofe]efo]7]

- Pr[x;,x; are compared] is equal to the probability that either x;
or x; are chosen as the splittiE pivot from this list. Thus,
Prlx;,x; are compared] = ———

)-i+\ 14

Randomized Quicksort Analysis

So Far: Expected number of comparisons is given as:

n—-1 n

E[T] =Y) Prlx;,x are compared].

i=1 j=i+1

And we computed Pr{x;, x; are compared] = 1_%

_

15

Randomized Quicksort Analysis

So Far: Expected number of comparisons is given as:

n—-1 n

E[T] =Y) Prlx;,x are compared].

i=1 j=i+1

And we computed Pr{x;, x; are compared] = Plugging in:

J— 1+1

E[T] =

I111—H

15

Randomized Quicksort Analysis

So Far: Expected number of comparisons is given as:

n—-1 n

E[T] =Y) Prlx;,x are compared].

i=1 j=i+1

And we computed Pr{x;, x; are compared] = = :+1 Plugging in:
n-1 o n—1n—i+1
E[T] = =2
=1 j= I—H =1 @

Q'),;rl

15

Randomized Quicksort Analysis

So Far: Expected number of comparisons is given as:

n—-1 n

E[T] =Y) Prlx;,x are compared].
=1 j=i+1

And we computed Pr{x;, x; are compared] = = :+1 Plugging in:

n—-1 n ’) n—1 nfi+12
S HESE B o
=1 j=i+1 i=1_k=2_
n—1 n 9 n 4
ST
i=1 k=1 R=1

15

Randomized Quicksort Analysis

So Far: Expected number of comparisons is given as:

n—-1 n

E[T] =Y) Prlx;,x are compared].

i=1 j=i+1

And we computed Pr{x;, x; are compared] = Plugging in:

J— 1+1

E[T] =

I111—H i=1
n—=1 n

k=2
n
_sz (n—1 -Z%:2H~Hn:O(nlogn).

i=1 k=1 k=1 -

15

