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- | will send responses to project progress reports soon.



Last Week: Start on Markov Chains.
- Start on Markov chains and their analysis
- Markov chain based algorithms for satisfiability: ~ n? time for
2-SAT, and = (4/3)" for 3-SAT.
Today: Markov Chains Continued
- The gambler’s ruin problem.
- Aperiodicity and stationary distribution of a Markov chain.

+ The fundamental theorem of Markov chains.



Markov Chain Review

- A discrete time stochastic process is a Markov chain if is it
memoryless:

Pr(Xt = Gt‘xt,1 = dt—1,. .. ,XQ = Go) = PI’(Xt = Gt|xt,1 = at,1)

- If each X; can take m possible values, the Markov chain is
specified by the transition matrix P € [0,1]™*™ with

Pij = Pr(Xeps = j|Xe = i).
- Let g; € [0,1]™™ be the distribution of X;. Then g1 = g:P.
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Markov Chain Review

Often viewed as an underlying state transition graph. Nodes
correspond to possible values that each X; can take.

The Markov chain is irreducible if the underlying graph consists of
single strongly connected component.



Gambler’s Ruin



Gambler's Ruin

- You and ‘a friend’ repeatedly toss a fair coin. If it hits heads, you
give your friend $1. If it hits tails, they give you $1.

- You start with $¢; and your friend starts with $¢,. When either of
you runs out of money the game terminates.

- What is the probability that you win $¢,7?



Gambler’s Ruin Markov Chain

Let Xo, X1, ... be the Markov chain where X; is your profit at

step t. Xo = 0 and:
Pt = P, =1

P,‘7,‘+1 = P,‘7,'_1 = 1/2 for —€1 << 52
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- ¢ and ¢, are absorbing states.
- Allj with —¢; < i < £, are transient states. l.e,,
PriXe =i forsome t' > t|X;=1] < 1.

Observe that this Markov chain is also a Martingale since
E[Xes1|Xed] = Xe.



Gambler’s Ruin Analysis

Let Xg, X4, ... be the Markov chain where X; is your profit at step t.
Xo = 0 and:
'D*fm*& = szyfz =1

Piig1=Piioa=1/2 for — 41 <i <t
We want to compute g = limi_ Pr[X; = £5].

By linearity of expectation, for any i, E[X;] = 0. Further, for
g = limi_,o Pr[X; = £,], since —¢4, ¢, are the only non-transient states,

t|_l>rTO10 E[Xt] =0q+ —fq('] — Q) =0.
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Solving for g, we have g =



Gambler’s Ruin Thought Exercise

What if you always walk away as soon as you win just $1. Then
what is your probability of winning, and what are your
expected winnings?



Stationary Distributions



Stationary Distribution

A stationary distribution of a Markov chain with transition matrix
P € [0,1]™*™ is a distribution 7 € [0,1]™ such that = = 7P.

lLe. if X; ~ m, then Xepq ~ 7P = .

Think-pair-share: Do all Markov chains have a stationary
distribution?
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Claim (Existence of Stationary Distribution)

Any Markov chain with a finite state space, and transition
matrix P € [0,1]"*™ has a stationary distribution = € [0,1]™
with w = P.

Follows from the Brouwer fixed point theorem: for any
continuous function f: § — S, where S is a compact convex
set, there is some x such that f(x) = x.
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The periodicity of a state i is defined as:

T=gcd{t>0:Pr(Xs=1]|Xo=1)>0}.

The state is aperiodic if it has periodicity T = 1.

A Markov chain is aperiodic if all states are aperiodic.
)



Claim
If a Markov chain is irreducible, and has at least one
self-loop, then it is aperiodic.
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Fundamental Theorem

Theorem (The Fundamental Theorem of Markov Chains)

Let Xo, X4, ... be a Markov chain with a finite state space and
transition matrix P € [0,1]™*™. [f the chain is both irreducible and
aperiodic,

1. There exists a unique stationary distribution = € [0,1]™ with
7w = 7P.

2. For any states I, ], limi_o Pr[X; = i|1Xo = J] = =(i). l.e,, for any
initial distribution qo, limt—so Gt = limi—o0 GoP* = .

3. w(i) = m l.e., w(i) is the inverse of the average
expected return time from state i back to .

In the limit, the probability of being at any state i is independent of
the starting state.



Stationary Distribution Example 1

Shuffling Markov Chain: Given a pack of ¢ cards. At each step draw
two random cards, swap them and repeat.
- What is the state space of this chain?

- What is the transition probability P; ;7 How does it compare to
P;i?
- This Markov chain is symmetric and thus its stationary
distribution is uniform, =(i) = .
Letting m = ¢! denote the size of the state space,
. . 1 1 .
P = ZW(/)P/,I' = ZW(J)PU = Z Pij=— =m(i).
J J J
Once we have exhibited a stationary distribution, we know that it is
unique and that the chain converges to it in the limit!
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Stationary Distribution Example 2

Random Walk on an Undirected Graph: Consider a random
walk on an undirected graph. If it is at node i at step t, then it
moves to any of i's neighbors at step t + 1 with probability dll.

- What is the state space of this chain?

-+ What is the transition probability P;;?

- Is this chain aperiodic?

- If the graph is not bipartite, then there is at least one odd
cycle, making the chain aperiodic.



Stationary Distribution Example 2

Random Walk on an Undirected Graph: Consider a random
walk on an undirected graph. If it is at node i at step t, then it
moves to any of i's neighbors at step t + 1 with probability dl,-'

Claim: When the graph is not bipartite, the unique stationary

distribution of this Markov chain is given by =(i) = %.

. C/j 1 1 d; .
mP. | —zj:W(J)PJ,/ _Zj:z‘ﬂ : E; _Zj:Zﬂ = m = 7(i).
l.e., the probability of being at a given node i is dependent

only on the node's degree, not on the structure of the graph in
any other way.



