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- I will send responses to project progress reports soon.



Last Week: Start on Markov Chains.
- Start on Markov chains and their analysis

- Markov chain based algorithms for satisfiability: ~ n® time for

2-SAT, and = (4/3)" for 3-SAT. ‘
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Last Week: Start on Markov Chains.
- Start on Markov chains and their analysis
- Markov chain based algorithms for satisfiability: ~ n® time for
2-SAT, and = (4/3)" for 3-SAT.
Today: Markov Chains Continued
- The gambler’s ruin problem.
- Aperiodicity and stationary distribution of a Markov chain.

- The fundamental theorem of Markov chains.



Markov Chain Review

- A discrete time stochastic process is a Markov chain if is it
memoryless:

Pr(X; = a¢[Xi—1 = Qt_1,...,Xo = o) = Pr(X¢ = a¢[X¢—1 = a¢_1)

- If each X; can take m possible values, the Markov chain is
specified by the transition matrix P € [0,1]™*™ with

P;’j = Pr(Xt+1 :]|Xt = I)
- Let g; € [0,1]™™ be the distribution of X;. Then g1 = g:P.
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Markov Chain Review

Often viewed as an underlying state transition graph. Nodes
correspond to possible values that each X; can take.

The Markov chain is irreducible if the underlying graph consists of
single strongly connected component.



Gambler’s Ruin



Gambler's Ruin
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- You and ‘a friend’ repeatedly toss a fAr coin. If it hits heads, you
give your friend $1. If it hits tails, they give you $1.

- You start with $¢; and your friend starts with $£,. When either of
you runs out of money the game terminates.

- What is the probability that you win $¢,?



Gambler’'s Ruin Markov Chain

Let Xo, X1, ... be the Markov chain where X; is your profit at
step t. Xo = 0 and:

Pi,f+1 = P,','_1 = 1/2 for -l < i <t
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Gambler’'s Ruin Markov Chain

Let Xo, X1, ... be the Markov chain where X; is your profit at

step t. Xo = 0 and:
P_ti—oy = Pop, =1

Pi,f+1 = P,'7,'_1 = 1/2 for — < I < 0y
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- {1 and ¢, are absorbing states.
- Allj with —¢; < | < £, are transient states. l.e,
Pr[Xe =i forsomet' > t|X;=1i] <.



Gambler’'s Ruin Markov Chain

Let Xo, X1, ... be the Markov chain where X; is your profit at
step t. Xo = 0 and: @

P—€17—€1 = 'DZZvEZ =1 ! /(\ J‘g
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- {1 and ¢, are absorbing states.
- Allj with —¢; < | < £, are transient states. l.e,
Pr[Xe =i forsomet' > t|X;=1i] <.

Observe that this Markov chain is also a Martingale since
E[Xe1|Xt] = Xe.



Gambler’s Ruin Analysis

Let Xq, X1, ... be the Markov chain where X; is your profit at step t.
Xo = 0 and:
P_ti,—t, =Prp, =1
P,'ﬁ,‘+1 = P,\y,’_] = 1/2 for — 41 < I < )

We want to compute g = limi_, o Pr[X; = £3].



Gambler’s Ruin Analysis

Let Xq, X1, ... be the Markov chain where X; is your profit at step t.

Xo = 0 and: .
P,gh,g1 = Pzz_’zz =1 %[%; - O
P,'ﬁ,‘+1:P,",'_1='|/2 for —f1<f<gz ,E[ , ( . —/O
)<|+| X\]’

We want to compute g = limi_, o Pr[X; = £3].

By linearity of expectation, for any i, E[X;] = 0. Further, for
g = limi_,o0 Pr[X; = £;], since —¢;, ¢, are the only non-transient states,

lim E[Xt] =0q+ 761(1 — Q) =0.
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Gambler’s Ruin Analysis

Let Xq, X1, ... be the Markov chain where X; is your profit at step t.
Xo = 0 and:
P_t,—e, = Pee, =1

Piipa=Piioa=1/2for —t1<i< b
We want to compute g = limi_, o Pr[X; = £3].
By linearity of expectation, for any i, E[X;] = 0. Further, for

g = limi_,o0 Pr[X; = £;], since —¢;, ¢, are the only non-transient states,

lim E[Xt] =0q+ 761(1 — Q) =0.
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Solving for g, we have g = v _
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Gambler’s Ruin Thought Exercise

What if you always walk away as soon as you win just $1. Then
what is your probability of winning, and what are your
expected winnings?
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Stationary Distributions



Stationary Distribution

A stationary distribution of a Markov chain with transition matrix
P € [0,1]™*™ is a distribution 7 € [0,1]™ such that = = 7P.

lLe. if X; ~ m, then Xepq ~ 7P = .



Stationary Distribution

A stationary distribution of a Markov chain with transition matrix
P € [0,1]™*™ is a distribution 7 € [0,1]™ such that = = 7P.

lLe. if X; ~ m, then Xepq ~ 7P = .
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Think-pair-share: Do all Markov chains have a sfationary

distribution? B 5](/ j 5 5



Claim (Existence of Stationary Distribution)

Any Markov chain with a finite state space, and transition
matrix P € [0,1]"*™ has a stationary distribution = € [0,1]™
with = = wP.

1



Claim (Existence of Stationary Distribution)

Any Markov chain with a finite state space, and transition
matrix P € [0,1]"*™ has a stationary distribution = € [0,1]™
with = = wP.

Follows from the Brouwer fixed point theorem: for any
continuous function f: § — S, where S_is a compact convex
set, there is some x such that f(x) = x. ‘5
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Periodicity

The periodicity of a state i is defined as:

T=gcd{t>0:Pr(Xe =1i]|Xo=1)> 0}
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Periodicity

The periodicity of a state i is defined as:

35
T=gcd{t>0:Pr(X;=1|Xo=1) > 0}.
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Periodicity

The periodicity of a state i is defined as:

T=gcd{t>0:Pr(X;=1|Xo=1) > 0}.

The state is aperiodic if it has periodicity T = 1.
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Periodicity

The periodicity of a state i is defined as:

T=gcd{t>0:Pr(X;=1|Xo=1) > 0}.

The state is aperiodic if it has periodicity T = 1.
A Markov chain is aperiodic if all states are aperiodic.
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Periodicity

Claim
If a Markov chain is irreducible, and has at least one
self-loop, then it is aperiodic.
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Fundamental Theorem

Theorem (The Fundamental Theorem of Markov Chains)

Let Xo, X, ... be a Markov chain with a finite state space and
transition matrix P € [0,1]™*™. [f the chain is both irreducible and

aperiodic, | C@ @é , E/

1.

There exists a unique stationary distribttion = € [0, 1] W/th

b
T = 7P. ? |+ )“a 'j? ‘L\‘K}JM
2. For any states i,j, limi_ o Pr[X; = i|Xo =/j] = =(i). l.e, for any ‘
initial distribution qo, lim¢_ee Gt = lim¢_yo0 GoPt = 7.
3. 7w(l) = m l.e., 7(i) is the inverse of the average

expected return time from state i back to |.
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Fundamental Theorem

Theorem (The Fundamental Theorem of Markov Chains)

Let Xo, X, ... be a Markov chain with a finite state space and
transition matrix P € [0,1]™*™. [f the chain is both irreducible and
aperiodic,

1. There exists a unique stationary distribution = € [0,1]™ with
T = mP.

2. For any states i,j, limi_ oo Pr[X; = i|Xo = j] = =(i). l.e, for any
initial distribution qo, lim¢_ee Gt = limt_yo0 GoPt = 7.

3. 7w(l) = m Le., 7(i) is.the inver;e of the average
expected return time from state i back to |.

In the limit, the probability of being at any state i is independent of
the starting state.
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Stationary Distribution Example 1

Shuffling Markov Chain: Given a pack of ¢ cards. At each step draw
two random cards, swap them and repeat.

15



Stationary Distribution Example 1

Shuffling Markov Chain: Given a pack of ¢ cards. At each step draw
two random cards, swap them and repeat.

- What is the state space of this chain?
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Stationary Distribution Example 1

Shuffling Markov Chain: Given a pack of ¢ cards. At each step draw
two random cards, swap them and repeat. 9. w '\ ?m\o v e b

— 2 r@va—.
- What is the state space of this chain?

-+ What is the transition probability P;;? How does it compare to
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Stationary Distribution Example 1

Shuffling Markov Chain: Given a pack of ¢ cards. At each step draw
two random cards, swap them and repeat.

- What is the state space of this chain?

-+ What is the transition probability P;;? How does it compare to
P;.i?

- This Markov chain is symmetric and thus its stationary

distribution is uniform, m(i) = .
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Stationary Distribution Example 1

Shuffling Markov Chain: Given a pack of ¢ cards. At each step draw
two random cards, swap them and repeat.
- What is the state space of this chain?

-+ What is the transition probability P;;? How does it compare to
P;.i?

- This Markov chain is symmetric and thus its stationary

distribution is uniform, m(i) = .

Letting m = c! denote the size of the state space,

7P.; = ZWU)PM AYL\)
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Stationary Distribution Example 1

Shuffling Markov Chain: Given a pack of ¢ cards. At each step draw
two random cards, swap them and repeat.
- What is the state space of this chain?

-+ What is the transition probability P;;? How does it compare to
P;.i?

- This Markov chain is symmetric and thus its stationary
distribution is uniform, m(i) = .
Letting m = c! denote the size of the state space,

TPy =Y ()P =D 7 ()P
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Stationary Distribution Example 1

Shuffling Markov Chain: Given a pack of ¢ cards. At each step draw
two random cards, swap them and repeat.

- What is the state space of this chain?

-+ What is the transition probability P;;? How does it compare to
P;.i?

- This Markov chain is symmetric and thus its stationary

distribution is uniform, m(i) = .

Letting m = c! denote the size of the state space,
. . 1
P = ZW(J)PJ,I' = ZWL(J)P«'J = Z ij
J J j
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Stationary Distribution Example 1

Shuffling Markov Chain: Given a pack of ¢ cards. At each step draw
two random cards, swap them and repeat.
- What is the state space of this chain?

-+ What is the transition probability P;;? How does it compare to
P;.i?

- This Markov chain is symmetric and thus its stationary
distribution is uniform, m(i) = .
Letting m = c! denote the size of the state space,

wP=Y_w()Pi=> w()Pi;= %Z Pij= % = (i).
j
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Stationary Distribution Example 1

Shuffling Markov Chain: Given a pack of ¢ cards. At each step draw
two random cards, swap them and repeat.
- What is the state space of this chain?

-+ What is the transition probability P;;? How does it compare to

P2
- This Markov chain is symmetric and thus its stationary

distribution is uniform, m(i) = .
Letting m = c! denote the size of the state space,

. . 1 1 .
P, = ZW(J)PJ,I' = ZWU)P«'J = Z Pij= — = m(i).
J J j

Once we have exhibited a stationary distribution, we know that it is
unique and that the chain converges to it in the limit!
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Stationary Distribution Example 2

Random Walk on an Undirected Graph: Consider a random
walk on an undirected graph. If it is at node | at step t, then it
moves to any of i's neighbors at step t + 1 with probability di/_.

- What is the state space of this chain?

- What is the transition probability P;;?
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Stationary Distribution Example 2

Random Walk on an Undirected Graph: Consider a random
walk on an undirected graph. If it is at node | at step t, then it
moves to any of i's neighbors at step t + 1 with probability di/_.

- What is the state space of this chain?
- What is the transition probability P;;?

- Is this chain aperiodic?
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Stationary Distribution Example 2

Random Walk on an Undirected Graph: Consider a random
walk on an undirected graph. If it is at node | at step t, then it
moves to any of i's neighbors at step t + 1 with probability di/_.

- What is the state space of this chain?

- What is the transition probability P;;?

- Is this chain aperiodic?

- If the graph is not bipartite, then there is at least one odd
cycle, making the chain aperiodic.
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Stationary Distribution Example 2

Random Walk on an Undirected Graph: Consider a random
walk on an undirected graph. If it is at node | at step t, then it
moves to any of i's neighbors at step t + 1 with probability di/,

Claim: When the graph is not bipartite, the unique stationary

distribution of this Markov chain is given by (i) = %.
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Stationary Distribution Example 2

Random Walk on an Undirected Graph: Consider a random
walk on an undirected graph. If it is at node | at step t, then it
moves to any of i's neighbors at step t + 1 with probability di/,

Claim: When the graph is not bipartite, the unique stationary

distribution of this Markov chain is given by (i) = %.
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Stationary Distribution Example 2

Random Walk on an Undirected Graph: Consider a random
walk on an undirected graph. If it is at node | at step t, then it
moves to any of i's neighbors at step t + 1 with probability di/,

Claim: When the graph is not bipartite, the unique stationary

distribution of this Markov chain is given by (i) = %.
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Stationary Distribution Example 2

Random Walk on an Undirected Graph: Consider a random
walk on an undirected graph. If it is at node | at step t, then it
moves to any of i's neighbors at step t + 1 with probability di/,

Claim: When the graph is not bipartite, the unique stationary

distribution of this Markov chain is given by (i) = %.
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Stationary Distribution Example 2

Random Walk on an Undirected Graph: Consider a random
walk on an undirected graph. If it is at node | at step t, then it
moves to any of i's neighbors at step t + 1 with probability di/,

Claim: When the graph is not bipartite, the unique stationary

distribution of this Markov chain is given by (i) = %.
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Stationary Distribution Example 2

Random Walk on an Undirected Graph: Consider a random
walk on an undirected graph. If it is at node | at step t, then it
moves to any of i's neighbors at step t + 1 with probability di/,

Claim: When the graph is not bipartite, the unique stationary

distribution of this Markov chain is given by (i) = %.

. di 1 1 of .
= 2 0P =25 g = 27~ e
l.e., the probability of being at a given node i is dependent
only on the node’s degree, not on the structure of the graph in
any other way.
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