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Logistics

• Problem Set 4 is due Monday 4/22 at 11:59pm.
• No quiz this week.
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Summary

Last Class:

• Leverage score intuition.

• Connection to spectral graph sparsification

• Connection to effective resistances in electrical networks. Note:
I am not going to finish this full derivation – see Lecture 17
slides if you are interested.

Today:

• New unit: Markov Chains.

• Markov chain based algorithms for 2-SAT and 3-SAT.
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Markov Chain Definition

• A discrete time stochastic process is a collection of random
variables X0, X1, X2, . . . ,

• A discrete time stochastic process is a Markov chain if is it
memoryless:

Pr(Xt = at|Xt−1 = at−1, . . . , X0 = a0) = Pr(Xt = at|Xt−1 = at−1)

= Pat−1,at .

Question: In a Markov chain, is Xt independent of Xt−2, Xt−3, . . . , X0?
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Transition Matrix

A Markov chain X0, X1, . . . where each Xi can take m possible values, is
specified by the transition matrix P ∈ [0, 1]m×m with

Pj,k = Pr(Xi+1 = k|Xi = j).

Let qi ∈ [0, 1]1×m be the distribution of Xi. Then qi+1 = qiP.
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Graph View

Often viewed as an underlying state transition graph. Nodes
correspond to possible values that each Xi can take.

The Markov chain is irreducible if the underlying graph consists of
single strongly connected component.
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2-SAT

Motivating Example: Find a satisfying assignment for a 2-CNF
formula with n variables.

(x1 ∨ x̄2) ∧ (x̄1 ∨ x̄3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x̄3) ∧ (x4 ∨ x̄1)

A simple ‘local search’ algorithm:

1. Start with an arbitrary assignment.

2. Repeat 2mn2 times, terminating if a satisfying assignment is
found:

• Chose an arbitrary unsatisfied clause.
• Pick one of the variables in the clause uniformly at
random, and switch the assignment of the variable.

3. If a valid assignment is not found, return that the formula is
unsatisfiable.

Claim: If the formula is satisfiable, the algorithm finds a satisfying
assignment with probability ≥ 1− 2−m.
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Randomized 2-SAT Analysis

Fix a satisfying assignment S. Let Xi ≤ n be the number of variables
that are assigned the same values as in S, at step i.

• Xi+1 = Xi ± 1 since we flip one variable in an unsatisfied clause.

• Pr(Xi+1 = Xi + 1) ≥

• Pr(Xi+1 = Xi − 1) ≤

(x1 ∨ x̄2) ∧ (x̄1 ∨ x̄3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x̄3) ∧ (x4 ∨ x̄1)
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Coupling to a Markov Chain

The number of correctly assigned variables at step i, Xi, obeys

Pr(Xi+1 = Xi + 1) ≥ 1
2

and Pr(Xi+1 = Xi − 1) ≤ 1
2
.

Is X0, X1, X2, . . . a Markov chain?

Define a Markov chain Y0, Y1, . . . such that Y0 = X0 and:

Pr(Yi+1 = 1|Yi = 0) = 1
Pr(Yi+1 = j+ 1|Yi = j) = 1/2 for 1 ≤ j ≤ n− 1
Pr(Yi+1 = j− 1|Yi = j) = 1/2 for 1 ≤ j ≤ n− 1

Pr(Yi+1 = n|Yi = n) = 1.

• Our algorithm terminates as soon as Xi = n. We expect to reach
this point only more slowly with Yi. So it suffices to argue that
Yi = n with high probability for large enough i.

• Formally could use a coupling argument (will see later on).
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Simple Markov Chain Analysis

Want to bound the expected time required to have Yi = n.

Let hj be the expected number of steps to reach n when starting at
node j (i.e., the expected termination time when j variables are
assigned correctly.)

hn = 0
h0 = h1 + 1

hj =
hj−1

2
+

hj+1

2
+ 1 for 1 ≤ j ≤ n− 1
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Simple Markov Chain Analysis

Claim: hj = hj+1 + 2j+ 1.

Can prove via induction on j.

• h0 = h1 + 1, satisfying the claim in the base case.

hj =
hj−1
2

+
hj+1
2

+ 1

hj =
hj
2
+ (j− 1) + 1

2
+

hj+1
2

+ 1

hj =
hj
2
+

hj+1
2

+ j+ 1
2
.

• Rearranging gives: hj = hj+1 + 2j+ 1.

So in total we have:

h0 = h1 + 1 = h2 + 3+ 1 = . . . =
n−1∑

j=0

(2j+ 1)

= n2.
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Simple Markov Chain Analysis

Upshot: Consider the Markov chain Y0, Y1, . . ., and let i∗ be the
minimum i such Yi∗ = n. Then E[i∗] ≤ n2.

• Thus, by Markov’s inequality, with probability ≥ 1/2, our 2-SAT
algorithms finds a satisfying assignment within 2n2 steps.

• Splitting our 2mn2 total steps into m periods of 2n2 steps each,
we fail to find a satisfying assignment in all m periods with
probability at most 1/2m.
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3-SAT

More Challenging Problem: Find a satisfying assignment for a 3-CNF
formula with n variables.

(x1 ∨ x̄2 ∨ x̄3) ∧ (x̄1 ∨ x̄3 ∨ x4) ∧ (x1 ∨ x2 ∨ x̄3).

• 3-SAT is famously NP-hard. What is the naive deterministic
runtime required to solve 3-SAT?

• The current best known runtime is O(1.307n) [Hansen, Kaplan,
Zamir, Zwick, 2019].

• Will see that our simple Markov chain approach gives an
O(1.3334n) time algorithm.

• Note that the exponential time hypothesis conjectures that
O(cn) is needed to solve 3-SAT for some constant c > 1. The
strong exponential time hypothesis conjectures that for k → ∞,
solving k-SAT requires O(2n) time.
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Randomized 3-SAT Algorithm

1. Start with an arbitrary assignment.
2. Repeat m times, terminating if a satisfying assignment is

found:
• Chose an arbitrary unsatisfied clause.
• Pick one of the variables in the clause uniformly at
random, and switch the assignment of the variable.

3. If a valid assignment is not found, return that the formula
is unsatisfiable.
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Randomized 3-SAT Analysis

As in the 2-SAT setting, let Xi be the number of correctly assigned
variables at step i. We have:

Pr(Xi = Xi−1 + 1) ≥
Pr(Xi = Xi−1 − 1) ≤

Define the coupled Markov chain Y0, Y1, . . . as before, but with
Yi = Yi−1 + 1 with probability 1/3 and Yi = Yi−1 − 1 = 2/3.

How many steps do you expect are needed to reach Yi = n?
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Randomized 3-SAT Analysis

Letting hj be the expected number of steps to reach n when
starting at node j,

hn = 0
h0 = h1 + 1

hj =
2hj−1
3

+
hj+1
3

+ 1 for 1 ≤ j ≤ n− 1

• We can prove via induction that hj = hj+1 + 2j+2 − 3 and in
turn, h0 = 2n+2 − 4− 3n.

• Thus, in expectation, our algorithm takes at most ≈ 2n+2

steps to find a satisfying assignment if there is one.
• Is this an interesting result?
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Modified 3-SAT Algorithm

Key Idea: If we pick our initial assignment uniformly at random, we
will have E[X0] = n/2. With very small, but still non-negligible
probability, X0 will be much larger, and our random walk will be more
likely to find a satisfying assignment.

Modified Randomized 3-SAT Algorithm:

Repeat m times, terminating if a satisfying assignment is found:

1. Pick a uniform random assignment for the variables.

2. Repeat 3n times, terminating if a satisfying assignment is found:

• Chose an arbitrary unsatisfied clause.
• Pick one of the variables in the clause uniformly at
random, and switch the assignment of the variable.

If a valid assignment is not found, return that the formula is
unsatisfiable.
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Modified 3-SAT Analysis

Consider a single random assignment with X0 = n− j. I.e., we need to
correct j variables to find a satisfying assignment.

Let qj be a lower bound on the success probability in this case. Since
j ≤ n and since we run the search process for 3n steps,

qj = Pr[X3n = n]
≥ Pr[X3j = n]

≥ Pr[take exactly 2j steps forward and j steps back in 3j steps]

=

(
3j
j

)(
2
3

)j

·
(
1
3

)2j

.

Via Stirling’s approximation,
(3j
j
)
≥ 1√

j
· 33j−2

22j−2 , giving:

qj ≥
22

32
√
j
· 3

3j

22j
· 2j

33j
≈ 1√

j · 2j
≥ 1√

n · 2j
.
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Modified 3-SAT Analysis

Our overall probability of success in a single trial is then lower
bounded by:

q ≥
n∑

j=0

Pr[X0 = n− j] · qj

≥
n∑

j=0

(
n
j

)
· 1
2n

· 1√
n · 2j

≥ 1√
n · 2n

n∑

j=0

(
n
j

)
· 1
2j

=
1√
n · 2n

·
(
3
2

)n

=
1√
n
·
(
3
4

)n
.

Thus, if we repeat for m = O
(√

n ·
( 4
3
)n)

= O(1.33334n) trials, with
very high probability, we will find a satisfying assignment if there is
one.
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