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- Problem Set 4 is due 4/22.
- Project progress report is due 4/16.

- We have no class on Tuesday — so the weekly quiz is due
Wednesday night.



Last Class: Subspace embedding via sampling.
- Subspace embedding via sampling.
- The matrix leverage scores.

- Analysis via matrix concentration bounds.
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- Analysis via matrix concentration bounds.

Today:
- Intuition behind leverage scores

- Connection to effective resistances and spectral graph
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sparsifiers. —
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Subpace Embedding via Sampling

Theorem (Subspace Embedding via Leverage Score Sampling)

For any A e R”Xd with left singular vector matrix U, let 7; = HU 113
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Leverage Score Intuition



Variational Characterization of Leverage Scores

For a matrix A € R"<9 with SVD A = UXV', the it" leverage score is
given by 7(A) = [|[U;..[5-
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Variational Characterization of Leverage Scores
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Variational Characterization of Leverage Scores

For a matrix A € R"<9 with SVD A = UXV', the it" leverage score is
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Variational Characterization of Leverage Scores
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- Remember that we want ||SAx||2 ~ ||Ax||3 for all x € RY.

- The leverage scores ensure that we sample each entry of Ax
with high enough probability to well approximate ||Ax|[3.

- In fact, could prove the subspace embedding theorem by
showing that for a fixed x € RY, ||SAX|)3 ~ ||Ax||3, and then
applying a net argument + union bound. Athough you would
lose a factor d over the optimal bound. 6
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Leverage Score Intuition

’C\ = {:DJ \}

- When a; is not spanned by the other rows of A, 7;(A) = 1.
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Leverage Score Intuition

- When a; is not spanned by the other rows of A, 7;(A) = 1.

- 7i(A) is small when many rows are similar to a;.
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Leverage Score Intuition

- Leverage scores are a ‘'smooth’ indicator of cluster structure.



Leverage Score Intuition
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Leverage Score Intuition

Leverage Score

- Leverage scores are a ‘'smooth’ indicator of cluster structure.

o
o

o

o
=)
G

0 0.6
20 40 60 80 04 02 0 02 04 06 08 1 12 1.4

- Very high leverage scores tend to correspond to outliers -

original motivation for use in statistics.
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- Leverage scores are a ‘'smooth’ indicator of cluster structure.

- Very high leverage scores tend to correspond to outliers -

original motivation for use in statistics.

- When used as sampling probabilities, give a more ‘balanced

sample’ than uniform sampling.



Leverage Score Intuition
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Spectral Graph Sparsification



Graph Sparsification

Given a graph G = (V, E), find a (weighted) subgraph G’ with many
fewer edges that approximates various properties of G

1 . )
Image taken from Nick Harvey's notes https://www.cs.ubc.ca/~nickhar/Wi5/LectureliNotes.pdf.



Graph Sparsification

Given a graph G = (V, E), find a (weighted) subgraph G’ with many
fewer edges that approximates various properties of G
sS,0 T
N\

Cut Sparsifier: (Karger) For any set of nodes S,
CUT'(S,V\ S) ~. CUT(S,V\ S).
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Image taken from Nick Harvey's notes https://www.cs.ubc.ca/~nickhar/Wi5/LectureliNotes.pdf.




The Graph Laplacian

For a graph with adjacency matrix A € {0,1}"*" and diagonal degree
matrix D € R"™", [ =D — Ais the graph Laplacian.
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The Graph Laplacian

For a graph with adjacency matrix A € {0,1}"*" and diagonal degree
matrix D € R"™", [ =D — Ais the graph Laplacian.

X4 D A
) 1000 0100 1100
4 0300 1011 10311
X —_
2 = 5020 o101 ]|=|0-12-1
0002 0110 0112
X3

L can be written as L = Z L,y where L, is an ‘edge Laplacian’
(u,v)eE

1100 1100 0000
-1311]=-1100 1|+ ]0 1011+
0-1241 00O0O 0000
0-1-12 0000 0-101



Laplacian Smoothness

Observation 1: Forany z € Rd, L - { Lu,v
ZTLZ: Z ZTLU,VZ (g),\/)éE
(u,v)eE
v(1) v(2) v(3) v(4) 1 '1 0 0 v(1)
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0 00O via)
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Laplacian Smoothness

Observation 1: For any z € R,

z= Y uz= Y (20)-z())
(u,v)eE (u,v)eE
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Laplacian Smoothness

Observation 1: For any z € RY,

A= Y 2= Y (@) - 2G).

(u,v)eE (u,v)eE
lv(l) vi2) vi3) v(A)I 1-100 vin
-1 v(2)

1700
00O v3)
000

v(4)

- Z'Lz measures how smoothly z varies across the graph.
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Laplacian Smoothness

Observation 1: For any z € R,

Z'llz= Z ZTLu,\/ZZ Z (Z(I)*Z(/))z

(u,v)eE (u,v)eE
lv(l) vi2) vi3) v(A)I 1-100 vin
-1 v(2)

1700
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- Z'Lz measures how smoothly z varies across the graph.

- Ifze {-1,1}"is a cut indicator vector with z(i) = 1for i € S and
z(i) = —1 otherwise, then z'L.z = 4 . CUT(S,V \ S).
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Laplacian Smoothness

Observation 1: For any z € R,

\ . Zllz= Z ZTLu_VZ: Z (z(i) —Z(j))z,
/K (u,v)eE (u,v)€E

v(1) v2) w3 via) -100 V1)
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0
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v(3)
- Z'Lz measures how smoothly z varies across the graph.

- Ifze {=1.1}" is a cut indicator vector with z(i) = 1for i € S and
z(i) = —1 otherwise, then z'L.z = 4 . CUT(S,V \ S).
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- So G’ with (weighted) Laplacian L’ ~, L will be a cut sparsifier,
with CUT'(S,V\ S) ~. CUT(S,V\ S) for all S.
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Laplacian Smoothness

Observation 1: For any z € R,

Z'llz= Z ZTLu,\/ZZ Z (Z(I)—Z(j))2

(u,v)eE (u,v)eE
lv(l) vi2) vi3) v(A)I 1-100 vin
-1 v(2)

100
00O ve3)
000 via)

- Z'Lz measures how smoothly z varies across the graph.

- Ifze {-1,1}"is a cut indicator vector with z(i) = 1for i € S and
z(i) = —1 otherwise, then z'L.z = 4 . CUT(S,V \ S).
- So G’ with (weighted) Laplacian L’ ~, L will be a cut sparsifier,
X P e ——1
with CUT'(S,V\ S) ~. CUT(S.V\ S) for all S.

-~ Such a G’ is called an e-spectral sparsifier of G.
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Laplacian Factorization

Observation 2: L, = by bj, ,.
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Laplacian Factorization

Observation 2: L, = by ,b] . So L = Z buybl .
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Laplacian Factorization

Observation 2: L, = by ,b] . So L = Z buybl .

(u,v)ekE
010-1]-= - J
0000 0
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That is, letting B € R™*" have rows {b/, : (u,v) € E}, L = B'B.
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Laplacian Factorization

Observation 2: L, = by ,b] . So L = Z buybl .

PYL
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incidence matrix B

That is, letting B € R™*" have rows {b/, : (u,v) € E}, L = B'B.
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Laplacian Factorization

Observation 2: L, = by ,b] . So L = Z buvbl,

N
(uv)ek 1 1 0 0

@10-1]“’,
()il

0000 0 010 -1 Eo-léj-wn
010-1|= I
0000 0 A,
0-10 1 -1 vertex-edge

incidence matrix B

That is, lqttm Iﬁl %" have rovvs {bl, (u V) EE}, L= BTB
[} <8 XN VX = xfgss’gx/\i 1313 X
\Q So |fa Samp ing matrix S is a subspace embedding for B, then
N\ A

’9\@ B'S’SB =, B'B ~, L. l.e., SB is the weighted vertex-edge
WR incidence matrix of an e-spectral sparsifier of G.

- By our results on subspace embedding, every graph G has an

e-spectral sparsifier with just O(nlog n/€®) edges. 5



Leverage Scores and Effective Resistance

A spectral sparsifier G’ of G with O(nlogn/€®) edges can be
constructed by sampling rows of the vertex-edge incidence matrix
via their leverage scores. What are these leverage scores?
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Leverage Scores and Effective Resistance

A spectral sparsifier G’ of G with O(nlogn/€®) edges can be
constructed by sampling rows of the vertex-edge incidence matrix
via their leverage scores. What are these leverage scores?

-
v
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- View each edge as a 1-Ohm resistor.

- If we fix a current of 1 between u, v, the voltage drop across the
nodes is known as the effective resistance between u and v.
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Leverage Scores and Effective Resistance

A spectral sparsifier G’ of G with O(nlogn/€®) edges can be
constructed by sampling rows of the vertex-edge incidence matrix
via their leverage scores. What are these leverage scores?

\
b
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- View each edge as a 1-Ohm resistor. l[ L

- If we fix a current of 1 between u, v, the voltage drop across the
nodes is known as the effective resistance between u and v.

- We will show that the leverage score of each edge is exactly

equal to its effective resistance.
R ——
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Leverage Scores and Effective Resistance

A spectral sparsifier G’ of G with O(nlogn/€®) edges can be
constructed by sampling rows of the vertex-edge incidence matrix
via their leverage scores. What are these leverage scores?

- View each edge as a 1-Ohm resistor.

- If we fix a current of 1 between u, v, the voltage drop across the
nodes is known as the effective resistance between u and v.

- We will show that the leverage score of each edge is exactly
equal to its effective resistance.

- Intuitively, to form a spectral sparsifier, we should sample high
resistance edges with high probability, since they are
‘bottlenecks’. 13



Electrical Flows

For a flow f € R™, the currents going into each node are given by Bf.
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Electrical Flows

For a flow f € R™, the currents going into each node are given by Bf.

BT f
1 1 0 3 3
1 0 1 0 = -4
0 1 -1 -1 0
0 0 0 -1 -1 1

*-—\N\N\N—

The electrical flow when one unit of current is sent from u to v is:

f¢ = argmin ||f]»-
ﬁBTf:bu,v

Since power (energy/time) is given by P = > - R.
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Electrical Flows

For a flow f € R™, the currents going into each node are given by Bf.

BT f
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The electrical flow when one unit of current is sent from u to v is:

£° = argmin [l
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Leverage Scores and Effective Resistance

f¢ = argmin |[f]l>.
BTf buv

By Ohm'’s law, the voltage drop across (u, V) (i.e., the effective
resistance) is simply the entry f¢, (since u,v is a unit resistor).
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Leverage Scores and Effective Resistance

f¢ = argmin |[f]l>.
BTf buv

By Ohm'’s law, the voltage drop across (u, V) (i.e., the effective
resistance) is simply the entry f¢, (since u,v is a unit resistor).

- To solve for f, note that we can assume that f is in the column
span of B. Otherwise, it would not have minimal norm. So
f = Bg for some vector ¢ € R".
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- Then need to solve B'B¢ = by,. l.e, Lp = b,,. ¢ is unique up to
its component in the null-space of L.
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resistance) is simply the entry f¢, (since u,v is a unit resistor).

- To solve for f, note that we can assume that f is in the column
span of B. Otherwise, it would not have minimal norm. So
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Leverage Scores and Effective Resistance

f¢ = argmin |[f],.
fBf=bu,,

By Ohm'’s law, the voltage drop across (u, V) (i.e., the effective
resistance) is simply the entry f¢, (since u,v is a unit resistor).

- To solve for f, note that we can assume that fis in the column
span of B. Otherwise, it would not have minimal norm. So
f = B¢ for some vector ¢ € R".
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its component in the null-space of L.

* (b — L+bu,\/.

15



Leverage Scores and Effective Resistance

f¢ = argmin |[f],.
fBf=bu,,

By Ohm'’s law, the voltage drop across (u, V) (i.e., the effective
resistance) is simply the entry f¢, (since u,v is a unit resistor).

- To solve for f, note that we can assume that fis in the column
span of B. Otherwise, it would not have minimal norm. So
f = B¢ for some vector ¢ € R".

- Then need to solve B'B¢ = by . l.e, L¢ = by ¢ is unique up to
its component in the null-space of L.

* (b - L+bu,\/.
* GIV@S fe = BL+bU’\/. So fli\/ |S JUSt bz,(—’\/L_FbUN == bu’\/(BTB)J’_bu?\/.
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Leverage Scores and Effective Resistance

The effective resistance across edge (u,v) is given by

buu(B'B)"byy = e|,,B(B'B) B ey,

by by B
1 0 -1 0 1 01 0 0 1 -1 0 0 1
0o _ 10 -1 0 -1
1 01 -1 0 0
0 00 1 -1 0

o L O ,

BT

o L B, O

s B O O

o O = O
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Leverage Scores and Effective Resistance

The effective resistance across edge (u,v) is given by

buu(B'B)"byy = e|,,B(B'B) B ey,

by b,y B BT
10 1 0 1 0100 1-100 1100 o0
0 - 1 0 -1 0 -1 0 1 0 1
-1 - 01 -1 0 0 =8 -1 1 0
0 0 0 1 -1 0 0 0 -1 0

Write B = UXV" in its SVD.
e, ,B(B'B)"B'e,, = e} UZVI(VE2V)VEU ey,
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Leverage Scores and Effective Resistance

The effective resistance across edge (u,v) is given by

buu(B'B)"byy = e|,,B(B'B) B ey,

by b,y B BT
10 1 0 1 0100 1-100 1100 o0
0 - 1 0 -1 0 -1 0 1 0 1
-1 - 01 -1 0 0 =8 -1 1 0
0 0 0 1 -1 0 0 0 -1 0

Write B = UXV" in its SVD.
e, ,B(B'B)"B'e,, = e} UZVI(VE2V)VEU ey,

- eE7VUUTeu’V
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Leverage Scores and Effective Resistance

The effective resistance across edge (u,v) is given by

buu(B'B)"byy = e|,,B(B'B) B ey,

by b,y B BT
10 -1 0 1 o100 1100 110
o _ 10 -1 0 10 1
4 . 0110 o EN -1
0 0 0 1 -1 000

Write B = UZV' in its SVD.
e, ,B(B'B)"B'e,, = e} UZVI(VE2V)VEU ey,
- eE7VUUTeu’V
= UE,qu,v = ||Uu,V||%-

s B O O

o O = O
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Leverage Scores and Effective Resistance

The effective resistance across edge (u,v) is given by

buu(B'B)"byy = e|,,B(B'B) B ey,

by b,y B BT
10 1 0 1 0100 1-100 1100 o0
0 - 1 0 -1 0 -1 0 1 0 1
-1 - 01 -1 0 0 =8 -1 1 0
0 0 0 1 -1 0 0 0 -1 0

Write B = UZV' in its SVD.
e, ,B(B'B)"B'e,, = e} UZVI(VE2V)VEU ey,
- eE7VUUTeu’V
= UE,qu,v = ||Uu,V||%-

l.e., the effective resistance is exactly the leverage score of the
corresponding row in B. 16



Some History

- The concept of spectral sparsification was first introduced by
Spielman and Teng ‘04 in their seminal work on fast system
solvers for graph Laplacians. In this work, sparsifiers are used

as preconditioners (MMMM).

- Spielman and Srivastava ‘08 showed how to construct
sparsifiers with O(nlog n/e?) edges via effective resistance
(leverage score) sampling.

- Batson, Spielman, and Srivastava ‘08 showed how to achieve
0(n/€?) edges with a deterministic algorithm.

- Marcus, Spielman, and Srivastava ‘13 built on this work to give
optimal bipartite expanders with any degree and to resolve the
famous Kadison-Singer problem in functional analysis.
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