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Logistics

• Problem Set 4 was released on Friday – it is due 4/22.
• Project progress report due on 4/16.
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Summary

Last Week: Subspace embedding via random sketching.

• Finish proof of subspace embedding from the distributional
Johnson-Lindenstrauss lemma and an ϵ-net argument.

• Proof of distributional JL via the Hanson-Wright inequality.

• Application to fast over-constrained linear regression.

Today:

• Subspace embedding via sampling.

• The matrix leverage scores.

• Analysis via matrix concentration bounds.

• Spectral graph sparsifiers.
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Quiz Review
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Quiz Review
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Subspace Embedding

S ∈ Rm×n is an ϵ-subspace embedding for A ∈ Rn×d, if for all x ∈ Rd,

(1− ϵ)∥Ax∥ ≤ ∥SAx∥2 ≤ (1+ ϵ)∥Ax∥2.

So Far: If S is a random sign matrix, and m = O
(

d+log(1/δ)
ϵ2

)
, then for

any A, S is an ϵ-subspace embedding with probability ≥ 1− δ.

In many applications it is preferable for S to be a row sampling
matrix. The sample can preserve sparsity, structure, etc. 6



Problem Reformulation

For A ∈ Rn×d, let A = UΣVT be its SVD. U ∈ Rn×rank(A), V ∈ Rd×rank(A)

are orthonormal, and Σ ∈ Rrank(A)×rank(A) is positive diagonal.)

• For any x ∈ Rd, let z = ΣVTx. Observe that: ∥Ax∥2 = ∥Uz∥2 and
∥SA∥2 = ∥SUz∥2.

• Thus, to prove that S is an ϵ-subspace embedding for A, it
suffices to show that it is an ϵ-subspace embedding for U.

• I.e., it suffices to show that for any x ∈ Rd,

(1− ϵ)∥Ux∥22 ≤ ∥SUx∥22 ≤ (1+ ϵ)∥Ux∥22. 7



Loewner Ordering

Suffices to show that for any x ∈ Rd,

(1−ϵ)∥x∥22 ≤ ∥SUx∥22 ≤ (1+ϵ)∥x∥22 =⇒ (1−ϵ)xTIx ≤ xTUTSTSUx ≤ (1+ϵ)xTIx.

This condition is typically denoted by (1− ϵ)I ⪯ UTSTSU ⪯ (1+ ϵ)I.

M ⪯ N iff ∀x ∈ Rd xTMx ≤ xTNx (Loewner Order)

When (1− ϵ)N ⪯ M ⪯ (1+ ϵ)N, I will write M ≈ϵ N as shorthand.

(1− ϵ)I ⪯ UTSTSU ⪯ (1+ ϵ)I is equivilant to all eigenvalues of UTSTSU
lying in [1− ϵ, 1+ ϵ].
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Sampling from U

So Far: We have an orthonormal matrix U ∈ Rn×d and we want
to sample rows so that UTSTSU ≈ϵ I. What are some possible
sampling strategies?
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Leverage Score Sampling

• τi = ∥Ui,:∥22 is known as the ith leverage score of U.
• Let pi = τi∑n

i=1 τi
.

• Let S:,j = eTi ·
1√mpi

with probability pi.

E[UTSTSU] = =
m∑
j=1

E[UTST:,jS:,jU]

=
m∑
j=1

n∑
i=1

pi · (
1

√mpi
UT
i,:)(

1
√mpi

Ui,:)

=
m∑
j=1

1
mUTU = I.
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Matrix Concentration

We want to show that UTSTSU is close to E[UTSTSU] = I. Will apply a
matrix concentration bound.

Theorem (Matrix Chernoff Bound)
Consider independent symmetric random matrices
X1, . . . , Xm ∈ Rd×d, with Xi ⪰ 0, λmax(Xi) ≤ R, and X =

∑m
i=1 Xi. Let

M = E[X]. Then:

Pr [λmin(X) ≤ (1− ϵ)λmin(M)] ≤ d ·
[

e−ϵ

(1− ϵ)1−ϵ

]λmin(M)/R

Pr [λmax(X) ≥ (1+ ϵ)λmax(M)] ≤ d ·
[

eϵ
(1+ ϵ)1+ϵ

]λmin(M)/R
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Matrix Concentration Applied to Leverage Score Sampling

Theorem (Matrix Chernoff Bound)
Consider independent symmetric random matrices
X1, . . . , Xm ∈ Rd×d, with Xi ⪰ 0, λmax(Xi) ≤ R, and X =

∑m
i=1 Xi. Let

M = E[X]. Then:

Pr [λmax(X) ≥ (1+ ϵ)λmax(M)] ≤ d ·
[

eϵ
(1+ ϵ)1+ϵ

]λmin(M)/R

• In our setting, Xi = UTST:,jS:,jU. Xi = 1
mpiU

T
i,:Ui,: with probability pi.

• M = E[X] =
• R =

• Pr[UTSTSU ⪰ (1+ ϵ)I] ≤ d ·
[

eϵ
(1+ϵ)1+ϵ

]m/d
≲ d · e−ϵ2·m/d

• If we set m = O
(

d log(d/δ)
ϵ2

)
we have Pr[UTSTSU ⪰ (1+ ϵ)I] ≤ δ.
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Subpace Embedding via Sampling

Theorem (Subspace Embedding via Leverage Score Sampling)
For any A ∈ Rn×d with left singular vector matrix U, let
τi = ∥Ui,:∥22 and pi = τi∑

τi
. Let S ∈ Rm×n have S:,j

independently set to 1√mpi
· eTi with probability pi.

Then, if m = O
(
d log(d/δ)

ϵ2

)
, with probability ≥ 1− δ, S is an

ϵ-subspace embedding for A.

Matches oblivious random projection up to the log d factor.
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