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- Problem Set 4 was released on Friday — it is due 4/22.
- Project progress report due on 4/16.



Last Week: Subspace embedding via random sketching.

- Finish proof of subspace embedding from the distributional
Johnson-Lindenstrauss lemma and an e-net argument.

- Proof of distributional JL via the Hanson-Wright inequality.

- Application to fast over-constrained linear regression.

Today:
- Subspace embedding via sampling.
- The matrix leverage scores.
- Analysis via matrix concentration bounds.

- Spectral graph sparsifiers.



Quiz Review

Question 3
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Assume that S € R”*" is an e-subspace embedding for A € R, Do the following
guarantees hold, for some small constant ¢ (e.g., c =1, orc = 2, etc.)?

M A =collAllr < ISAllF < (1 + co)llAllF

and

2) (1 = co)llAll2 < [[SA]l2 < (1 + ce)llAll2.

Recall that the spectral norm of a matrix is defined || M| = maX y|jx,=1 | M x||2.

Hint: Try to prove these bounds using the guarantee that ||.SAx|| =, ||Ax]||, forall
x € RY.

O a. Yes, both always hold.
O b. (1) always holds but (2) may not.
O c. (2) always holds but (1)) may not.

O d. Neither is guaranteed to always hold.

Check



Quiz Review

Question 5 Which of the following concentration bounds can be apply to show that, for a random
Not complete x € R” withi.i.d. +1 entries, and some fixed A € R™", that x” Ax is concentrated
Points out of around its mean? Select all that apply.
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¥ Flag [J a. Markov bound

question

& Edit [J b. Bernstein bound

question [J c. Chebyshev inequality

[J d. Hanson-Wright Inequality

Check



Subspace Embedding

S € R™" is an e-subspace embedding for A € R™9, if for all x € RY,

(1= OllAx]| < [[SAx]l2 < (1 + €)[[Ax][2-
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So Far: If Sis a random sign matrix,and m = O (M), then for

any A, S is an e-subspace embedding with probability > 1— .
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In many applications it is preferable for S to be a row sampling
matrix. The sample can preserve sparsity, structure, etc. 6



Problem Reformulation

For A e R™4 let A= UZV' be its SVD. U € R"*rank(A) 'y ¢ Rdxrank(4)
are orthonormal, and ¥ e Rrenk(A)xrank(4) js positive diagonal.)
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o vl
o2 vy
b3 A
— Uy U;
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- For any x € RY, let z= ¥ V'x. Observe that: ||Ax|, = ||Uz||; and
ISAll2 = [[SUZ]|2.

- Thus, to prove that S is an e-subspace embedding for A, it
suffices to show that it is an e-subspace embedding for U.

- le, it suffices to show that for any x € RY,
(1= Ux[l3 < [ISUX[I3 < (1 + )| Uxl3. 7



Loewner Ordering

Suffices to show that for any x € R,
(1=e)|Ix[5 < |ISUx|13 < (T+e)|Ix|I3 = (1—e)xTIx < xTUTSTSUx < (14-€)x"Ix.
This condition is typically denoted by (1—¢)l < UTSTSU < (1 + ¢)I.
M < N iff vx € RY xX'Mx < x'"Nx (Loewner Order)
When (1—€)N <M =< (14 ¢)N, | will write M =, N as shorthand.

(1—€)l = U'S'SU =< (1+ ¢)l is equivilant to all eigenvalues of U'S'SU
lying in [1—¢,1+ €.



Sampling from U

So Far: We have an orthonormal matrix U € R"*9 and we want
to sample rows so that U'S"SU ~, I. What are some possible
sampling strategies?



Leverage Score Sampling

- 7= ||U;.]|3 is known as the i leverage score of U.

- letp = <7

i=17i

- LetS j=e- % with probability p;.

m
E[U'S'sUl = =) E[U'S]s. ;U]
j—1

1
— Uy =
Zm
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Matrix Concentration

We want to show that USTSU is close to E[UTS'SU] = I. Will apply a
matrix concentration bound.

Theorem (Matrix Chernoff Bound)

Consider independent symmetric random matrices
Xty ..oy Xm € RIX9 with X; = 0, Amax(X;) <R and X = 3""". X;. Let
M = E[X]. Then:

Pr[)‘min(x) < (1 - 6))‘min(M)] <d- [

e—e )‘min(M)/R
- 0= e)”}

eE :| )\min(M)/R

Pr[Amax(X) = (T + €)Amax(M)] < d - {(14‘6)”6

n



Matrix Concentration Applied to Leverage Score Sampling

Theorem (Matrix Chernoff Bound)

Consider independent symmetric random matrices
Xty - ooy Xm € RIX9 with X; = 0, Amax(X;) <R, and X =3""". X;. Let
M = E[X]. Then:

eE

Amin(M)/R
(1+ 6)1“}

MDmAMZU+dMWWﬂ§d[

- In our setting, X; = UTSIJ.S:JU. Xi = m%,UI;UL: with probability p;.
- M=E[X] =
. R=

d 2
- PrUTSTSU = (14 €)l] < d - [ <d.e-cm/d

m
T+e )H }
- Ifwesetm=0 (M) we have Pr[UTSTSU = (14 €)l] < 6.
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Subpace Embedding via Sampling

Theorem (Subspace Embedding via Leverage Score Sampling)

For any A € R™9 with left singular vector matrix U, let
7 = [|U;:]l3 and p; = . Let S € R™*" have S,

2T

independently set to \/rl;*p,- - el with probability p;.

Then, if m = 0 (M), with probability >1—6, S is an
e-subspace embedding for A.

Matches oblivious random projection up to the log d factor.
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