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- Problem Set 4 was released on Friday — it is due 4/22.
- Project progress report%apn 4/16.
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Last Week: Subspace embedding via random sketching.

- Finish proof of subspace embedding from the distributional
Johnson-Lindenstrauss lemma and an e-net argument.

- Proof of distributional JL via the Hanson-Wright inequality.

- Application to fast over-constrained linear regression.
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Last Week: Subspace embedding via random sketching.

- Finish proof of subspace embedding from the distributional
Johnson-Lindenstrauss lemma and an e-net argument.

- Proof of distributional JL via the Hanson-Wright inequality.

Appllcatlon to fast over-constrained linear regressmn

Today: LS_
- Subspace embedding via sampling.

- The matrix leverage scores.

- Analysis via matrix concentration bounds.

- Speetratgraph sparsiress.



Quiz Review

Question 3 Assume that S € R"*" is an e-subspace embedding for A € R"*¢. Do the following

Not complete guarantees hold, for some small constant ¢ (e.g.,c =1, orc =2, etc.)?

Points out of M (1 = collAllp < ISAllF < (1 + collAllr ||[-] H i G, (F))

1.00 — l
= ~5660),
question D@ A= collAllz < [ISAll2 < (1 + co)l|Allx. | ”
£ Edit l SH F

i Recall that the spectral norm of a matrix is defined || M|, = max .x|,=1 ||Mx||z.

Hint: Try to prove these bounds using the guarantee that || SAx|| =, ||Ax|| for aII
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a. Yes, both always hold.
>(1-€) Al

O b. (1) always holds but (2) may not.
O c. (2) always holds but (1)) may not.

O d. Neither is guaranteed to always hold.

Check ? -—L
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Quiz Review

Question 5 Which of the following concentration bounds can be apply to show that, for a random
Not complete x € R" withi.i.d. +1 entries, and some fixed A € R™", that x” Ax is concentrated
Points out of around its mean? Select all that apply. l

1.00 <

) |\X\\o« -

V" Flag arkov bound

question W\u <SS |\A“f>4
& Edit ﬂb Bernstein bound < G{ o ‘éﬁ}r
& ~ N g
question \9/0 Chebyshev inequality —

:\9/014 Hanson-Wright Inequality

Check

XlI\B X(ﬁ YX)
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Subspace Embedding

S € R™*" is an e-subspace embedding for A € R"*? if for all x € R,

L B%)

(1= OllAx]| < [[SAx]l2 < (1 + ) [|Ax]2-

mxn
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Subspace Embedding

S € R™*" is an e-subspace embedding for A € R"*? if for all x € R,
(1= [IAX]| < ISAX][2 < (1 + €)[|AX]2.

m X n nxd mxd
+1/ym +1/ym £1/ym +1/ym

H1/ym HUNT ELyE L ‘
S

So Far: If Sis a random sign matrix, and m = O d*"’%z“/‘”), then for
any A, S is an e-subspace embedding with probability > 1—4.



Subspace Embedding

S € R™*" is an e-subspace embedding for A € R"*? if for all x € R,

(1= OllAx]| < [[SAx]l2 < (1 + ) [|Ax]2-

mXxn nxd

w3

S w; -
LR

N

So Far: If S is a random sign matrix, and m = O (”"’%}1/5)), then for
any A, S is an e-subspace embedding with probability > 1— 4.

In many applications itis preferable for S to be a row sampling

matrix T
g f?‘“’

ple can preserve sparsity, structure, etc.
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Problem Reformulation

For A e R™9 let A= UZV' be its SVD. U € R"*rank(A) '\ ¢ Rdxrank(A)
are orthonormal, and X e Rrak(A)xrank(4) js positive diagonal.)

(‘ nxd orthonormal  positive diagonal ~ orthonormal
N \ \ 91 vl
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Problem Reformulation

For A e R™9 let A= UZV' be its SVD. U € R"*rank(A) '\ ¢ Rdxrank(A)
are orthonormal, and X e Rrak(A)xrank(4) js positive diagonal.)

nxd orthonormal  positive diagonal ~ orthonormal
oy vl
o, vl
b3 VT
A =|nu b Oy T
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dxl dxd drl

- Forany x € RY let z = ¥V'x. Observe that: ||Ax||, = ||Uz|, and
ISAK2 = [|SUz]>-




Problem Reformulation

For A e R™9 let A= UZV' be its SVD. U € R"*rank(A) '\ ¢ Rdxrank(A)

are orthonormal, and X e Rrak(A)xrank(4) js positive diagonal.)
nxd orthonormal  positive diagonal ~ orthonormal

T
oy o

oy vy
b2 \

— | wu
A = wk | Ur 01
or

v

al@ S all 9 > w)(ﬁ)"u](")

W) ¢ 2]
- Forany x € RY let z = ¥V'x. Observe that: ||Ax||, = HUsz and
ISAll> = [ISUz]l2. Ux » Rz V3%

- Thus, to prove that S is an e-subspace embedding for A, it
suffices to show that it is an e-subspace embedding for U.



Problem Reformulation

For A e R™9 let A= UZV' be its SVD. U € R"*rank(A) '\ ¢ Rdxrank(A)

are orthonormal, and X e Rrak(A)xrank(4) js positive diagonal.)
nxd orthonormal  positive diagonal ~ orthonormal

T
oy o

oy vy
b2 \

— | wu
A = wk | Ur 01
or

v

- Forany x € RY let z = ¥V'x. Observe that: ||Ax||, = ||Uz|, and
ISA[l2 = [[SUz]>-
- Thus, to prove that S is an e-subspace embedding for A, it

suffices to show that it is an e-subspace embedding for U. 2

- | %l

- le, it suffices to show that for any x € RY, - “\)X e !
lecavis V'S
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Loewner Ordering

Suffices to show that for any x d
v xll

(1=e)Ixll5 < lISUXII3 < (1+e)lIxII3



Loewner Ordering

. N0
\\\5‘\\1 : 3 ‘2‘
Suffices to show that for any x € R,

(1—=e)|Ix[5 < |ISUx|I3 < (1+e)|IxIls = (1—e)xTIx < x"UTSTSUx < (14€)x"Ix.



Loewner Ordering

Suffices to show that for any x € R,
(1—=e)|Ix[5 < |ISUx|I3 < (1+e)|IxIls = (1—e)xTIx < x"UTSTSUx < (14€)x"Ix.
This condition is typically denoted by (1 —€)l < U'SSU < (1+ €)l.

M =< N iff ¥x € R? x"Mx < x'Nx  (Loewner Order)



Loewner Ordering

PSSR =B et
Suffices to show that for any x € R, OS‘ j’— I‘
(=B < ISUXIE < ()X = (1=l < XTUTSTSUX < (14+-e)xIx.
This condition is typically denoted by (1 —€)l < U'SSU < (1+ €)l.
—_—

M =< N iff ¥x € R? x"Mx < x'Nx  (Loewner Order)

When (1—€)N <M =< (14 €)N, I will write M =, N as shorthand.

U< U =T (<50 - Tle ()



Loewner Ordering

Suffices to show that for any x € R,
(=B < ISUXIE < ()X = (1=l < XTUTSTSUX < (14+-e)xIx.
This condition is typically denoted by (1 —€)l < U'SSU < (1+ €)l.
M =< N iff ¥x € R? x"Mx < x'Nx  (Loewner Order)
When (1—€)N <M =< (14 €)N, I will write M =, N as shorthand.

(1—€)l =2 UTSTSU =< (1+ ¢)l is equivilant to all eigenvalues of UTSzS#J
. . ~ - \ \
lying in [1 — ,1+ €. Xoun (OTQU) = mn xTUISTSUX
WJsTeox = | Zi-e



Sampling from U

So Far: We have an orthonormal matrix U € R"%? and we want
to sample rows so that U'STSU ~, I.



Sampling from U

So Far: We have an orthonormal matrix U € R"*? and we want
to sample rows so that U'STSU ~, I. What are some possible
sampling strategies?

N Cord ko s:,\,mp\"-/
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Leverage Score Sampling

- 7= ||U;.]|3 is known as the i leverage score of U.

o -
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Leverage Score Sampling

c 1= ||U;. |3 is known as the it leverage score of U.

TLelpi= st o F 0 E MOIE S senkle) T O
- Lets j=el- —W|th probability p;. — Swmp\b /\w' PR
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Leverage Score Sampling

- 7= ||U;.]|3 is known as the i leverage score of U.

- Lets j=el- \/%p, with probability D;.

] fﬂ?&U\' M~ hos 'AW‘)@

E[UTSTSU] =



Leverage Score Sampling

- 7= ||U;.]|3 is known as the i leverage score of U.

- letpi = =—.
i=1Ti
. Le/tffgz el \/%p, with probability p,«.\ﬁ\ ol
-ﬁ(\«m ) ) \%’:}\l&e (il\}(gz-(» 7y
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Leverage Score Sampling

- 7= ||U;.]|3 is known as the i leverage score of U.
- letpi = =—.
Pi 27:177

- Lets j=el- \/%p, with probability p;.

m
E[UTSTSUl = =Y E[U'S]S. ;U]
j=1

DD Y AT TATEE

j=1 i=1



Leverage Score Sampling

- 7= ||U;.]|3 is known as the i leverage score of U.

- Lets j=el- \/%p, with probability p;.

m
E[UTS'SUl = = E[U'STS U] ,
f—T 2 U;): U'I)'. =~ T\)

1
_ZZ'D’ f ',: (@Ui,:)

j=1 i=1
m
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Matrix Concentration

AN lpkad < o 5P U TV
We want to show that U'S”SU is close to E[U'STSU] = I. Will apply a
matrix concentration bound.

Theorem (Matrix Chernoff Bound)
/’_\

Consider independent symmetric random matrices
Xty ..oy Xm € RIX9 with X; = 0, Amax(X) <R, and X = 31 X;. Let
M = E[X]. Then: k_'f \)i,-.TU,-,; . ')
e e ‘g\dw{.lg PP /"i
e €

Pr[Amin(X) < (1 = €)Amin(M)] < d - {(1_6)1_6

:| )\min(M)/R

Pr[Amax(X) > (14 €)Amax(M)] < d -
LA < +¢]

rom< X =(rom
T - T

et Amin (M) /R 5
] e
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Matrix Concentration Applied to Leverage Score Sampling

Theorem (Matrix Chernoff Bound)

Consider independent symmetric random matrices
X1y ..oy Xm € RIX9 with X; = 0, Amax(X)) <R, and X = 3" X;. Let
M = E[X]. Then:

o€ Amin(M)/R
Pr Pnan(X) > (14 )Amax(M)] < d - [ }

(‘] s 6)1+6
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Matrix Concentration Applied to Leverage Score Sampling

Theorem (Matrix Chernoff Bound)

Consider independent symmetric random matrices
X1y ..oy Xm € RIX9 with X; = 0, Amax(X)) <R, and X = 3" X;. Let
M = E[X]. Then:

oc :| Amin (M) /R

Pr[Amax(X) = (1+ €)Amax(M)] < d - [W

- In our setting, X; = UTS:TJ-S;JU. X = #U,T_U,;: with probability p;.
Lo _—
LGP
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Matrix Concentration Applied to Leverage Score Sampling

Theorem (Matrix Chernoff Bound)

Consider independent symmetric random matrices
X1y ..oy Xm € RIX9 with X; = 0, Amax(X)) <R, and X = 3" X;. Let
M = E[X]. Then:

eE
(14 e)tte

Amin(M)/R \)
Pr Pmax(X) = (14 ) Amax(M)] < d - [ }

7/

- In our setting, X; = UTS:TJ-S;JU. X; = --U! U;.. with probability p;.

" M=EX=F2X ~

- R= 1’ |_U'|,-.
mlp )\m‘\X( E'& )

Wb
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“O‘_\ n'l, *
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Matrix Concentration Applied to Leverage Score Sampling

Theorem (Matrix Chernoff Bound)

Consider independent symmetric random matrices

X1y ..oy Xm € RIX9 with X; = 0, Amax(X)) <R, and X = 3" X;. Let
M = E[X]. Then:

eE :| )\min (M)/R

Pr[Amax(X) = (1+ €)Amax(M)] < d - [W

- In our setting, X; = UTS:TJ-S;JU. X = mip/U[:U,-,: with probability p;.
CM=EX = & 3
CR— /‘Lr\/\k_{lq> < =

= Tm__ Na%

- PrlUTSTSU = (T+¢)l] < d- [ e

]m/d
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Matrix Concentration Applied to Leverage Score Sampling

Theorem (Matrix Chernoff Bound)

Consider independent symmetric random matrices

X1y ..oy Xm € RIX9 with X; = 0, Amax(X)) <R, and X = 3" X;. Let
M = E[X]. Then:

:| Amin (M) /R

Pr Pmax(X) > (14 €)Amax(M)] < d - [(H—ee)“

- In our setting, X; = UTS:TJ-S;JU. X = m%,UI;U»',: with probability p;.

- M=EX =
. R=
. m/d 5
- PrlUTS'SU = (1+¢€)] < d- [ﬁ} <d.e-<m/d
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Matrix Concentration Applied to Leverage Score Sampling

Theorem (Matrix Chernoff Bound)

Consider independent symmetric random matrices

X1y ..oy Xm € RIX9 with X; = 0, Amax(X)) <R, and X = 3" X;. Let
M = E[X]. Then:

:|)\min(M)/R

Pr Pmax(X) > (14 €)Amax(M)] < d - [(H—ee)“

- In our setting, X; = UTS:TJS;JU. X = mip/U[:U,-,: with probability p;.

- M=E[X] =

" R= —lo\)(”)
m/d

- Ifwesetm=0 (M) we have Pr[UTSTSU = (1 + e)l] <4
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Subpace Embedding via Sampling

\\ /\\J\B@OT\

Theorem (Subspace Embedding via Leverage Score Sampling)

For any A € R"*? with left singular vector matrix U, let

7 = ||U;:|3 and p; = %= Let S € R™" have S, ;

independently set to \/%p/ - el with probability p.

Then, if m =0 (M), with probability >1—6, S is an

@

e-subspace embedding for A.

13



Subpace Embedding via Sampling

./\ - \\ RUYe)
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Theorem (Subspace Embedding via Leverage Score Sampling)

For any A € R"*? with left singular vector matrix U, let
= ||, 13 and p; = i LetS € R™" have S, ;
mdependently set to - el with probability p.

\/T)

Then, if m =0 (M), with probability >1—6, S is an
e-subspace embedding for A.

Matches oblivious random projection up to the log d factor.

R s T Al gt%
/\mbt W @Lg@
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Leverage Score Intuition



Check-In

Check-in Question: Would row-norm sampling from A directly
rather than its left singular vectors U have worked to give a
subspace embedding?

nooof =7 O
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