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- I'll release the weekly quiz later this afternoon. Due
Monday as usual.

- I'll also release Pset 4 shortly.
- 2 page project progress report due 4/16.



Subspace Embedding:

- Given A € R™9 want S € R™*" such that ||SAx||; ~ ||Ax]|, for all
x. le, ISyl = |ly||> for ally € col(A). Want m < n.

- For a single y, we can apply the Johnson-Lindenstrauss Lemma.
Here, we want to preserve the norms of infinite y.

- Proof via Johnson-Lindenstrauss Lemma and e-net argument.
Today:
- Finish the subspace embedding proof.

- Prove the Johnson-Lindenstrauss lemma itself via the
Hanson-Wright inequality.

- Possibly give a simple application of subspace embedding to
fast linear regression.



Subspace Embedding

Definition (Subspace Embedding)
S e R™*4 is an e-subspace embedding for A € R"*¢ if, for all x € RY,

(1= &)lIAX]l2 < [[SAX[l2 < (T + €)[|Ax]]2.

l.e, S preserves the norm of any vector Ax in the column span of A.

col(A) € R" col(SA) € R™

y = Ax
Sy = SAx



Randomized Subspace Embedding

Theorem (Oblivious Subspace Embedding)

Let S € R™*9 pe a random matrix with i.i.d. +1//m entries. Then if
m=0 (M) for any A € R"™ 9 with probability >1—46, S is
an e-subspace embedding of A.

mxn nxd m xd
S I
A

- S can be computed without any knowledge of A.

- Still achieves near optimal compression.

- Constructions where S is sparse or structured, allow efficient
computation of SA (fast JL-transform, input-sparsity time
algorithms via Count Sketch) 5



Proof Outline

1. Distributional Johnson-Lindenstrauss: For S € R™*? with i.i.d.
+1/y/m entries, for any fixed y € R", with probability 1— § for
very small d, (1= e)llyll2 < [[Syll2 < (1+ €)[ly/f2-

2. Via a union bound, have that for any fixed set of vectors
N C R", with probability 1— [N -6, [|SY|l2 = |ly||. for ally € .

3. But we want ||Sy|l, ~. |ly|l» for all y = Ax with x € RY. This is a
linear subspace, i.e., an infinite set of vectors!

4. ‘Discretize’ this subspace by rounding to a finite set of vectors
N, called an e-net for the subspace. Then apply union bound to
this finite set, and show that the discretization does not
introduce too much error.



Discretization of Unit Ball

Theorem
For any e <1, there exists a set of points N, C Sy with
V.| = (£) such that, for all y € Sy,
i —wlp <e.
i [l =wil2 = e

Sy

Proof last class via volume argument. By the distributional JL
lemma, if we set§’ =6 - (ﬁ)d then, via a union bound, with



Proof Via e-net

So Far: If we set m = O(d/€?) and pick random S € R™*", then with
probability > 14, [|Swl|; ~. [[wl|, for all w € N..

Expansion via net vectors: For any y € Sy, we can write:
y=wy+ (y — wp) for wg € N,

—w
=Wy +Cr- & forcq:HwaOHZ and e1:”;/7W0HeSV
— Wol|2

= Wo+C-Wq+Cq-
= Wp+C - Wq+ C

=Wo+C Wi+ G



Proof Via e-net

Have written y € Sy, as y = wgo + Ciwq + oW, + ... where
Wo, W1, ... € N, and ¢; < €. By triangle inequality:
IISy|l2 = [|Swo + c1Swq + &Swsy + ... ||z
< [|Swoll2 + 1l|Swall2 + col[Swall2 + . ..
<(O+)+e(1+e)+E(1+€)+...
(since via the union bound, ||Swl|; ~ ||w||; for all w € N)
< T+e€
— €
Similarly, can prove that ||Sy|[> > 1 — 2e, giving, for ally € Sy
(and hence all y € V):

(1=2e)llylla < [[Syll2 < (1 + 26) Iyl

~ 1+ 2e¢




Full Argument

- There exists an e-net NV, over the unit ball in A’s column
span, Sy with [NV | < (g)d.

- By distributional JL, form = 0 w with
probability > 1—¢, forallw € N, |
= forally € Sy, [|SY|2 =~ ||Yll2-

Swllz e [[w]2.
— forally e v, i.e, for all y = Ax for x € RY,

1Syll2 ~e [Iyll2-

= S e R™*"is an e-subspace embedding for A.
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Distributional JL Lemma Proof



Proofs of Distributional JL Lemma

There are many proofs of the distributional JL Lemma:

- Let S € R™*" have i.i.d. Gaussian entries. Observe that each
entry of Sy is distributed as M(0, ||y||3), and give a proof via
concentration of independent Chi-Squared random variables
(see 514 slides).

= Write [[Sy|l3 = 321 7L, Yok SijSikyjye and prove
concentration of this sum, even though the terms are not all
independent of each other (only pairwise independent within
one row).

- Apply the Hanson-Wright inequality — an exponential
concentration inequality for random quadratic forms.

- This inequality comes up in a lot of places, including in the tight
analysis of Hutchinson’s trace estimator.

n



Hanson Wright Inequality

Theorem (Hanson-Wright Inequality)

Let x € R" be a vector of i.i.d. random +1 values. For any matrix

A e RN

i t
Pr[ X' Ax — tr(A)| > t] < 2exp (—C- min { ,}) )
| | IAlIE" [IAll2

[ '

yy'

mn x 1

mxn ‘

Observe that sTAs = Y71, >0 370 1S jSiyjVk = [ISyI and that
tr(A) = m-tr(yy") = m - |ly|l3.
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Distributional JL via Wright Inequality

Let x = v/m-s, so x hasi.i.d. £1entries. Assume w.L.o.g. that |ly|, = 1.
Pr[[[ISyll3 — 1| > €] = Pr[|s"As — 1| > ¢]
= Pr[|x"Ax — m| > em]
= Pr[|x"Ax — tr(A)| > em]

. (em)2 em })
< 2exp (—C-mm{ , .
1Al " 1Al

IAIIE = m - [lyy"llz = m - [lyl[3 = m

1Al = llyy™ll2 = [Iyll2 =1

2
PrI[ISyIZ — 1] > €] < 2exp (_c. min { (62) 62”}) = 2exp(—ce?m)

Ifwe setm =0 (M) Pr|ISyI2 — 1| > €] < 4, giving the
distributional JL lemma.
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Application to Linear Regression



Subspace Embedding Application

Theorem (Sketched Linear Regression)

Consider A € R™9 and b € R". We seek to find an approximate
solution to the linear regression problem:

arg min ||AX — b|[,.
XERI

Let S € R™*9 be an e-subspace embedding for [A; b] € R™*9. Let
X = arg min,cpa ||SAX — Sb||,. Then we have:

1
€ min [|Ax = b]».
Rd

[AX — bl < —
1T—€ xe

- Time to compute x* = arg min g |Ax — b||; is O(nd?).

- Time to compute X is just O(md?). For large n (i.e., a highly
over-constrained problem) can set m < n.



Sketched Regression Proof

Claim: Since S is a subspace embedding for [A; b], for all x € RY,

(1= €)||Ax = bll2 < ||ISAx = Sb|l2 < (1 + €)||Ax — b]|2-
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Sketched Regression Proof

Claim: Since S is a subspace embedding for [A; b], for all x € RY,
(1= €)[|Ax = bll2 < [|SAx — Sbll2 < (1 + €)[|Ax — b2

Let X* = arg min,pa [|AX — b||; and X = arg minpq [|SAX — Sb|2.

We have:
» 1 1 .

|AX — b||; < 1—||SAX —Sb|; < T |ISAX* — Sb|,

— € — €

1+e€

1—¢€

IN

- [JAX* — b||».



