COMPSCI 614: Randomized Algorithms with Applications to Data Science

Prof. Cameron Musco University of Massachusetts Amherst. Spring 2024. Lecture 15

Logistics

- I'll release the weekly quiz later this afternoon. Due Monday as usual.
- I'll also release Pset 4 shortly.
- · 2 page project progress report due 4/16.

Summary

Subspace Embedding:

- Given $A \in \mathbb{R}^{n \times d}$, want $S \in \mathbb{R}^{m \times n}$ such that $||SAx||_2 \approx ||Ax||_2$ for all x. I.e., $||Sy||_2 \approx ||y||_2$ for all $y \in col(A)$. Want $m \ll n$.
- For a single y, we can apply the Johnson-Lindenstrauss Lemma. Here, we want to preserve the norms of infinite y.
- Proof via Johnson-Lindenstrauss Lemma and ϵ -net argument.

Summary

Subspace Embedding:

- Given $A \in \mathbb{R}^{n \times d}$, want $S \in \mathbb{R}^{m \times n}$ such that $||SAx||_2 \approx ||Ax||_2$ for all x. I.e., $||Sy||_2 \approx ||y||_2$ for all $y \in col(A)$. Want $m \ll n$.
- For a single y, we can apply the Johnson-Lindenstrauss Lemma. Here, we want to preserve the norms of infinite y.
- · Proof via Johnson-Lindenstrauss Lemma and ϵ -net argument.

Today:

- Finish the subspace embedding proof.
- Prove the Johnson-Lindenstrauss lemma itself via the Hanson-Wright inequality.
- Possibly give a simple application of subspace embedding to fast linear regression.

3

Subspace Embedding

Definition (Subspace Embedding)

 $S \in \mathbb{R}^{m \times d}$ is an ϵ -subspace embedding for $A \in \mathbb{R}^{n \times d}$ if, for all $x \in \mathbb{R}^d$,

$$(1 - \epsilon) \|Ax\|_2 \le \|SAx\|_2 \le (1 + \epsilon) \|Ax\|_2.$$

I.e., S preserves the norm of any vector Ax in the column span of A.

Randomized Subspace Embedding

Theorem (Oblivious Subspace Embedding)

Let $\mathbf{S} \in \mathbb{R}^{m \times d}$ be a random matrix with i.i.d. $\pm 1/\sqrt{m}$ entries. Then if $m = O\left(\frac{d + \log(1/\delta)}{\epsilon^2}\right)$, for any $A \in \mathbb{R}^{n \times d}$, with probability $\geq 1 - \delta$, \mathbf{S} is an ϵ -subspace embedding of A.

- S can be computed without any knowledge of A.
- · Still achieves near optimal compression.
- Constructions where S is sparse or structured, allow efficient computation of SA (fast JL-transform, input-sparsity time algorithms via Count Sketch)

Proof Outline

- 1. Distributional Johnson-Lindenstrauss: For $S \in \mathbb{R}^{m \times d}$ with i.i.d. $\pm 1/\sqrt{m}$ entries, for any fixed $y \in \mathbb{R}^n$, with probability 1δ for very small δ , $(1 \epsilon)||y||_2 \le ||Sy||_2 \le (1 + \epsilon)||y||_2$.
- 2. Via a union bound, have that for any fixed set of vectors $\mathcal{N} \subset \mathbb{R}^n$, with probability $1 |\mathcal{N}| \cdot \delta$, $||\mathbf{S}y||_2 \approx_{\epsilon} ||y||_2$ for all $y \in \mathcal{N}$.
- 3. But we want $\|\mathbf{S}y\|_2 \approx_{\epsilon} \|y\|_2$ for all y = Ax with $x \in \mathbb{R}^d$. This is a linear subspace, i.e., an infinite set of vectors!
- 4. 'Discretize' this subspace by rounding to a finite set of vectors \mathcal{N} , called an ϵ -net for the subspace. Then apply union bound to this finite set, and show that the discretization does not introduce too much error.

Discretization of Unit Ball

Theorem

For any $\epsilon \leq 1$, there exists a set of points $\mathcal{N}_{\epsilon} \subset S_{\mathcal{V}}$ with $|\mathcal{N}_{\epsilon}| = \left(\frac{4}{\epsilon}\right)^d$ such that, for all $y \in S_{\mathcal{V}}$, $\min_{w \in \mathcal{N}_{\epsilon}} ||y - w||_2 \leq \epsilon.$

Proof last class via volume argument.

Discretization of Unit Ball

Theorem

For any $\epsilon \leq 1$, there exists a set of points $\mathcal{N}_{\epsilon} \subset S_{\mathcal{V}}$ with $|\mathcal{N}_{\epsilon}| = \left(\frac{4}{\epsilon}\right)^d$ such that, for all $y \in S_{\mathcal{V}}$, $\min_{w \in \mathcal{N}_{\epsilon}} ||y - w||_2 \leq \epsilon.$

By the distributional JL lemma, if we set $\delta' = \delta \cdot \left(\frac{\epsilon}{4}\right)^d$ then, via a union bound, with probability at least $1 - \delta' \cdot |\mathcal{N}_{\epsilon}| = 1 - \delta$, for all $w \in \mathcal{N}_{\epsilon}$, $(1 - \epsilon)||w||_2 < ||\mathbf{S}w||_2 < (1 + \epsilon)||w||_2.$

Requires $S \in \mathbb{R}^{m \times n}$ where

$$m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right) O\left(\frac{d\log(4/\epsilon) + \log(1/\delta)}{\epsilon^2}\right) = \tilde{O}\left(\frac{d}{\epsilon^2}\right).$$

So Far: If we set $m = \tilde{O}(d/\epsilon^2)$ and pick random $S \in \mathbb{R}^{m \times n}$, then with probability $\geq 1 - \delta$, $||Sw||_2 \approx_{\epsilon} ||w||_2$ for all $w \in \mathcal{N}_{\epsilon}$.

So Far: If we set $m = \tilde{O}(d/\epsilon^2)$ and pick random $S \in \mathbb{R}^{m \times n}$, then with probability $\geq 1 - \delta$, $||Sw||_2 \approx_{\epsilon} ||w||_2$ for all $w \in \mathcal{N}_{\epsilon}$.

$$y = w_0 + (y - w_0)$$
 for $w_0 \in \mathcal{N}_{\epsilon}$

So Far: If we set $m = \tilde{O}(d/\epsilon^2)$ and pick random $S \in \mathbb{R}^{m \times n}$, then with probability $\geq 1 - \delta$, $||Sw||_2 \approx_{\epsilon} ||w||_2$ for all $w \in \mathcal{N}_{\epsilon}$.

$$y = w_0 + (y - w_0)$$
 for $w_0 \in \mathcal{N}_{\epsilon}$
= $w_0 + c_1 \cdot e_1$ for $c_1 = \|y - w_0\|_2$ and $e_1 = \frac{y - w_0}{\|y - w_0\|_2} \in S_{\mathcal{V}}$

So Far: If we set $m = \tilde{O}(d/\epsilon^2)$ and pick random $S \in \mathbb{R}^{m \times n}$, then with probability $\geq 1 - \delta$, $||Sw||_2 \approx_{\epsilon} ||w||_2$ for all $w \in \mathcal{N}_{\epsilon}$.

$$y = w_0 + (y - w_0)$$
 for $w_0 \in \mathcal{N}_{\epsilon}$
 $= w_0 + c_1 \cdot e_1$ for $c_1 = \|y - w_0\|_2$ and $e_1 = \frac{y - w_0}{\|y - w_0\|_2} \in S_{\mathcal{V}}$
 $= w_0 + c_1 \cdot w_1 + c_1 \cdot (e_1 - w_1)$ for $w_1 \in \mathcal{N}_{\epsilon}$

So Far: If we set $m = \tilde{O}(d/\epsilon^2)$ and pick random $S \in \mathbb{R}^{m \times n}$, then with probability $\geq 1 - \delta$, $\|Sw\|_2 \approx_{\epsilon} \|w\|_2$ for all $w \in \mathcal{N}_{\epsilon}$.

$$y = w_0 + (y - w_0) \qquad \text{for } w_0 \in \mathcal{N}_{\epsilon}$$

$$= w_0 + c_1 \cdot e_1 \qquad \text{for } c_1 = \|y - w_0\|_2 \text{ and } e_1 = \frac{y - w_0}{\|y - w_0\|_2} \in S_{\mathcal{V}}$$

$$= w_0 + c_1 \cdot w_1 + c_1 \cdot (e_1 - w_1) \qquad \text{for } w_1 \in \mathcal{N}_{\epsilon}$$

$$= w_0 + c_1 \cdot w_1 + c_2 \cdot e_2 \qquad \text{for } c_2 = c_1 \cdot \|e_1 - w_1\|_2 \text{ and } e_2 = \frac{e_1 - w_1}{\|e_1 - w_1\|_2} \in S_{\mathcal{V}}$$

So Far: If we set $m = \tilde{O}(d/\epsilon^2)$ and pick random $S \in \mathbb{R}^{m \times n}$, then with probability $\geq 1 - \delta$, $||Sw||_2 \approx_{\epsilon} ||w||_2$ for all $w \in \mathcal{N}_{\epsilon}$.

$$\begin{aligned} y &= w_0 + (y - w_0) & \text{for } w_0 \in \mathcal{N}_{\epsilon} \\ &= w_0 + c_1 \cdot e_1 & \text{for } c_1 = \|y - w_0\|_2 \text{ and } e_1 = \frac{y - w_0}{\|y - w_0\|_2} \in S_{\mathcal{V}} \\ &= w_0 + c_1 \cdot w_1 + c_1 \cdot (e_1 - w_1) & \text{for } w_1 \in \mathcal{N}_{\epsilon} \\ &= w_0 + c_1 \cdot w_1 + c_2 \cdot e_2 & \text{for } c_2 = c_1 \cdot \|e_1 - w_1\|_2 \text{ and } e_2 = \frac{e_1 - w_1}{\|e_1 - w_1\|_2} \in S_{\mathcal{V}} \\ &= w_0 + c_1 \cdot w_1 + c_2 \cdot w_2 + c_3 \cdot w_3 + \dots \end{aligned}$$

So Far: If we set $m = \tilde{O}(d/\epsilon^2)$ and pick random $S \in \mathbb{R}^{m \times n}$, then with probability $\geq 1 - \delta$, $||Sw||_2 \approx_{\epsilon} ||w||_2$ for all $w \in \mathcal{N}_{\epsilon}$.

Expansion via net vectors: For any $y \in S_{\mathcal{V}}$, we can write:

$$y = w_0 + (y - w_0) \qquad \text{for } w_0 \in \mathcal{N}_{\epsilon}$$

$$= w_0 + c_1 \cdot e_1 \qquad \text{for } c_1 = \|y - w_0\|_2 \text{ and } e_1 = \frac{y - w_0}{\|y - w_0\|_2} \in S_{\mathcal{V}}$$

$$= w_0 + c_1 \cdot w_1 + c_1 \cdot (e_1 - w_1) \qquad \text{for } w_1 \in \mathcal{N}_{\epsilon}$$

$$= w_0 + c_1 \cdot w_1 + c_2 \cdot e_2 \qquad \text{for } c_2 = c_1 \cdot \|e_1 - w_1\|_2 \text{ and } e_2 = \frac{e_1 - w_1}{\|e_1 - w_1\|_2} \in S_{\mathcal{V}}$$

$$= w_0 + c_1 \cdot w_1 + c_2 \cdot w_2 + c_3 \cdot w_3 + \dots$$

For all *i*, have $c_i \leq \epsilon^i$.

$$\|\mathbf{S}y\|_2 = \|\mathbf{S}w_0 + c_1\mathbf{S}w_1 + c_2\mathbf{S}w_2 + \dots\|_2$$

$$\|\mathbf{S}y\|_2 = \|\mathbf{S}w_0 + c_1\mathbf{S}w_1 + c_2\mathbf{S}w_2 + \dots\|_2$$

 $\leq \|\mathbf{S}w_0\|_2 + c_1\|\mathbf{S}w_1\|_2 + c_2\|\mathbf{S}w_2\|_2 + \dots$

$$\begin{split} \| \mathbf{S}y \|_2 &= \| \mathbf{S}w_0 + c_1 \mathbf{S}w_1 + c_2 \mathbf{S}w_2 + \dots \|_2 \\ &\leq \| \mathbf{S}w_0 \|_2 + c_1 \| \mathbf{S}w_1 \|_2 + c_2 \| \mathbf{S}w_2 \|_2 + \dots \\ &\leq (1 + \epsilon) + \epsilon (1 + \epsilon) + \epsilon^2 (1 + \epsilon) + \dots \\ &\text{(since via the union bound, } \| \mathbf{S}w \|_2 \approx \| w \|_2 \text{ for all } w \in \mathcal{N}_\epsilon) \end{split}$$

$$\begin{split} \| \mathbf{S} \mathbf{y} \|_2 &= \| \mathbf{S} w_0 + c_1 \mathbf{S} w_1 + c_2 \mathbf{S} w_2 + \dots \|_2 \\ &\leq \| \mathbf{S} w_0 \|_2 + c_1 \| \mathbf{S} w_1 \|_2 + c_2 \| \mathbf{S} w_2 \|_2 + \dots \\ &\leq (1 + \epsilon) + \epsilon (1 + \epsilon) + \epsilon^2 (1 + \epsilon) + \dots \\ (\text{since via the union bound, } \| \mathbf{S} \mathbf{w} \|_2 \approx \| \mathbf{w} \|_2 \text{ for all } \mathbf{w} \in \mathcal{N}_{\epsilon}) \\ &\leq \frac{1 + \epsilon}{1 - \epsilon} \approx 1 + 2\epsilon \end{split}$$

Have written $y \in S_{\mathcal{V}}$ as $y = w_0 + c_1w_1 + c_2w_2 + \dots$ where $w_0, w_1, \dots \in \mathcal{N}_{\epsilon}$, and $c_i \leq \epsilon^i$. By triangle inequality:

$$\begin{split} \| \mathbf{S}y \|_2 &= \| \mathbf{S}w_0 + c_1 \mathbf{S}w_1 + c_2 \mathbf{S}w_2 + \dots \|_2 \\ &\leq \| \mathbf{S}w_0 \|_2 + c_1 \| \mathbf{S}w_1 \|_2 + c_2 \| \mathbf{S}w_2 \|_2 + \dots \\ &\leq (1 + \epsilon) + \epsilon (1 + \epsilon) + \epsilon^2 (1 + \epsilon) + \dots \\ (\text{since via the union bound, } \| \mathbf{S}w \|_2 \approx \| w \|_2 \text{ for all } w \in \mathcal{N}_{\epsilon}) \\ &\leq \frac{1 + \epsilon}{1 - \epsilon} \approx 1 + 2\epsilon \end{split}$$

Similarly, can prove that $\|\mathbf{S}y\|_2 \ge 1 - 2\epsilon$, giving, for all $y \in S_{\mathcal{V}}$ (and hence all $y \in \mathcal{V}$):

$$(1-2\epsilon)||y||_2 \le ||Sy||_2 \le (1+2\epsilon)||y||_2.$$

• There exists an ϵ -net \mathcal{N}_{ϵ} over the unit ball in A's column span, $S_{\mathcal{V}}$ with $|\mathcal{N}_{\epsilon}| \leq \left(\frac{L}{\epsilon}\right)^{d}$.

- There exists an ϵ -net \mathcal{N}_{ϵ} over the unit ball in A's column span, $S_{\mathcal{V}}$ with $|\mathcal{N}_{\epsilon}| \leq \left(\frac{4}{\epsilon}\right)^{d}$.
- By distributional JL, for $m = O\left(\frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon^2}\right)$, with probability $\geq 1 \delta$, for all $w \in \mathcal{N}_{\epsilon}$, $\|\mathbf{S}w\|_2 \approx_{\epsilon} \|w\|_2$.

- There exists an ϵ -net \mathcal{N}_{ϵ} over the unit ball in A's column span, $S_{\mathcal{V}}$ with $|\mathcal{N}_{\epsilon}| \leq \left(\frac{4}{\epsilon}\right)^{d}$.
- By distributional JL, for $m = O\left(\frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon^2}\right)$, with probability $\geq 1 \delta$, for all $w \in \mathcal{N}_{\epsilon}$, $\|\mathbf{S}w\|_2 \approx_{\epsilon} \|w\|_2$. \Longrightarrow for all $y \in \mathcal{S}_{\mathcal{V}}$, $\|\mathbf{S}y\|_2 \approx_{\epsilon} \|y\|_2$.

- There exists an ϵ -net \mathcal{N}_{ϵ} over the unit ball in A's column span, $S_{\mathcal{V}}$ with $|\mathcal{N}_{\epsilon}| \leq \left(\frac{4}{\epsilon}\right)^{d}$.
- By distributional JL, for $m = O\left(\frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon^2}\right)$, with probability $\geq 1 \delta$, for all $w \in \mathcal{N}_{\epsilon}$, $\|\mathbf{S}w\|_2 \approx_{\epsilon} \|w\|_2$.
 - \implies for all $y \in \mathcal{S}_{\mathcal{V}}$, $\|\mathbf{S}y\|_2 \approx_{\epsilon} \|y\|_2$.
 - \implies for all $y \in \mathcal{V}$, i.e., for all y = Ax for $x \in \mathbb{R}^d$, $\|\mathbf{S}y\|_2 \approx_{\epsilon} \|y\|_2$.

- There exists an ϵ -net \mathcal{N}_{ϵ} over the unit ball in A's column span, $S_{\mathcal{V}}$ with $|\mathcal{N}_{\epsilon}| \leq \left(\frac{4}{\epsilon}\right)^{d}$.
- By distributional JL, for $m = O\left(\frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon^2}\right)$, with probability $\geq 1 \delta$, for all $w \in \mathcal{N}_{\epsilon}$, $\|\mathbf{S}w\|_2 \approx_{\epsilon} \|w\|_2$.
 - \implies for all $y \in \mathcal{S}_{\mathcal{V}}$, $\|\mathbf{S}y\|_2 \approx_{\epsilon} \|y\|_2$.
 - \implies for all $y \in \mathcal{V}$, i.e., for all y = Ax for $x \in \mathbb{R}^d$, $\|\mathbf{S}y\|_2 \approx_{\epsilon} \|y\|_2$.
 - \implies **S** $\in \mathbb{R}^{m \times n}$ is an ϵ -subspace embedding for A.

Distributional JL Lemma Proof

Proofs of Distributional JL Lemma

There are many proofs of the distributional JL Lemma:

• Let $S \in \mathbb{R}^{m \times n}$ have i.i.d. Gaussian entries. Observe that each entry of Sy is distributed as $\mathcal{N}(0, \|y\|_2^2)$, and give a proof via concentration of independent Chi-Squared random variables (see 514 slides).

Proofs of Distributional JL Lemma

There are many proofs of the distributional JL Lemma:

- Let $S \in \mathbb{R}^{m \times n}$ have i.i.d. Gaussian entries. Observe that each entry of Sy is distributed as $\mathcal{N}(0, \|y\|_2^2)$, and give a proof via concentration of independent Chi-Squared random variables (see 514 slides).
- Write $\|\mathbf{S}y\|_2^2 = \sum_{i=1}^m \sum_{j=1}^n \sum_{k=1}^n \mathbf{S}_{i,j} \mathbf{S}_{i,k} y_j y_k$ and prove concentration of this sum, even though the terms are not all independent of each other (only pairwise independent within one row).

Proofs of Distributional JL Lemma

There are many proofs of the distributional JL Lemma:

- Let $S \in \mathbb{R}^{m \times n}$ have i.i.d. Gaussian entries. Observe that each entry of Sy is distributed as $\mathcal{N}(0, \|y\|_2^2)$, and give a proof via concentration of independent Chi-Squared random variables (see 514 slides).
- Write $\|\mathbf{S}y\|_2^2 = \sum_{i=1}^m \sum_{j=1}^n \sum_{k=1}^n \mathbf{S}_{i,j} \mathbf{S}_{i,k} y_j y_k$ and prove concentration of this sum, even though the terms are not all independent of each other (only pairwise independent within one row).
- Apply the Hanson-Wright inequality an exponential concentration inequality for random quadratic forms.
- This inequality comes up in a lot of places, including in the tight analysis of Hutchinson's trace estimator.

Theorem (Hanson-Wright Inequality)

$$\Pr[|\mathbf{x}^{\mathsf{T}}A\mathbf{x} - \operatorname{tr}(A)| \ge t] \le 2 \exp\left(-c \cdot \min\left\{\frac{t^2}{\|A\|_F^2}, \frac{t}{\|A\|_2}\right\}\right).$$

Theorem (Hanson-Wright Inequality)

$$\Pr[\left|\mathbf{x}^{\mathsf{T}} A \mathbf{x} - \operatorname{tr}(A)\right| \ge t] \le 2 \exp\left(-c \cdot \min\left\{\frac{t^2}{\|A\|_F^2}, \frac{t}{\|A\|_2}\right\}\right).$$

Theorem (Hanson-Wright Inequality)

$$\Pr[\left|\mathbf{x}^{\mathsf{T}} A \mathbf{x} - \operatorname{tr}(A)\right| \ge t] \le 2 \exp\left(-c \cdot \min\left\{\frac{t^2}{\|A\|_F^2}, \frac{t}{\|A\|_2}\right\}\right).$$

Observe that
$$\mathbf{s}^T A \mathbf{s} = \sum_{i=1}^m \sum_{j=1}^n \sum_{k=1}^n \mathbf{S}_{i,j} \mathbf{S}_{i,k} y_j y_k = \|\mathbf{S} y\|_2^2$$
 and that $\operatorname{tr}(A) = m \cdot \operatorname{tr}(y y^T)$

Theorem (Hanson-Wright Inequality)

$$\Pr[\left|\mathbf{x}^{\mathsf{T}} A \mathbf{x} - \operatorname{tr}(A)\right| \ge t] \le 2 \exp\left(-c \cdot \min\left\{\frac{t^2}{\|A\|_F^2}, \frac{t}{\|A\|_2}\right\}\right).$$

Observe that
$$\mathbf{s}^T A \mathbf{s} = \sum_{i=1}^m \sum_{j=1}^n \sum_{k=1}^n \mathbf{S}_{i,j} \mathbf{S}_{i,k} y_j y_k = \|\mathbf{S} y\|_2^2$$
 and that
$$\operatorname{tr}(A) = m \cdot \operatorname{tr}(y y^T) = m \cdot \|y\|_2^2.$$

Distributional JL via Wright Inequality

Let $\mathbf{x} = \sqrt{m} \cdot \mathbf{s}$, so \mathbf{x} has i.i.d. ± 1 entries. Assume w.l.o.g. that $||y||_2 = 1$.

$$\Pr[\left|\|\mathsf{S}y\|_2^2 - 1\right| \ge \epsilon] = \Pr[\left|\mathsf{s}^\mathsf{T} \mathsf{A}\mathsf{s} - 1\right| \ge \epsilon]$$

$$\Pr[\left|\|\mathbf{S}\mathbf{y}\|_{2}^{2} - 1\right| \ge \epsilon] = \Pr[\left|\mathbf{s}^{\mathsf{T}}A\mathbf{s} - 1\right| \ge \epsilon]$$
$$= \Pr[\left|\mathbf{x}^{\mathsf{T}}A\mathbf{x} - m\right| \ge \epsilon m]$$

$$\begin{aligned} \Pr[\left| \| \mathbf{S} \mathbf{y} \|_{2}^{2} - 1 \right| &\geq \epsilon] = \Pr[\left| \mathbf{s}^{\mathsf{T}} \mathbf{A} \mathbf{s} - 1 \right| \geq \epsilon] \\ &= \Pr[\left| \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} - m \right| \geq \epsilon m] \\ &= \Pr[\left| \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} - \operatorname{tr}(\mathbf{A}) \right| \geq \epsilon m] \end{aligned}$$

$$\begin{aligned} \Pr[\left|\|\mathbf{S}\mathbf{y}\|_{2}^{2}-1\right| \geq \epsilon] &= \Pr[\left|\mathbf{s}^{\mathsf{T}}A\mathbf{s}-1\right| \geq \epsilon] \\ &= \Pr[\left|\mathbf{x}^{\mathsf{T}}A\mathbf{x}-m\right| \geq \epsilon m] \\ &= \Pr[\left|\mathbf{x}^{\mathsf{T}}A\mathbf{x}-\mathsf{tr}(A)\right| \geq \epsilon m] \\ &\leq 2\exp\left(-c \cdot \min\left\{\frac{(\epsilon m)^{2}}{\|A\|_{F}^{2}}, \frac{\epsilon m}{\|A\|_{2}}\right\}\right). \end{aligned}$$

$$\begin{aligned} \Pr[\left|\|\mathbf{S}\mathbf{y}\|_{2}^{2} - 1\right| &\geq \epsilon] = \Pr[\left|\mathbf{s}^{\mathsf{T}}A\mathbf{s} - 1\right| \geq \epsilon] \\ &= \Pr[\left|\mathbf{x}^{\mathsf{T}}A\mathbf{x} - m\right| \geq \epsilon m] \\ &= \Pr[\left|\mathbf{x}^{\mathsf{T}}A\mathbf{x} - \operatorname{tr}(A)\right| \geq \epsilon m] \\ &\leq 2 \exp\left(-c \cdot \min\left\{\frac{(\epsilon m)^{2}}{\|A\|_{F}^{2}}, \frac{\epsilon m}{\|A\|_{2}}\right\}\right). \end{aligned}$$

$$||A||_F^2 =$$

$$\begin{aligned} \Pr[\left|\|\mathbf{S}y\|_{2}^{2}-1\right| \geq \epsilon] &= \Pr[\left|\mathbf{s}^{T}A\mathbf{s}-1\right| \geq \epsilon] \\ &= \Pr[\left|\mathbf{x}^{T}A\mathbf{x}-m\right| \geq \epsilon m] \\ &= \Pr[\left|\mathbf{x}^{T}A\mathbf{x}-\operatorname{tr}(A)\right| \geq \epsilon m] \\ &\leq 2\exp\left(-c \cdot \min\left\{\frac{(\epsilon m)^{2}}{\|A\|_{F}^{2}}, \frac{\epsilon m}{\|A\|_{2}}\right\}\right). \end{aligned}$$

$$||A||_F^2 = m \cdot ||yy^T||_F^2$$

$$\begin{split} \Pr[\left|\|\mathbf{S}\mathbf{y}\|_{2}^{2}-1\right| \geq \epsilon] &= \Pr[\left|\mathbf{s}^{\mathsf{T}}A\mathbf{s}-1\right| \geq \epsilon] \\ &= \Pr[\left|\mathbf{x}^{\mathsf{T}}A\mathbf{x}-m\right| \geq \epsilon m] \\ &= \Pr[\left|\mathbf{x}^{\mathsf{T}}A\mathbf{x}-\mathsf{tr}(A)\right| \geq \epsilon m] \\ &\leq 2\exp\left(-c\cdot \min\left\{\frac{(\epsilon m)^{2}}{\|A\|_{F}^{2}}, \frac{\epsilon m}{\|A\|_{2}}\right\}\right). \end{split}$$

$$||A||_F^2 = m \cdot ||yy^T||_F^2 = m \cdot ||y||_2^2 = m$$

$$\Pr[\left|\|\mathbf{S}\mathbf{y}\|_{2}^{2} - 1\right| \ge \epsilon] = \Pr[\left|\mathbf{s}^{T}A\mathbf{s} - 1\right| \ge \epsilon]$$

$$= \Pr[\left|\mathbf{x}^{T}A\mathbf{x} - m\right| \ge \epsilon m]$$

$$= \Pr[\left|\mathbf{x}^{T}A\mathbf{x} - \operatorname{tr}(A)\right| \ge \epsilon m]$$

$$\le 2 \exp\left(-c \cdot \min\left\{\frac{(\epsilon m)^{2}}{\|A\|_{F}^{2}}, \frac{\epsilon m}{\|A\|_{2}}\right\}\right).$$

$$||A||_F^2 = m \cdot ||yy^T||_F^2 = m \cdot ||y||_2^2 = m$$

$$||A||_2 =$$

$$\begin{aligned} \Pr[\left| \| \mathbf{S} \mathbf{y} \|_{2}^{2} - 1 \right| &\geq \epsilon] &= \Pr[\left| \mathbf{s}^{\mathsf{T}} A \mathbf{s} - 1 \right| \geq \epsilon] \\ &= \Pr[\left| \mathbf{x}^{\mathsf{T}} A \mathbf{x} - m \right| \geq \epsilon m] \\ &= \Pr[\left| \mathbf{x}^{\mathsf{T}} A \mathbf{x} - \operatorname{tr}(A) \right| \geq \epsilon m] \\ &\leq 2 \exp\left(-c \cdot \min\left\{ \frac{(\epsilon m)^{2}}{\|A\|_{F}^{2}}, \frac{\epsilon m}{\|A\|_{2}} \right\} \right). \end{aligned}$$

$$||A||_F^2 = m \cdot ||yy^T||_F^2 = m \cdot ||y||_2^2 = m$$

 $||A||_2 = ||yy^T||_2$

$$\begin{aligned} \Pr[\left| \| \mathbf{S} \mathbf{y} \|_{2}^{2} - 1 \right| &\geq \epsilon] &= \Pr[\left| \mathbf{s}^{\mathsf{T}} A \mathbf{s} - 1 \right| \geq \epsilon] \\ &= \Pr[\left| \mathbf{x}^{\mathsf{T}} A \mathbf{x} - m \right| \geq \epsilon m] \\ &= \Pr[\left| \mathbf{x}^{\mathsf{T}} A \mathbf{x} - \operatorname{tr}(A) \right| \geq \epsilon m] \\ &\leq 2 \exp\left(-c \cdot \min\left\{ \frac{(\epsilon m)^{2}}{\|A\|_{F}^{2}}, \frac{\epsilon m}{\|A\|_{2}} \right\} \right). \end{aligned}$$

$$||A||_F^2 = m \cdot ||yy^T||_F^2 = m \cdot ||y||_2^2 = m$$

 $||A||_2 = ||yv^T||_2 = ||y||_2 = 1$

$$\begin{split} \Pr[\left|\|\mathbf{S}\mathbf{y}\|_{2}^{2}-1\right| &\geq \epsilon] = \Pr[\left|\mathbf{s}^{T}A\mathbf{s}-1\right| \geq \epsilon] \\ &= \Pr[\left|\mathbf{x}^{T}A\mathbf{x}-m\right| \geq \epsilon m] \\ &= \Pr[\left|\mathbf{x}^{T}A\mathbf{x}-\operatorname{tr}(A)\right| \geq \epsilon m] \\ &\leq 2\exp\left(-c \cdot \min\left\{\frac{(\epsilon m)^{2}}{\|A\|_{F}^{2}}, \frac{\epsilon m}{\|A\|_{2}}\right\}\right). \end{split}$$

$$||A||_F^2 = m \cdot ||yy^T||_F^2 = m \cdot ||y||_2^2 = m$$

$$||A||_2 = ||yy^T||_2 = ||y||_2 = 1$$

$$\Pr[\left|\|\mathbf{S}y\|_{2}^{2}-1\right| \geq \epsilon] \leq 2\exp\left(-c \cdot \min\left\{\frac{(\epsilon m)^{2}}{m}, \frac{\epsilon m}{1}\right\}\right) = 2\exp(-c\epsilon^{2}m)$$

Let $\mathbf{x} = \sqrt{m} \cdot \mathbf{s}$, so \mathbf{x} has i.i.d. ± 1 entries. Assume w.l.o.g. that $\|\mathbf{y}\|_2 = 1$.

$$\begin{split} \Pr[\big| \| \mathbf{S} \mathbf{y} \|_2^2 - 1 \big| &\geq \epsilon \big] &= \Pr[\big| \mathbf{s}^T \mathbf{A} \mathbf{s} - 1 \big| \geq \epsilon \big] \\ &= \Pr[\big| \mathbf{x}^T \mathbf{A} \mathbf{x} - m \big| \geq \epsilon m \big] \\ &= \Pr[\big| \mathbf{x}^T \mathbf{A} \mathbf{x} - \operatorname{tr}(\mathbf{A}) \big| \geq \epsilon m \big] \\ &\leq 2 \exp\left(-c \cdot \min\left\{ \frac{(\epsilon m)^2}{\|\mathbf{A}\|_F^2}, \frac{\epsilon m}{\|\mathbf{A}\|_2} \right\} \right). \end{split}$$

$$||A||_F^2 = m \cdot ||yy^T||_F^2 = m \cdot ||y||_2^2 = m$$

$$||A||_2 = ||yy^T||_2 = ||y||_2 = 1$$

$$\Pr[\left|\|\mathbf{S}\mathbf{y}\|_{2}^{2} - 1\right| \ge \epsilon] \le 2\exp\left(-c \cdot \min\left\{\frac{(\epsilon m)^{2}}{m}, \frac{\epsilon m}{1}\right\}\right) = 2\exp(-c\epsilon^{2}m)$$

If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, $\Pr[\left|\|\mathbf{S}\mathbf{y}\|_2^2 - 1\right| \ge \epsilon] \le \delta$, giving the distributional JL lemma.

Application to Linear Regression

Subspace Embedding Application

Theorem (Sketched Linear Regression)

Consider $A \in \mathbb{R}^{n \times d}$ and $b \in \mathbb{R}^n$. We seek to find an approximate solution to the linear regression problem:

$$\underset{x \in \mathbb{R}^d}{\text{arg min }} \|Ax - b\|_2.$$

Let $S \in \mathbb{R}^{m \times d}$ be an ϵ -subspace embedding for $[A;b] \in \mathbb{R}^{n \times d+1}$. Let $\tilde{X} = \arg\min_{x \in \mathbb{R}^d} \|SAx - Sb\|_2$. Then we have:

$$||A\tilde{x} - b||_2 \le \frac{1+\epsilon}{1-\epsilon} \cdot \min_{x \in \mathbb{R}^d} ||Ax - b||_2.$$

Subspace Embedding Application

Theorem (Sketched Linear Regression)

Consider $A \in \mathbb{R}^{n \times d}$ and $b \in \mathbb{R}^n$. We seek to find an approximate solution to the linear regression problem:

$$\underset{x \in \mathbb{R}^d}{\text{arg min }} \|Ax - b\|_2.$$

Let $S \in \mathbb{R}^{m \times d}$ be an ϵ -subspace embedding for $[A;b] \in \mathbb{R}^{n \times d+1}$. Let $\tilde{X} = \arg\min_{x \in \mathbb{R}^d} \|SAx - Sb\|_2$. Then we have:

$$||A\tilde{x} - b||_2 \le \frac{1 + \epsilon}{1 - \epsilon} \cdot \min_{x \in \mathbb{R}^d} ||Ax - b||_2.$$

- Time to compute $x^* = \arg\min_{x \in \mathbb{R}^d} ||Ax b||_2$ is $O(nd^2)$.
- Time to compute \tilde{x} is just $O(md^2)$. For large n (i.e., a highly over-constrained problem) can set $m \ll n$.

Claim: Since S is a subspace embedding for [A; b], for all $x \in \mathbb{R}^d$,

$$(1-\epsilon)\|Ax-b\|_2 \le \|SAx-Sb\|_2 \le (1+\epsilon)\|Ax-b\|_2.$$

Claim: Since S is a subspace embedding for [A; b], for all $x \in \mathbb{R}^d$,

$$(1-\epsilon)\|Ax-b\|_2 \le \|SAx-Sb\|_2 \le (1+\epsilon)\|Ax-b\|_2.$$

Claim: Since S is a subspace embedding for [A; b], for all $x \in \mathbb{R}^d$,

$$(1 - \epsilon) \|Ax - b\|_2 \le \|SAx - Sb\|_2 \le (1 + \epsilon) \|Ax - b\|_2.$$

Claim: Since S is a subspace embedding for [A; b], for all $x \in \mathbb{R}^d$,

$$(1-\epsilon)\|Ax-b\|_2 \le \|SAx-Sb\|_2 \le (1+\epsilon)\|Ax-b\|_2.$$

Let $x^* = \arg\min_{x \in \mathbb{R}^d} \|Ax - b\|_2$ and $\tilde{x} = \arg\min_{x \in \mathbb{R}^d} \|SAx - Sb\|_2$.

Claim: Since S is a subspace embedding for [A; b], for all $x \in \mathbb{R}^d$,

$$(1 - \epsilon) \|Ax - b\|_2 \le \|SAx - Sb\|_2 \le (1 + \epsilon) \|Ax - b\|_2.$$

Let $x^* = \arg\min_{\mathbf{x} \in \mathbb{R}^d} \|A\mathbf{x} - b\|_2$ and $\tilde{\mathbf{x}} = \arg\min_{\mathbf{x} \in \mathbb{R}^d} \|SA\mathbf{x} - Sb\|_2$. We have:

$$\|A\tilde{x} - b\|_2 \le \frac{1}{1 - \epsilon} \|SAx - Sb\|_2$$

Claim: Since S is a subspace embedding for [A; b], for all $x \in \mathbb{R}^d$,

$$(1 - \epsilon) \|Ax - b\|_2 \le \|SAx - Sb\|_2 \le (1 + \epsilon) \|Ax - b\|_2.$$

Let $x^* = \arg\min_{x \in \mathbb{R}^d} \|Ax - b\|_2$ and $\tilde{x} = \arg\min_{x \in \mathbb{R}^d} \|SAx - Sb\|_2$. We have:

$$\|A\tilde{x} - b\|_2 \le \frac{1}{1 - \epsilon} \|SAx - Sb\|_2 \le \frac{1}{1 - \epsilon} \cdot \|SAx^* - Sb\|_2$$

Claim: Since S is a subspace embedding for [A; b], for all $x \in \mathbb{R}^d$,

$$(1 - \epsilon) \|Ax - b\|_2 \le \|SAx - Sb\|_2 \le (1 + \epsilon) \|Ax - b\|_2.$$

Let $x^* = \arg\min_{x \in \mathbb{R}^d} \|Ax - b\|_2$ and $\tilde{x} = \arg\min_{x \in \mathbb{R}^d} \|SAx - Sb\|_2$. We have:

$$\|A\tilde{x} - b\|_{2} \le \frac{1}{1 - \epsilon} \|SAx - Sb\|_{2} \le \frac{1}{1 - \epsilon} \cdot \|SAx^{*} - Sb\|_{2}$$

 $\le \frac{1 + \epsilon}{1 - \epsilon} \cdot \|Ax^{*} - b\|_{2}.$