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- I'll return midterms at the end of class.

- Overall the class did well - mean was a 25.5 out of 34
(=~ 75%).

- Generally speaking people felt the test was a bit rushed.

- If you are not happy with your performance, message me
and we can chat about it. I'm also happy to review
solutions in office hours.

- | plan to release Problem Set 4 by end of this week.

- 2 page progress report on Final Project due 4/16.



Randomized Linear Algebra Before Break:

- Approximate matrix multiplication via norm-based sampling.
Analysis via outer-product view of matrix multiplication.

- Application to fast randomized low-rank approximation.

- Hutchinson’s method for trace estimation. Analysis via linearity
of variance for pairwise-independent random variables.

- Random linear sketching for £, sampling and ¢, heavy-hitters
(Count Sketch).
Today:

- Linear sketching for dimensionality reduction and the
Johnson-Lindenstrauss lemma.

- Subspace embedding and e-net arguments.



Linear Sketching

Given a large matrix A € R, we pick a random linear
transformation S € R™*" and compute SA (alternatively, pick

S € R9™ and compute AS). Using SA we can approximate many
computations involving A.
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Linear Sketching Examples

Freivald’s Algorithm:

nxn nxi1

(AB-C) S -




Linear Sketching Examples

Hutchinson’s Trace Estimator:

nxn nxm

s, [




Linear Sketching Examples

Graph Connectivity via /o sampling:

lo sampling matrix S vi v,

V3V,
i 14 0 0 1 -1 0 1 1 1 0 o0
14 0 1 1 0 0 -1 0 o 1 o 1
i 1 0 1 1 0 1 45 4 1 4
o 1 1 1 1 1 1 0 . 4 ;
1 0 -1 0
0 1 -1 0
1 0 0 -1
0 0 1 -
vertex-edge

incidence matrix A



Linear Sketching Examples

Norm-Based Sampling for AMM/Low-Rank Approximation:

nxd dxt nxt nx k

N




Subspace Embedding



Subspace Embedding

It is helpful to define general guarantees for sketches, that are useful
in many problems.

Definition (Subspace Embedding)
S e R™4 s an e-subspace embedding for A € R"*9 if, for all x € RY,

(1= O)llAx]l2 < [[SAx]l2 < (1 + €)[|Ax]l2-

l.e., S preserves the norm of any vector Ax in the column span of A.

col(A) € R" col(SA) € R™

y = Ax —
ARy



Subspace Embedding Intuition

Think-Pair-Share 1: Assume that n > d and that rank(A) = d. If
S e R™"Man is an e-subspace embedding for A with € < 1, how large
must m be? Hint: Think about rank(SA) and/or the nullspace of SA.

mxn nxd

s mxd

|-

Think-Pair-Share 2: Describe how to deterministically compute a
subspace embedding S with m = d and e = 0 in O(nd?) time.
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Optimal Subspace Embedding

Let Q € R"<? be an orthonormal basis for the columns of A.
Then any vector Ax in A’s column span can be written as Qy for

some y € RY.
Let S=Q". S € RY*" (i.e, m = d) and further, for any x € RY

IsAx|lz = lQ"ayl3 = lIvl3 = [|AXII3.

How would you compute Q7

n



Randomized Subspace Embedding

Theorem (Oblivious Subspace Embedding)

Let S € R™*9 pe a random matrix with i.i.d. +1//m entries. Then if
m=0 (M) for any A € R"™ 9 with probability >1—46, S is
an e-subspace embedding of A.

mxn nxd m xd
S I
A

- S can be computed without any knowledge of A.

- Still achieves near optimal compression.

- Constructions where S is sparse or structured, allow efficient
computation of SA (fast JL-transform, input-sparsity time
algorithms via Count Sketch) 2



Oblivious Subspace Embedding Proof



Proof Outline

1. Distributional Johnson-Lindenstrauss: For S € R™*4 with i.i.d.
+1/4/m entries, for any fixed y € R", with probability 1 — 6 for
very small é, (1—=e)llyll < [ISyll2 < (T + e)llyll2-

2. Via a union bound, have that for any fixed set of vectors
N C R", with probability 1— [N -6, [|SY|2 =~ ||yl for ally € .

3. But we want ||Sy||> ~. ||y|l» for all y = Ax with x € RY. This is a
linear subspace, i.e, an infinite set of vectors!

4. ‘Discretize’ this subspace by rounding to a finite set of vectors
N, called an e-net for the subspace. Then apply union bound to
this finite set, and show that the discretization does not
introduce too much error.

Remark: e-nets are a key proof technique in theoretical computer
science, learning theory (generalization bounds), random matrix

theory, and beyond. They are a key take-away from this lecture.
13



Step 1: Distributional JL Lemma

Theorem (Distributional JL)

Let S € R™*9 pe a random matrix with i.i.d. +1//m entries. Then if
m = O(log(1/68)/€%), for any fixed y € R", with probability > 1 — 4,

(1 =alyllz < ISyl < (1 + &)lyll2-

l.e., via a random matrix, we can compress any vector from n to
~ log(1/8)/€* dimensions, and approximately preserve its norm. A bit
surprising maybe that m does not depend on n at all.

mxn nx1 m x 1

H1/m t1/ym £1/¥m +1/vm
sw S I

1/ E1/m 1/ 1/




Restriction to Unit Ball

Want to show that with high probability, [|Sy||> =. ||y||. for all
y e {Ax:x e R} le, forally € V, where Vis A’s column span.

Observation: Suffices to prove ||Sy||> ~. ||y|l. = 1 for ally € Sy, where

Sy={y:yeVvand |y, =1}

y=y

Proof: Foranyy € V, can write y = ||y||> - ¥ where y = y/|lyll> € Sy.
(- <V <(1+e =
(=€) - vl < lIS¥Il2 - Iyl < (T +€) - Iyl =
(T=alyllz < ISyl < (1 + €)llyll2- 15



Discretization of Unit Ball

Theorem
For any e <1, there exists a set of points N, C Sy with
V.| = (£) such that, for all y € Sy,
i —wlp <e.
i [l =wil2 = e

Sy s,

By the distributional JL lemma, if we set & =5 - (£)? then, viaa
union bound with nrobability at least 1 — & . IN.| =1 — 8§ for



Proof Via e-net

So Far: If we set m = O(d/€?) and pick random S € R™*", then with
probability > 14, [|Swl|; ~. [[wl|, for all w € N..

Expansion via net vectors: For any y € Sy, we can write:
y=wy+ (y — wp) for wg € N,

—w
=Wy +Cr- & forcq:HwaOHZ and e1:”;/7W0HeSV
— Wol|2

= Wo+C-Wq+Cq-
= Wp+C - Wq+ C

=Wo+C Wi+ G



Proof Via e-net

Have written y € Sy, as y = wgo + Ciwq + oW, + ... where
Wo, W1, ... € N, and ¢; < €. By triangle inequality:
IISy|l2 = [|Swo + c1Swq + &Swsy + ... ||z
< [|Swoll2 + 1l|Swall2 + col[Swall2 + . ..
<(O+)+e(1+e)+E(1+€)+...
(since via the union bound, ||Swl|; ~ ||w||; for all w € N)
< T+e€
— €
Similarly, can prove that ||Sy|[> > 1 — 2e, giving, for ally € Sy
(and hence all y € V):

(1=2e)llylla < [[Syll2 < (1 + 26) Iyl

~ 1+ 2e¢




Full Argument

- There exists an e-net NV, over the unit ball in A’s column
span, Sy with [NV | < (g)d.

- By distributional JL, form = 0 w with
probability > 1—¢, forallw € N, |
= forally € Sy, [|SY|2 =~ ||Yll2-

Swllz e [[w]2.
— forally e v, i.e, for all y = Ax for x € RY,

1Syll2 ~e [Iyll2-

= S e R™*"is an e-subspace embedding for A.
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Net Construction

Theorem (e-net over ¢, ball)

For any e < 1, there exists a set of points N, C Sy with |N| = (%)d
such that, for all y € Sy,
WFQ}{} ly —wll2 <e.

Theoretical algorithm for constructing N.:

- Initialize M. = {}.

- While there exists v € Sy where minyen, ||V — w|; > ¢ pick an
arbitrary such vand let N; := N, U {v}.

If the algorithm terminates in T steps, we have |NV.| < Tand N is a
valid e-net.
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Net Construction

How large is the net constructed by our theoretical algorithm?

Consider w,w’ € N,. We must have |[w — w/[|; > ¢, or we would have
not added both to the net.

Thus, we can place an /2 radius ball around each w € A, and none
of these balls will intersect.

Sy

€ diameter

Note that all these balls lie within the ball of radius (14 €/2). Y



Volume Argument

We have |N¢| disjoint balls with radius €/2, lying within a ball of
radius (14 €/2).

In d dimensions, the radius r ball has volume cg4 - r, where cy4
is a constant that depends on d but not r.

Thus, the total number of balls is upper bounded by:
d d

‘/\/’E‘ < M < ﬁ .

(e/2)° €

Remark: We never actually construct an e-net. We just use the
fact that one exists (the output of this theoretical algorithm) in
our subspace embedding proof.
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