
COMPSCI 614: Randomized Algorithms with
Applications to Data Science

Prof. Cameron Musco
University of Massachusetts Amherst. Spring 2024.
Lecture 7

1

• 14?

Logistics

• I’ll return midterms at the end of class.
• Overall the class did well – mean was a 25.5 out of 34
(≈ 75%).

• Generally speaking people felt the test was a bit rushed.
• If you are not happy with your performance, message me
and we can chat about it. I’m also happy to review
solutions in office hours.

• I plan to release Problem Set 4 by end of this week.
• 2 page progress report on Final Project due 4/16.

2

Summary

Randomized Linear Algebra Before Break:

• Approximate matrix multiplication via norm-based sampling.
Analysis via outer-product view of matrix multiplication.

• Application to fast randomized low-rank approximation.

• Hutchinson’s method for trace estimation. Analysis via linearity
of variance for pairwise-independent random variables.

• Random linear sketching for !0 sampling and !2 heavy-hitters
(Count Sketch).

Today:
• Linear sketching for dimensionality reduction and the
Johnson-Lindenstrauss lemma.

• Subspace embedding and ε-net arguments.

3

-
importancesampling

=
L

Summary

Randomized Linear Algebra Before Break:

• Approximate matrix multiplication via norm-based sampling.
Analysis via outer-product view of matrix multiplication.

• Application to fast randomized low-rank approximation.

• Hutchinson’s method for trace estimation. Analysis via linearity
of variance for pairwise-independent random variables.

• Random linear sketching for !0 sampling and !2 heavy-hitters
(Count Sketch).

Today:
• Linear sketching for dimensionality reduction and the
Johnson-Lindenstrauss lemma.

• Subspace embedding and ε-net arguments.

3

-

cleaning theory
randommatrix...

Linear Sketching

Given a large matrix A ∈ Rn×d, we pick a random linear
transformation S ∈ Rm×n and compute SA (alternatively, pick
S ∈ Rd×m and compute AS). Using SA we can approximate many
computations involving A.

4

l i near ⇒ works i n streaming
a distributed

⇒ v e r y fast

Linear Sketching Examples

Freivald’s Algorithm:

5

✓Homework 1

i f
=
O '

AB:C

=/O u l
goo
d

" ? prob-
°

i f PB"

Linear Sketching Examples

Hutchinson’s Trace Estimator:

6

w i n
- w in
u r n
- i r n

l I l
x ,x . . .x n

tha)at;§xitaxi = t r(Stas)

Linear Sketching Examples

Graph Connectivity via !0 sampling:

7

Linear Sketching Examples

Norm-Based Sampling for AMM/Low-Rank Approximation:

8

(A)E.j.

lppi

I t ;

S depends o n A

"non-oblivious" sketch

Subspace Embedding

8

Subspace Embedding

It is helpful to define general guarantees for sketches, that are useful
in many problems.

Definition (Subspace Embedding)
S ∈ Rm×d is an ε-subspace embedding for A ∈ Rn×d if, for all x ∈ Rd,

(1− ε)‖Ax‖2 ≤ ‖SAx‖2 ≤ (1+ ε)‖Ax‖2.

I.e., S preserves the norm of any vector Ax in the column span of A.

Tons of applications. E.g.,

• Fast linear regression (next class) and preconditioning.

• Approximation of A’s singular values.

• Approximate matrix multiplication and near optimal low-rank
approximation.

• Compressed sensing/sparse recovery (related to !0 sampling).

9

Subspace Embedding

It is helpful to define general guarantees for sketches, that are useful
in many problems.

Definition (Subspace Embedding)
S ∈ Rm×d is an ε-subspace embedding for A ∈ Rn×d if, for all x ∈ Rd,

(1− ε)‖Ax‖2 ≤ ‖SAx‖2 ≤ (1+ ε)‖Ax‖2.

I.e., S preserves the norm of any vector Ax in the column span of A.

Tons of applications. E.g.,

• Fast linear regression (next class) and preconditioning.

• Approximation of A’s singular values.

• Approximate matrix multiplication and near optimal low-rank
approximation.

• Compressed sensing/sparse recovery (related to !0 sampling).

9

I

[sq.ft
En
t f)

Subspace Embedding

It is helpful to define general guarantees for sketches, that are useful
in many problems.

Definition (Subspace Embedding)
S ∈ Rm×d is an ε-subspace embedding for A ∈ Rn×d if, for all x ∈ Rd,

(1− ε)‖Ax‖2 ≤ ‖SAx‖2 ≤ (1+ ε)‖Ax‖2.

I.e., S preserves the norm of any vector Ax in the column span of A.

Tons of applications. E.g.,

• Fast linear regression (next class) and preconditioning.

• Approximation of A’s singular values.

• Approximate matrix multiplication and near optimal low-rank
approximation.

• Compressed sensing/sparse recovery (related to !0 sampling).

9

d -e)115AxD,SHAN,s I te)118×112

He1154×11s HANIk (l-e)
1150×112'HANI

Subspace Embedding

It is helpful to define general guarantees for sketches, that are useful
in many problems.

Definition (Subspace Embedding)
S ∈ Rm×d is an ε-subspace embedding for A ∈ Rn×d if, for all x ∈ Rd,

(1− ε)‖Ax‖2 ≤ ‖SAx‖2 ≤ (1+ ε)‖Ax‖2.

I.e., S preserves the norm of any vector Ax in the column span of A.
Tons of applications. E.g.,

• Fast linear regression (next class) and preconditioning.

• Approximation of A’s singular values.

• Approximate matrix multiplication and near optimal low-rank
approximation.

• Compressed sensing/sparse recovery (related to !0 sampling). 9

[

((Itc)1¥ "A-MA

Subspace Embedding Intuition

Think-Pair-Share 1: Assume that n > d and that rank(A) = d. If
S ∈ Rm×n an is an ε-subspace embedding for A with ε < 1, how large
must m be? Hint: Think about rank(SA) and/or the nullspace of SA.

Think-Pair-Share 2: Describe how to deterministically compute a
subspace embedding S with m = d and ε = 0 in O(nd2) time.

10

w e needm a d because
www.ie~nkcsn)s m a d
3×1=0s t a r t #0 byHANI>O

m { s odon'th w÷ ± .
n i s
possile

"÷1*¥÷÷
.

sfeio.LA/
=fAJninxii:n.mm

1 i s impossible e -' ' 1)(n.J s
'

Subspace Embedding Intuition

Think-Pair-Share 1: Assume that n > d and that rank(A) = d. If
S ∈ Rm×n an is an ε-subspace embedding for A with ε < 1, how large
must m be? Hint: Think about rank(SA) and/or the nullspace of SA.

Think-Pair-Share 2: Describe how to deterministically compute a
subspace embedding S with m = d and ε = 0 in O(nd2) time.

10

0
(w e ' l l show n = D u l randomized embeddy,

much faster

Optimal Subspace Embedding

Let Q ∈ Rn×d be an orthonormal basis for the columns of A.
Then any vector Ax in A’s column span can be written as Qy for
some y ∈ Rd.

Let S = QT. S ∈ Rd×n (i.e., m = d) and further, for any x ∈ Rd

‖SAx‖22 = ‖QTQy‖22

= ‖y‖22 = ‖Ax‖22

.

How would you compute Q?

11

Optimal Subspace Embedding

Let Q ∈ Rn×d be an orthonormal basis for the columns of A.
Then any vector Ax in A’s column span can be written as Qy for
some y ∈ Rd.

Let S = QT. S ∈ Rd×n (i.e., m = d) and further, for any x ∈ Rd

‖SAx‖22 = ‖QTQy‖22

= ‖y‖22 = ‖Ax‖22

.

How would you compute Q?

11

fay Eoff: s e n o r ,

-

f sigh

Optimal Subspace Embedding

Let Q ∈ Rn×d be an orthonormal basis for the columns of A.
Then any vector Ax in A’s column span can be written as Qy for
some y ∈ Rd.

Let S = QT. S ∈ Rd×n (i.e., m = d) and further, for any x ∈ Rd

‖SAx‖22 = ‖QTQy‖22 = ‖y‖22

= ‖Ax‖22

.

How would you compute Q?

11

Optimal Subspace Embedding

Let Q ∈ Rn×d be an orthonormal basis for the columns of A.
Then any vector Ax in A’s column span can be written as Qy for
some y ∈ Rd.

Let S = QT. S ∈ Rd×n (i.e., m = d) and further, for any x ∈ Rd

‖SAx‖22 = ‖QTQy‖22 = ‖y‖22 = ‖Ax‖22.

How would you compute Q?

11

⇐ a t : [i s Asia] / s:{I,
Q I Iata"'At

S A X :1.10-x#×
A x '- l o x

"
'Axllisllaylli

ytQQy
yty
Hylle

Optimal Subspace Embedding

Let Q ∈ Rn×d be an orthonormal basis for the columns of A.
Then any vector Ax in A’s column span can be written as Qy for
some y ∈ Rd.

Let S = QT. S ∈ Rd×n (i.e., m = d) and further, for any x ∈ Rd

‖SAx‖22 = ‖QTQy‖22 = ‖y‖22 = ‖Ax‖22.

How would you compute Q?

11

-

↳gr-bump.
(grumschinidt (orth)
b x D , inverse o f Atp

Randomized Subspace Embedding

Theorem (Oblivious Subspace Embedding)
Let S ∈ Rm×d be a random matrix with i.i.d. ±1/

√
m entries. Then if

m = O
(

d+log(1/δ)
ε2

)
, for any A ∈ Rn×d, with probability ≥ 1− δ, S is

an ε-subspace embedding of A.

• S can be computed without any knowledge of A.

• Still achieves near optimal compression.

• Constructions where S is sparse or structured, allow efficient
computation of SA (fast JL-transform, input-sparsity time
algorithms via Count Sketch)

12

- -

Randomized Subspace Embedding

Theorem (Oblivious Subspace Embedding)
Let S ∈ Rm×d be a random matrix with i.i.d. ±1/

√
m entries. Then if

m = O
(

d+log(1/δ)
ε2

)
, for any A ∈ Rn×d, with probability ≥ 1− δ, S is

an ε-subspace embedding of A.

• S can be computed without any knowledge of A.

• Still achieves near optimal compression.

• Constructions where S is sparse or structured, allow efficient
computation of SA (fast JL-transform, input-sparsity time
algorithms via Count Sketch) 12

S A takes
t h a . . .

a n dm)
3 0(nd)

Oblivious Subspace Embedding Proof

12

Proof Outline

1. Distributional Johnson-Lindenstrauss: For S ∈ Rm×d with i.i.d.
±1/

√
m entries, for any fixed y ∈ Rn, with probability 1− δ for

very small δ, (1− ε)‖y‖2 ≤ ‖Sy‖2 ≤ (1+ ε)‖y‖2.

2. Via a union bound, have that for any fixed set of vectors
N ⊂ Rn, with probability 1− |N | · δ, ‖Sy‖2 ≈ε ‖y‖2 for all y ∈ N .

3. But we want ‖Sy‖2 ≈ε ‖y‖2 for all y = Ax with x ∈ Rd. This is a
linear subspace, i.e., an infinite set of vectors!

4. ‘Discretize’ this subspace by rounding to a finite set of vectors
N , called an ε-net for the subspace. Then apply union bound to
this finite set, and show that the discretization does not
introduce too much error.

Remark: ε-nets are a key proof technique in theoretical computer
science, learning theory (generalization bounds), random matrix
theory, and beyond. They are a key take-away from this lecture.

13

"If]µ§#
' m

socio:#

Proof Outline

1. Distributional Johnson-Lindenstrauss: For S ∈ Rm×d with i.i.d.
±1/

√
m entries, for any fixed y ∈ Rn, with probability 1− δ for

very small δ, (1− ε)‖y‖2 ≤ ‖Sy‖2 ≤ (1+ ε)‖y‖2.

2. Via a union bound, have that for any fixed set of vectors
N ⊂ Rn, with probability 1− |N | · δ, ‖Sy‖2 ≈ε ‖y‖2 for all y ∈ N .

3. But we want ‖Sy‖2 ≈ε ‖y‖2 for all y = Ax with x ∈ Rd. This is a
linear subspace, i.e., an infinite set of vectors!

4. ‘Discretize’ this subspace by rounding to a finite set of vectors
N , called an ε-net for the subspace. Then apply union bound to
this finite set, and show that the discretization does not
introduce too much error.

Remark: ε-nets are a key proof technique in theoretical computer
science, learning theory (generalization bounds), random matrix
theory, and beyond. They are a key take-away from this lecture.

13

Proof Outline

1. Distributional Johnson-Lindenstrauss: For S ∈ Rm×d with i.i.d.
±1/

√
m entries, for any fixed y ∈ Rn, with probability 1− δ for

very small δ, (1− ε)‖y‖2 ≤ ‖Sy‖2 ≤ (1+ ε)‖y‖2.

2. Via a union bound, have that for any fixed set of vectors
N ⊂ Rn, with probability 1− |N | · δ, ‖Sy‖2 ≈ε ‖y‖2 for all y ∈ N .

3. But we want ‖Sy‖2 ≈ε ‖y‖2 for all y = Ax with x ∈ Rd. This is a
linear subspace, i.e., an infinite set of vectors!

4. ‘Discretize’ this subspace by rounding to a finite set of vectors
N , called an ε-net for the subspace. Then apply union bound to
this finite set, and show that the discretization does not
introduce too much error.

Remark: ε-nets are a key proof technique in theoretical computer
science, learning theory (generalization bounds), random matrix
theory, and beyond. They are a key take-away from this lecture.

13

Proof Outline

1. Distributional Johnson-Lindenstrauss: For S ∈ Rm×d with i.i.d.
±1/

√
m entries, for any fixed y ∈ Rn, with probability 1− δ for

very small δ, (1− ε)‖y‖2 ≤ ‖Sy‖2 ≤ (1+ ε)‖y‖2.

2. Via a union bound, have that for any fixed set of vectors
N ⊂ Rn, with probability 1− |N | · δ, ‖Sy‖2 ≈ε ‖y‖2 for all y ∈ N .

3. But we want ‖Sy‖2 ≈ε ‖y‖2 for all y = Ax with x ∈ Rd. This is a
linear subspace, i.e., an infinite set of vectors!

4. ‘Discretize’ this subspace by rounding to a finite set of vectors
N , called an ε-net for the subspace. Then apply union bound to
this finite set, and show that the discretization does not
introduce too much error.

Remark: ε-nets are a key proof technique in theoretical computer
science, learning theory (generalization bounds), random matrix
theory, and beyond. They are a key take-away from this lecture.

13

phgllzsl-
LyiAxsygdlAtQj@ysAi.iA;

- 2 0

Proof Outline

1. Distributional Johnson-Lindenstrauss: For S ∈ Rm×d with i.i.d.
±1/

√
m entries, for any fixed y ∈ Rn, with probability 1− δ for

very small δ, (1− ε)‖y‖2 ≤ ‖Sy‖2 ≤ (1+ ε)‖y‖2.

2. Via a union bound, have that for any fixed set of vectors
N ⊂ Rn, with probability 1− |N | · δ, ‖Sy‖2 ≈ε ‖y‖2 for all y ∈ N .

3. But we want ‖Sy‖2 ≈ε ‖y‖2 for all y = Ax with x ∈ Rd. This is a
linear subspace, i.e., an infinite set of vectors!

4. ‘Discretize’ this subspace by rounding to a finite set of vectors
N , called an ε-net for the subspace. Then apply union bound to
this finite set, and show that the discretization does not
introduce too much error.

Remark: ε-nets are a key proof technique in theoretical computer
science, learning theory (generalization bounds), random matrix
theory, and beyond. They are a key take-away from this lecture.

13L

Step 1: Distributional JL Lemma

Theorem (Distributional JL)
Let S ∈ Rm×d be a random matrix with i.i.d. ±1/

√
m entries. Then if

m = O(log(1/δ)/ε2), for any fixed y ∈ Rn, with probability ≥ 1− δ,
(1− ε)‖y‖2 ≤ ‖Sy‖2 ≤ (1+ ε)‖y‖2.

I.e., via a random matrix, we can compress any vector from n to
≈ log(1/δ)/ε2 dimensions, and approximately preserve its norm. A bit
surprising maybe that m does not depend on n at all.

Expectation:
E[‖Sy‖22] =

m∑

i=1

E[〈Si,:, y〉2]

=
m∑

i=1

E








n∑

j=1

Sij · yj




2




=
m∑

i=1

n∑

j=1

Var(Sij · yj)

=
m∑

i=1

n∑

j=1

1
m

· y2j

= ‖y‖22.

14

- -

C J) o-axis

Step 1: Distributional JL Lemma

Theorem (Distributional JL)
Let S ∈ Rm×d be a random matrix with i.i.d. ±1/

√
m entries. Then if

m = O(log(1/δ)/ε2), for any fixed y ∈ Rn, with probability ≥ 1− δ,
(1− ε)‖y‖2 ≤ ‖Sy‖2 ≤ (1+ ε)‖y‖2.

I.e., via a random matrix, we can compress any vector from n to
≈ log(1/δ)/ε2 dimensions, and approximately preserve its norm. A bit
surprising maybe that m does not depend on n at all.

Expectation:
E[‖Sy‖22] =

m∑

i=1

E[〈Si,:, y〉2]

=
m∑

i=1

E








n∑

j=1

Sij · yj




2




=
m∑

i=1

n∑

j=1

Var(Sij · yj)

=
m∑

i=1

n∑

j=1

1
m

· y2j

= ‖y‖22.

14

Step 1: Distributional JL Lemma

Theorem (Distributional JL)
Let S ∈ Rm×d be a random matrix with i.i.d. ±1/

√
m entries. Then if

m = O(log(1/δ)/ε2), for any fixed y ∈ Rn, with probability ≥ 1− δ,
(1− ε)‖y‖2 ≤ ‖Sy‖2 ≤ (1+ ε)‖y‖2.

I.e., via a random matrix, we can compress any vector from n to
≈ log(1/δ)/ε2 dimensions, and approximately preserve its norm. A bit
surprising maybe that m does not depend on n at all.

Expectation:
E[‖Sy‖22] =

m∑

i=1

E[〈Si,:, y〉2] =
m∑

i=1

E








n∑

j=1

Sij · yj




2




=
m∑

i=1

n∑

j=1

Var(Sij · yj)

=
m∑

i=1

n∑

j=1

1
m

· y2j

= ‖y‖22.

14

-

l#Esijyi?O

Step 1: Distributional JL Lemma

Theorem (Distributional JL)
Let S ∈ Rm×d be a random matrix with i.i.d. ±1/

√
m entries. Then if

m = O(log(1/δ)/ε2), for any fixed y ∈ Rn, with probability ≥ 1− δ,
(1− ε)‖y‖2 ≤ ‖Sy‖2 ≤ (1+ ε)‖y‖2.

I.e., via a random matrix, we can compress any vector from n to
≈ log(1/δ)/ε2 dimensions, and approximately preserve its norm. A bit
surprising maybe that m does not depend on n at all.

Expectation:
E[‖Sy‖22] =

m∑

i=1

E[〈Si,:, y〉2] =
m∑

i=1

E








n∑

j=1

Sij · yj




2




=
m∑

i=1

n∑

j=1

Var(Sij · yj)

=
m∑

i=1

n∑

j=1

1
m

· y2j

= ‖y‖22.

14

~ Y I
n

-
n

± Y I
UST

Step 1: Distributional JL Lemma

Theorem (Distributional JL)
Let S ∈ Rm×d be a random matrix with i.i.d. ±1/

√
m entries. Then if

m = O(log(1/δ)/ε2), for any fixed y ∈ Rn, with probability ≥ 1− δ,
(1− ε)‖y‖2 ≤ ‖Sy‖2 ≤ (1+ ε)‖y‖2.

I.e., via a random matrix, we can compress any vector from n to
≈ log(1/δ)/ε2 dimensions, and approximately preserve its norm. A bit
surprising maybe that m does not depend on n at all.

Expectation:
E[‖Sy‖22] =

m∑

i=1

E[〈Si,:, y〉2] =
m∑

i=1

E








n∑

j=1

Sij · yj




2




=
m∑

i=1

n∑

j=1

Var(Sij · yj)

=
m∑

i=1

n∑

j=1

1
m

· y2j

= ‖y‖22.

14

Step 1: Distributional JL Lemma

Theorem (Distributional JL)
Let S ∈ Rm×d be a random matrix with i.i.d. ±1/

√
m entries. Then if

m = O(log(1/δ)/ε2), for any fixed y ∈ Rn, with probability ≥ 1− δ,
(1− ε)‖y‖2 ≤ ‖Sy‖2 ≤ (1+ ε)‖y‖2.

I.e., via a random matrix, we can compress any vector from n to
≈ log(1/δ)/ε2 dimensions, and approximately preserve its norm. A bit
surprising maybe that m does not depend on n at all.

Expectation:
E[‖Sy‖22] =

m∑

i=1

E[〈Si,:, y〉2] =
m∑

i=1

E








n∑

j=1

Sij · yj




2




=
m∑

i=1

n∑

j=1

Var(Sij · yj)

=
m∑

i=1

n∑

j=1

1
m

· y2j = ‖y‖22. 14

C

O

Restriction to Unit Ball

Want to show that with high probability, ‖Sy‖2 ≈ε ‖y‖2 for all
y ∈ {Ax : x ∈ Rd}. I.e., for all y ∈ V , where V is A’s column span.

Observation: Suffices to prove ‖Sy‖2 ≈ε ‖y‖2 = 1 for all y ∈ SV where

SV = {y : y ∈ V and ‖y‖2 = 1}.

Proof: For any y ∈ V , can write y = ‖y‖2 · ȳ where ȳ = y/‖y‖2 ∈ SV .

(1− ε) ≤ ‖Sȳ‖2 ≤ (1+ ε) =⇒
(1− ε) · ‖y‖2 ≤ ‖Sȳ‖2 · ‖y‖2 ≤ (1+ ε) · ‖y‖2 =⇒

(1− ε)‖y‖2 ≤ ‖Sy‖2 ≤ (1+ ε)‖y‖2.

15

F)

Restriction to Unit Ball

Want to show that with high probability, ‖Sy‖2 ≈ε ‖y‖2 for all
y ∈ {Ax : x ∈ Rd}. I.e., for all y ∈ V , where V is A’s column span.

Observation: Suffices to prove ‖Sy‖2 ≈ε ‖y‖2 = 1 for all y ∈ SV where

SV = {y : y ∈ V and ‖y‖2 = 1}.

Proof: For any y ∈ V , can write y = ‖y‖2 · ȳ where ȳ = y/‖y‖2 ∈ SV .

(1− ε) ≤ ‖Sȳ‖2 ≤ (1+ ε) =⇒
(1− ε) · ‖y‖2 ≤ ‖Sȳ‖2 · ‖y‖2 ≤ (1+ ε) · ‖y‖2 =⇒

(1− ε)‖y‖2 ≤ ‖Sy‖2 ≤ (1+ ε)‖y‖2.

15

Restriction to Unit Ball

Want to show that with high probability, ‖Sy‖2 ≈ε ‖y‖2 for all
y ∈ {Ax : x ∈ Rd}. I.e., for all y ∈ V , where V is A’s column span.

Observation: Suffices to prove ‖Sy‖2 ≈ε ‖y‖2 = 1 for all y ∈ SV where

SV = {y : y ∈ V and ‖y‖2 = 1}.

Proof: For any y ∈ V , can write y = ‖y‖2 · ȳ where ȳ = y/‖y‖2 ∈ SV .

(1− ε) ≤ ‖Sȳ‖2 ≤ (1+ ε) =⇒
(1− ε) · ‖y‖2 ≤ ‖Sȳ‖2 · ‖y‖2 ≤ (1+ ε) · ‖y‖2 =⇒

(1− ε)‖y‖2 ≤ ‖Sy‖2 ≤ (1+ ε)‖y‖2. 15

"J"r i l y

- a s

-

Discretization of Unit Ball

Theorem
For any ε ≤ 1, there exists a set of points Nε ⊂ SV with
|Nε| =

(4
ε

)d such that, for all y ∈ SV ,
min
w∈Nε

‖y− w‖2 ≤ ε.

By the distributional JL lemma, if we set δ′ = δ ·
(
ε
4
)d then, via a

union bound, with probability at least 1− δ′ · |Nε| = 1− δ, for
all w ∈ Nε,

(1− ε)‖w‖2 ≤ ‖Sw‖2 ≤ (1+ ε)‖w‖2.

Requires S ∈ Rm×n where

m = O
(
log(1/δ′)

ε2

)

= O
(
d log(4/ε) + log(1/δ)

ε2

)
= Õ

(
d
ε2

)
.

16

Discretization of Unit Ball

Theorem
For any ε ≤ 1, there exists a set of points Nε ⊂ SV with
|Nε| =

(4
ε

)d such that, for all y ∈ SV ,
min
w∈Nε

‖y− w‖2 ≤ ε.

By the distributional JL lemma, if we set δ′ = δ ·
(
ε
4
)d then, via a

union bound, with probability at least 1− δ′ · |Nε| = 1− δ, for
all w ∈ Nε,

(1− ε)‖w‖2 ≤ ‖Sw‖2 ≤ (1+ ε)‖w‖2.

Requires S ∈ Rm×n where

m = O
(
log(1/δ′)

ε2

)

= O
(
d log(4/ε) + log(1/δ)

ε2

)
= Õ

(
d
ε2

)
.

16

-

"e-Net"

i .
w

Discretization of Unit Ball

Theorem
For any ε ≤ 1, there exists a set of points Nε ⊂ SV with
|Nε| =

(4
ε

)d such that, for all y ∈ SV ,
min
w∈Nε

‖y− w‖2 ≤ ε.

By the distributional JL lemma, if we set δ′ = δ ·
(
ε
4
)d then, via a

union bound, with probability at least 1− δ′ · |Nε| = 1− δ, for
all w ∈ Nε,

(1− ε)‖w‖2 ≤ ‖Sw‖2 ≤ (1+ ε)‖w‖2.

Requires S ∈ Rm×n where

m = O
(
log(1/δ′)

ε2

)

= O
(
d log(4/ε) + log(1/δ)

ε2

)
= Õ

(
d
ε2

)
.

16

Discretization of Unit Ball

Theorem
For any ε ≤ 1, there exists a set of points Nε ⊂ SV with
|Nε| =

(4
ε

)d such that, for all y ∈ SV ,
min
w∈Nε

‖y− w‖2 ≤ ε.

By the distributional JL lemma, if we set δ′ = δ ·
(
ε
4
)d then, via a

union bound, with probability at least 1− δ′ · |Nε| = 1− δ, for
all w ∈ Nε,

(1− ε)‖w‖2 ≤ ‖Sw‖2 ≤ (1+ ε)‖w‖2.

Requires S ∈ Rm×n where

m = O
(
log(1/δ′)

ε2

)

= O
(
d log(4/ε) + log(1/δ)

ε2

)
= Õ

(
d
ε2

)
.

16

Discretization of Unit Ball

Theorem
For any ε ≤ 1, there exists a set of points Nε ⊂ SV with
|Nε| =

(4
ε

)d such that, for all y ∈ SV ,
min
w∈Nε

‖y− w‖2 ≤ ε.

By the distributional JL lemma, if we set δ′ = δ ·
(
ε
4
)d then, via a

union bound, with probability at least 1− δ′ · |Nε| = 1− δ, for
all w ∈ Nε,

(1− ε)‖w‖2 ≤ ‖Sw‖2 ≤ (1+ ε)‖w‖2.

Requires S ∈ Rm×n where

m = O
(
log(1/δ′)

ε2

)
= O

(
d log(4/ε) + log(1/δ)

ε2

)
= Õ

(
d
ε2

)
.

16

Proof Via ε-net

So Far: If we set m = Õ(d/ε2) and pick random S ∈ Rm×n, then with
probability ≥ 1− δ, ‖Sw‖2 ≈ε ‖w‖2 for all w ∈ Nε.

Expansion via net vectors: For any y ∈ SV , we can write:

y = w0 + (y− w0) for w0 ∈ Nε

= w0 + c1 · e1 for c1 = ‖y− w0‖2 and e1 =
y− w0

‖y− w0‖2
∈ SV

= w0 + c1 · w1 + c1 · (e1 − w1) for w1 ∈ Nε

= w0 + c1 · w1 + c2 · e2 for c2 = c1 · ‖e1 − w1‖2 and e2 =
e1 − w1

‖e1 − w1‖2
∈ SV

= w0 + c1 · w1 + c2 · w2 + c3 · w3 + . . .

For all i, have ci ≤ εi.

17

Proof Via ε-net

So Far: If we set m = Õ(d/ε2) and pick random S ∈ Rm×n, then with
probability ≥ 1− δ, ‖Sw‖2 ≈ε ‖w‖2 for all w ∈ Nε.

Expansion via net vectors: For any y ∈ SV , we can write:

y = w0 + (y− w0) for w0 ∈ Nε

= w0 + c1 · e1 for c1 = ‖y− w0‖2 and e1 =
y− w0

‖y− w0‖2
∈ SV

= w0 + c1 · w1 + c1 · (e1 − w1) for w1 ∈ Nε

= w0 + c1 · w1 + c2 · e2 for c2 = c1 · ‖e1 − w1‖2 and e2 =
e1 − w1

‖e1 − w1‖2
∈ SV

= w0 + c1 · w1 + c2 · w2 + c3 · w3 + . . .

For all i, have ci ≤ εi.

17

Proof Via ε-net

So Far: If we set m = Õ(d/ε2) and pick random S ∈ Rm×n, then with
probability ≥ 1− δ, ‖Sw‖2 ≈ε ‖w‖2 for all w ∈ Nε.

Expansion via net vectors: For any y ∈ SV , we can write:

y = w0 + (y− w0) for w0 ∈ Nε

= w0 + c1 · e1 for c1 = ‖y− w0‖2 and e1 =
y− w0

‖y− w0‖2
∈ SV

= w0 + c1 · w1 + c1 · (e1 − w1) for w1 ∈ Nε

= w0 + c1 · w1 + c2 · e2 for c2 = c1 · ‖e1 − w1‖2 and e2 =
e1 − w1

‖e1 − w1‖2
∈ SV

= w0 + c1 · w1 + c2 · w2 + c3 · w3 + . . .

For all i, have ci ≤ εi.

17

Proof Via ε-net

So Far: If we set m = Õ(d/ε2) and pick random S ∈ Rm×n, then with
probability ≥ 1− δ, ‖Sw‖2 ≈ε ‖w‖2 for all w ∈ Nε.

Expansion via net vectors: For any y ∈ SV , we can write:

y = w0 + (y− w0) for w0 ∈ Nε

= w0 + c1 · e1 for c1 = ‖y− w0‖2 and e1 =
y− w0

‖y− w0‖2
∈ SV

= w0 + c1 · w1 + c1 · (e1 − w1) for w1 ∈ Nε

= w0 + c1 · w1 + c2 · e2 for c2 = c1 · ‖e1 − w1‖2 and e2 =
e1 − w1

‖e1 − w1‖2
∈ SV

= w0 + c1 · w1 + c2 · w2 + c3 · w3 + . . .

For all i, have ci ≤ εi.

17

Proof Via ε-net

So Far: If we set m = Õ(d/ε2) and pick random S ∈ Rm×n, then with
probability ≥ 1− δ, ‖Sw‖2 ≈ε ‖w‖2 for all w ∈ Nε.

Expansion via net vectors: For any y ∈ SV , we can write:

y = w0 + (y− w0) for w0 ∈ Nε

= w0 + c1 · e1 for c1 = ‖y− w0‖2 and e1 =
y− w0

‖y− w0‖2
∈ SV

= w0 + c1 · w1 + c1 · (e1 − w1) for w1 ∈ Nε

= w0 + c1 · w1 + c2 · e2 for c2 = c1 · ‖e1 − w1‖2 and e2 =
e1 − w1

‖e1 − w1‖2
∈ SV

= w0 + c1 · w1 + c2 · w2 + c3 · w3 + . . .

For all i, have ci ≤ εi.

17

Proof Via ε-net

So Far: If we set m = Õ(d/ε2) and pick random S ∈ Rm×n, then with
probability ≥ 1− δ, ‖Sw‖2 ≈ε ‖w‖2 for all w ∈ Nε.

Expansion via net vectors: For any y ∈ SV , we can write:

y = w0 + (y− w0) for w0 ∈ Nε

= w0 + c1 · e1 for c1 = ‖y− w0‖2 and e1 =
y− w0

‖y− w0‖2
∈ SV

= w0 + c1 · w1 + c1 · (e1 − w1) for w1 ∈ Nε

= w0 + c1 · w1 + c2 · e2 for c2 = c1 · ‖e1 − w1‖2 and e2 =
e1 − w1

‖e1 − w1‖2
∈ SV

= w0 + c1 · w1 + c2 · w2 + c3 · w3 + . . .

For all i, have ci ≤ εi.

17

Proof Via ε-net

So Far: If we set m = Õ(d/ε2) and pick random S ∈ Rm×n, then with
probability ≥ 1− δ, ‖Sw‖2 ≈ε ‖w‖2 for all w ∈ Nε.

Expansion via net vectors: For any y ∈ SV , we can write:

y = w0 + (y− w0) for w0 ∈ Nε

= w0 + c1 · e1 for c1 = ‖y− w0‖2 and e1 =
y− w0

‖y− w0‖2
∈ SV

= w0 + c1 · w1 + c1 · (e1 − w1) for w1 ∈ Nε

= w0 + c1 · w1 + c2 · e2 for c2 = c1 · ‖e1 − w1‖2 and e2 =
e1 − w1

‖e1 − w1‖2
∈ SV

= w0 + c1 · w1 + c2 · w2 + c3 · w3 + . . .

For all i, have ci ≤ εi.

17

Proof Via ε-net

Have written y ∈ SV as y = w0 + c1w1 + c2w2 + . . . where
w0,w1, . . . ∈ Nε, and ci ≤ εi.

By triangle inequality:

‖Sy‖2 = ‖Sw0 + c1Sw1 + c2Sw2 + . . . ‖2

≤ ‖Sw0‖2 + c1‖Sw1‖2 + c2‖Sw2‖2 + . . .

≤ (1+ ε) + ε(1+ ε) + ε2(1+ ε) + . . .

(since via the union bound, ‖Sw‖2 ≈ ‖w‖2 for all w ∈ Nε)

≤ 1+ ε

1− ε
≈ 1+ 2ε

Similarly, can prove that ‖Sy‖2 ≥ 1− 2ε, giving, for all y ∈ SV
(and hence all y ∈ V):

(1− 2ε)‖y‖2 ≤ ‖Sy‖2 ≤ (1+ 2ε)‖y‖2.

18

Proof Via ε-net

Have written y ∈ SV as y = w0 + c1w1 + c2w2 + . . . where
w0,w1, . . . ∈ Nε, and ci ≤ εi. By triangle inequality:

‖Sy‖2 = ‖Sw0 + c1Sw1 + c2Sw2 + . . . ‖2

≤ ‖Sw0‖2 + c1‖Sw1‖2 + c2‖Sw2‖2 + . . .

≤ (1+ ε) + ε(1+ ε) + ε2(1+ ε) + . . .

(since via the union bound, ‖Sw‖2 ≈ ‖w‖2 for all w ∈ Nε)

≤ 1+ ε

1− ε
≈ 1+ 2ε

Similarly, can prove that ‖Sy‖2 ≥ 1− 2ε, giving, for all y ∈ SV
(and hence all y ∈ V):

(1− 2ε)‖y‖2 ≤ ‖Sy‖2 ≤ (1+ 2ε)‖y‖2.

18

Proof Via ε-net

Have written y ∈ SV as y = w0 + c1w1 + c2w2 + . . . where
w0,w1, . . . ∈ Nε, and ci ≤ εi. By triangle inequality:

‖Sy‖2 = ‖Sw0 + c1Sw1 + c2Sw2 + . . . ‖2
≤ ‖Sw0‖2 + c1‖Sw1‖2 + c2‖Sw2‖2 + . . .

≤ (1+ ε) + ε(1+ ε) + ε2(1+ ε) + . . .

(since via the union bound, ‖Sw‖2 ≈ ‖w‖2 for all w ∈ Nε)

≤ 1+ ε

1− ε
≈ 1+ 2ε

Similarly, can prove that ‖Sy‖2 ≥ 1− 2ε, giving, for all y ∈ SV
(and hence all y ∈ V):

(1− 2ε)‖y‖2 ≤ ‖Sy‖2 ≤ (1+ 2ε)‖y‖2.

18

Proof Via ε-net

Have written y ∈ SV as y = w0 + c1w1 + c2w2 + . . . where
w0,w1, . . . ∈ Nε, and ci ≤ εi. By triangle inequality:

‖Sy‖2 = ‖Sw0 + c1Sw1 + c2Sw2 + . . . ‖2
≤ ‖Sw0‖2 + c1‖Sw1‖2 + c2‖Sw2‖2 + . . .

≤ (1+ ε) + ε(1+ ε) + ε2(1+ ε) + . . .

(since via the union bound, ‖Sw‖2 ≈ ‖w‖2 for all w ∈ Nε)

≤ 1+ ε

1− ε
≈ 1+ 2ε

Similarly, can prove that ‖Sy‖2 ≥ 1− 2ε, giving, for all y ∈ SV
(and hence all y ∈ V):

(1− 2ε)‖y‖2 ≤ ‖Sy‖2 ≤ (1+ 2ε)‖y‖2.

18

Proof Via ε-net

Have written y ∈ SV as y = w0 + c1w1 + c2w2 + . . . where
w0,w1, . . . ∈ Nε, and ci ≤ εi. By triangle inequality:

‖Sy‖2 = ‖Sw0 + c1Sw1 + c2Sw2 + . . . ‖2
≤ ‖Sw0‖2 + c1‖Sw1‖2 + c2‖Sw2‖2 + . . .

≤ (1+ ε) + ε(1+ ε) + ε2(1+ ε) + . . .

(since via the union bound, ‖Sw‖2 ≈ ‖w‖2 for all w ∈ Nε)

≤ 1+ ε

1− ε
≈ 1+ 2ε

Similarly, can prove that ‖Sy‖2 ≥ 1− 2ε, giving, for all y ∈ SV
(and hence all y ∈ V):

(1− 2ε)‖y‖2 ≤ ‖Sy‖2 ≤ (1+ 2ε)‖y‖2.

18

Proof Via ε-net

Have written y ∈ SV as y = w0 + c1w1 + c2w2 + . . . where
w0,w1, . . . ∈ Nε, and ci ≤ εi. By triangle inequality:

‖Sy‖2 = ‖Sw0 + c1Sw1 + c2Sw2 + . . . ‖2
≤ ‖Sw0‖2 + c1‖Sw1‖2 + c2‖Sw2‖2 + . . .

≤ (1+ ε) + ε(1+ ε) + ε2(1+ ε) + . . .

(since via the union bound, ‖Sw‖2 ≈ ‖w‖2 for all w ∈ Nε)

≤ 1+ ε

1− ε
≈ 1+ 2ε

Similarly, can prove that ‖Sy‖2 ≥ 1− 2ε, giving, for all y ∈ SV
(and hence all y ∈ V):

(1− 2ε)‖y‖2 ≤ ‖Sy‖2 ≤ (1+ 2ε)‖y‖2.

18

Full Argument

• There exists an ε-net Nε over the unit ball in A’s column
span, SV with |Nε| ≤

(4
ε

)d.

• By distributional JL, for m = O
(
d log(1/ε)+log(1/δ)

ε2

)
, with

probability ≥ 1− δ, for all w ∈ Nε, ‖Sw‖2 ≈ε ‖w‖2.
=⇒ for all y ∈ SV , ‖Sy‖2 ≈ε ‖y‖2.
=⇒ for all y ∈ V , i.e., for all y = Ax for x ∈ Rd,
‖Sy‖2 ≈ε ‖y‖2.
=⇒ S ∈ Rm×n is an ε-subspace embedding for A.

19

Full Argument

• There exists an ε-net Nε over the unit ball in A’s column
span, SV with |Nε| ≤

(4
ε

)d.

• By distributional JL, for m = O
(
d log(1/ε)+log(1/δ)

ε2

)
, with

probability ≥ 1− δ, for all w ∈ Nε, ‖Sw‖2 ≈ε ‖w‖2.

=⇒ for all y ∈ SV , ‖Sy‖2 ≈ε ‖y‖2.
=⇒ for all y ∈ V , i.e., for all y = Ax for x ∈ Rd,
‖Sy‖2 ≈ε ‖y‖2.
=⇒ S ∈ Rm×n is an ε-subspace embedding for A.

19

Full Argument

• There exists an ε-net Nε over the unit ball in A’s column
span, SV with |Nε| ≤

(4
ε

)d.

• By distributional JL, for m = O
(
d log(1/ε)+log(1/δ)

ε2

)
, with

probability ≥ 1− δ, for all w ∈ Nε, ‖Sw‖2 ≈ε ‖w‖2.
=⇒ for all y ∈ SV , ‖Sy‖2 ≈ε ‖y‖2.

=⇒ for all y ∈ V , i.e., for all y = Ax for x ∈ Rd,
‖Sy‖2 ≈ε ‖y‖2.
=⇒ S ∈ Rm×n is an ε-subspace embedding for A.

19

Full Argument

• There exists an ε-net Nε over the unit ball in A’s column
span, SV with |Nε| ≤

(4
ε

)d.

• By distributional JL, for m = O
(
d log(1/ε)+log(1/δ)

ε2

)
, with

probability ≥ 1− δ, for all w ∈ Nε, ‖Sw‖2 ≈ε ‖w‖2.
=⇒ for all y ∈ SV , ‖Sy‖2 ≈ε ‖y‖2.
=⇒ for all y ∈ V , i.e., for all y = Ax for x ∈ Rd,
‖Sy‖2 ≈ε ‖y‖2.

=⇒ S ∈ Rm×n is an ε-subspace embedding for A.

19

Full Argument

• There exists an ε-net Nε over the unit ball in A’s column
span, SV with |Nε| ≤

(4
ε

)d.

• By distributional JL, for m = O
(
d log(1/ε)+log(1/δ)

ε2

)
, with

probability ≥ 1− δ, for all w ∈ Nε, ‖Sw‖2 ≈ε ‖w‖2.
=⇒ for all y ∈ SV , ‖Sy‖2 ≈ε ‖y‖2.
=⇒ for all y ∈ V , i.e., for all y = Ax for x ∈ Rd,
‖Sy‖2 ≈ε ‖y‖2.
=⇒ S ∈ Rm×n is an ε-subspace embedding for A.

19

Net Construction

Theorem (ε-net over !2 ball)

For any ε ≤ 1, there exists a set of points Nε ⊂ SV with |Nε| =
(4
ε

)d

such that, for all y ∈ SV ,
min
w∈Nε

‖y− w‖2 ≤ ε.

Theoretical algorithm for constructing Nε:

• Initialize Nε = {}.

• While there exists v ∈ SV where minw∈Nε ‖v− w‖2 > ε, pick an
arbitrary such v and let Nε := Nε ∪ {v}.

If the algorithm terminates in T steps, we have |Nε| ≤ T and Nε is a
valid ε-net.

20

Net Construction

Theorem (ε-net over !2 ball)

For any ε ≤ 1, there exists a set of points Nε ⊂ SV with |Nε| =
(4
ε

)d

such that, for all y ∈ SV ,
min
w∈Nε

‖y− w‖2 ≤ ε.

Theoretical algorithm for constructing Nε:

• Initialize Nε = {}.

• While there exists v ∈ SV where minw∈Nε ‖v− w‖2 > ε, pick an
arbitrary such v and let Nε := Nε ∪ {v}.

If the algorithm terminates in T steps, we have |Nε| ≤ T and Nε is a
valid ε-net.

20
i O

Net Construction

Theorem (ε-net over !2 ball)

For any ε ≤ 1, there exists a set of points Nε ⊂ SV with |Nε| =
(4
ε

)d

such that, for all y ∈ SV ,
min
w∈Nε

‖y− w‖2 ≤ ε.

Theoretical algorithm for constructing Nε:

• Initialize Nε = {}.

• While there exists v ∈ SV where minw∈Nε ‖v− w‖2 > ε, pick an
arbitrary such v and let Nε := Nε ∪ {v}.

If the algorithm terminates in T steps, we have |Nε| ≤ T and Nε is a
valid ε-net.

20

Net Construction

How large is the net constructed by our theoretical algorithm?

Consider w,w′ ∈ Nε. We must have ‖w− w′‖2 > ε, or we would have
not added both to the net.

Thus, we can place an ε/2 radius ball around each w ∈ Nε, and none
of these balls will intersect.

Note that all these balls lie within the ball of radius (1+ ε/2).

21

Net Construction

How large is the net constructed by our theoretical algorithm?

Consider w,w′ ∈ Nε. We must have ‖w− w′‖2 > ε, or we would have
not added both to the net.

Thus, we can place an ε/2 radius ball around each w ∈ Nε, and none
of these balls will intersect.

Note that all these balls lie within the ball of radius (1+ ε/2).

21

- -

Net Construction

How large is the net constructed by our theoretical algorithm?

Consider w,w′ ∈ Nε. We must have ‖w− w′‖2 > ε, or we would have
not added both to the net.

Thus, we can place an ε/2 radius ball around each w ∈ Nε, and none
of these balls will intersect.

Note that all these balls lie within the ball of radius (1+ ε/2).

21

Net Construction

How large is the net constructed by our theoretical algorithm?

Consider w,w′ ∈ Nε. We must have ‖w− w′‖2 > ε, or we would have
not added both to the net.

Thus, we can place an ε/2 radius ball around each w ∈ Nε, and none
of these balls will intersect.

Note that all these balls lie within the ball of radius (1+ ε/2). 21

§"

Volume Argument

We have |Nε| disjoint balls with radius ε/2, lying within a ball of
radius (1+ ε/2).

In d dimensions, the radius r ball has volume cd · rd, where cd
is a constant that depends on d but not r.

Thus, the total number of balls is upper bounded by:

|Nε| ≤
(1+ ε/2)d

(ε/2)d
≤

(
4
ε

)d
.

Remark: We never actually construct an ε-net. We just use the
fact that one exists (the output of this theoretical algorithm) in
our subspace embedding proof.

22

Volume Argument

We have |Nε| disjoint balls with radius ε/2, lying within a ball of
radius (1+ ε/2).

In d dimensions, the radius r ball has volume cd · rd, where cd
is a constant that depends on d but not r.

Thus, the total number of balls is upper bounded by:

|Nε| ≤
(1+ ε/2)d

(ε/2)d
≤

(
4
ε

)d
.

Remark: We never actually construct an ε-net. We just use the
fact that one exists (the output of this theoretical algorithm) in
our subspace embedding proof.

22

Volume Argument

We have |Nε| disjoint balls with radius ε/2, lying within a ball of
radius (1+ ε/2).

In d dimensions, the radius r ball has volume cd · rd, where cd
is a constant that depends on d but not r.

Thus, the total number of balls is upper bounded by:

|Nε| ≤
(1+ ε/2)d

(ε/2)d
≤

(
4
ε

)d
.

Remark: We never actually construct an ε-net. We just use the
fact that one exists (the output of this theoretical algorithm) in
our subspace embedding proof.

22

(52

Volume Argument

We have |Nε| disjoint balls with radius ε/2, lying within a ball of
radius (1+ ε/2).

In d dimensions, the radius r ball has volume cd · rd, where cd
is a constant that depends on d but not r.

Thus, the total number of balls is upper bounded by:

|Nε| ≤
(1+ ε/2)d

(ε/2)d
≤

(
4
ε

)d
.

Remark: We never actually construct an ε-net. We just use the
fact that one exists (the output of this theoretical algorithm) in
our subspace embedding proof.

22

