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- I'll return midterms at the end of class.

- Overall the class did well = mean was a 25.5 out of 34
(=~ 75%).

- Generally speaking people felt the test was a bit rushed.

- If you are not happy with your performance, message me
and we can chat about it. I'm also happy to review
solutions in office hours.

- | plan to release Problem Set 4 by end of this week.

- 2 page progress report on Final Project due 4/16.



Randomized Linear Algebra Before Break: /-\mp?h‘}'mo- 5“'\’\7)\"‘”3’
- Approximate matrix multiplication via norm-based sampling.
Analysis via outer-product view of matrix multiplication.
- Application to fast randomized low-rank approximation.

—

- Hutchinson’s method for trace estimation. Analysis via linearity
of variance for pairwise-independent random variables.

- Random linear sketching for ¢, sampling and ¢, heavy-hitters
&ount Sketch).



Randomized Linear Algebra Before Break:
- Approximate matrix multiplication via norm-based sampling.
Analysis via outer-product view of matrix multiplication.
- Application to fast randomized low-rank approximation.

- Hutchinson’s method for trace estimation. Analysis via linearity
of variance for pairwise-independent random variables.

- Random linear sketching for £, sampling and ¢, heavy-hitters
(Count Sketch).

Today:
- Linear sketching for dimensionality reduction and the
Johnson-Lindenstrauss lemma.
- Subspace embedding and e-net arguments
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Linear Sketching

Given a large matrix A € R we pick a random linear
transformation S € R™*" and compute SA (alternatively, pick

S € R¥M and compute AS). Using SA we can approximate many
computations involving A.
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Linear Sketching Examples

Freivald’s Algorithm:
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Linear Sketching Examples

Hutchinson’s Trace Estimator;
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Linear Sketching Examples

Graph Connectivity via ¢y sampling:
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Linear Sketching Examples
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Norm-Based Sampling for AMM/Low-Rank Approximation:
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Subspace Embedding



Subspace Embedding

It is helpful to define general guarantees for sketches, that are useful
in many problems.



Subspace Embedding

It is helpful to define general guarantees for sketches, that are useful
in many problems.

Definition (Subspace Embedding)

Se Rmxg is an e-subspace embedding for A € R"*9 if, for all x € RY,

(1= OllAX]l2 < [ISAX[l2 < (1 + €)[|Ax]]2-

l.e.,, S preserves the norm of any vector Ax in the column spar%ofA.
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Subspace Embedding

It is helpful to define general guarantees for sketches, that are useful
in many problems.

Definition (Subspace Embedding)

S € R™ s an e-subspacg embedding for A € R™<4 if for all x € RY,
FOTA, £ ladly ¢ (F s

(1= OllAX]l2 < [ISAX[l2 < (1 + €)[|Ax]]2-

T Isax)] < 1axl = (l*z)l\sex‘\h‘*ﬂpr/\l?

l.e., S preserves the norm of any vector Ax in the column span of A.

col(A) € R" col(SA) € R™

y = Ax = SAx
/ ‘ SySA/'



Subspace Embedding

It is helpful to define general guarantees for sketches, that are useful
in many problems.

Definition (Subspace Embedding)

S € R™ s an e-subspace embedding for A € R"*4 if for all x € RY,

(1= ellAx]lz < ISAX]l2 < (1 + €)l|AxX]|2-

l.e., S preserves the norm of any vector Ax in the column span of A.
Tons of applications. E.g,

“Fast linear regression (next class) and preconditioning.

- Approximation of A’'s singular values.

- Approximate matrix multiplication and near optlmal lovv ank
approximation. I*{JB -

- Compressed sensing/sparse recovery (related to £y sampling).



Subspace Embedding Intuition

Think-Pair-Share 1: Assume that n > d and that rank(A) = d. If
S e R™ M anis an e-subspace embedding for A with e < 1, how large

must m be? Hint: Think about rank(SA) and/or the nullspace of SA.
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Subspace Embedding Intuition

Think-Pair-Share 1: Assume that n > d and that rank(A) = d. If
S e R™ M anis an e-subspace embedding for A with e < 1, how large
must m be? Hint: Think about rank(SA) and/or the nullspace of SA.

mXxn nxd

m xd

Think-Pair-Share 2: Describe how to deterministically. compute a
subspace embedding Swithm =dand e =0 in time.

& \/\\Q/\\\ Syw’ m = Ql vJ/ anu%z W\Lké).
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Optimal Subspace Embedding

Let Q € R"*? be an orthonormal basis for the columns of A.
Then any vector Ax in A’s column span can be written as Qy for
somey € RY.

1



Optimal Subspace Embedding
ST

"B \s gl = s a1

Let Q € R"%? be an orthonormal basis for the columns of A.
Then any vector Ax in A’s column span can be written as Qy for

somey € RY.
Let S=Q'. S € RY*" (i.e, m = d) and further, for any x € R?

I = 1gviE = ol
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Optimal Subspace Embedding

Let Q € R"*? be an orthonormal basis for the columns of A.
Then any vector Ax in A’s column span can be written as Qy for

somey € RY.
Let S=Q". S € RY*" (i.e, m = d) and further, for any x € R?

IsAx|lz = lQ"ayl3 = i3
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Optimal Subspace Embedding

S=Q -] A =1 [io]

2 |OX
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Let Q € R"*? be an orthonormal basis for the columns of A.
Then any vector Ax in A’s column span can be written as Qy for

somey € RY.
Let S=Q". S € RY*" (i.e, m = d) and further, for any x € R?
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ISAX3 = 11Q7ayll3 = IIvl3 = [IAx]3.
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Optimal Subspace Embedding

Let Q € R"*? be an orthonormal basis for the columns of A.
Then any vector Ax in A’s column span can be written as Qy for

somey € RY.
Let S=Q". S € RY*" (i.e, m = d) and further, for any x € R?

ISAX|15 = lQT Q115 = IIvll5 = [IAX15.
How would you compute Q7
R el e
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Randomized Subspace Embedding

Theorem (Oblivious Subspace Embedding)

Let S € R™*9 be a random matrix with i.i.d. £1/v/m entries. Then if
m=0 (M), for any A € R"<4 with probability >1—14, S is
an e-subSpace embedding of A.

mxn nxd

m x d
s —
A
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Randomized Subspace Embedding

Theorem (Oblivious Subspace Embedding)

Let S € R™*9 be a random matrix with i.i.d. £1/v/m entries. Then if
m=0 (M), for any A € R"<4 with probability >1—14, S is
an e-subspace embedding of A.
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- S can be computed without any knowledge of A.

- Still achieves near optimal compression.

- Constructions where S is sparse or structured, allow efficient
computation of SA (fast JL-transform, input-sparsity time
algorithms via Count Sketch) 12



Oblivious Subspace Embedding Proof



Proof Outline

1. Distributional Johnson-Lindenstrauss: For S € R™*% with i.i.d.
+1/y/m entries, for any fixed y € R", with probability 1 — ¢ for |
very small g, (1= e)llyll < Syl < (1 +)lyl.  far 0 ”
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Proof Outline

1. Distributional Johnson-Lindenstrauss: For S € R™*9 with i.i.d.
+1/y/m entries, for any fixed y € R", with probability 1 — ¢ for
very small 6, (1= e)[lyll2 < [ISyll> < (1+ €)[Iyll2-

2. Via a union bound, have that for any fixed set of vectors
N C R", with probability 1— [N -6, [|Sy|2 = ||yll2 for ally € A.
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Proof Outline

1. Distributional Johnson-Lindenstrauss: For S € R™*% with i.i.d.
+1/y/m entries, for any fixed y € R", with probability 1 — ¢ for
very small 6, (1= e)[lyll2 < [ISyll> < (1+ €)[Iyll2-

2. Via a union bound, have that for any fixed set of vectors
N C R", with probability 1— [N -4, ||Sy|l» = |lyll» forally € NV.

3. But we want ||Sy||> = |lyll» for all y = Ax with x € RY. This is a
linear subspace, i.e., an infinite set of vectors!
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Proof Outline

1. Distributional Johnson-Lindenstrauss: For S € R™*% with i.i.d.
+1/y/m entries, for any fixed y € R", with probability 1 — ¢ for
very small 6, (1= e)[lyll2 < [ISyll> < (1+ €)[Iyll2-

. Via a union bound, have that for any fixed set of vectors

N C R", with probability 1— [N -6, [|Sy|2 = ||yll2 for ally € A.
. But we want ||Sy||, ~. |ly||> for all y = Ax with x € RY. This is a
linear subspace, i.e., an infinite set of vectors!

. 'Discretize’ this subspace by rounding to a finite set of vectors
N, called an e-net for the subspace. Then apply union bound to
this finite set, and show that the discretization does not
introduce too much error. IMlz21 -n -0 %<0
DR y P s
i, g

(A=Y
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Proof Outline

1. Distributional Johnson-Lindenstrauss: For S € R™*% with i.i.d.
+1/y/m entries, for any fixed y € R", with probability 1 — ¢ for
very small 6, (1= e)[lyll2 < [ISyll> < (1+ €)[Iyll2-

2. Via a union bound, have that for any fixed set of vectors
N C R", with probability 1— [N -4, ||Sy|l» = |lyll» forally € NV.

3. But we want ||Sy||> = |lyll» for all y = Ax with x € RY. This is a
linear subspace, i.e., an infinite set of vectors!

4. ‘Discretize’ this subspace by rounding to a finite set of vectors
N, called an e-net for the subspace. Then apply union bound to
this finite set, and show that the discretization does not
introduce too much error.

Remark: e-nets are a key proof technique in theoretical computer
science, learning theory (generalization bounds), random matrix
theory, and beyond. They are a key take-away from this lecture.
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Step 1: Distributional JL Lemma

Theorem (Distributional JL)

Let S € R™*9 be a random matrix with i.i.d. +1/+/m entries. Then if
m = O(log(1/5)/€?), for any fixed y € R", with probability > 1— 6,
(T=elvllz < ISyl < (1 + e)llyll2-

l.e,, via a random matrix, we can compress any vector from n to
~ log(1/8)/€? dimensions, and approximately preserve its norm. A bit
surprising maybe that m does not depend on n at all.

m X n nx1
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Step 1: Distributional JL Lemma

Theorem (Distributional JL)

Let S € R™*9 be a random matrix with i.i.d. +1/+/m entries. Then if
m = O(log(1/5)/€?), for any fixed y € R", with probability > 1— 6,
(T=elvllz < ISyl < (1 + e)llyll2-

l.e., via a random matrix, we can compress any vector from n to

~ log(1/8)/€? dimensions, and approximately preserve its norm. A bit
surprising maybe that m does not depend on n at all.

Expectation:

E[[ISyI3] = D EI(Si, )]
=1
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Step 1: Distributional JL Lemma

Theorem (Distributional JL)

Let S € R™*9 be a random matrix with i.i.d. +1/+/m entries. Then if
m = O(log(1/5)/€?), for any fixed y € R", with probability > 1— 6,
(T=elvllz < ISyl < (1 + e)llyll2-

l.e., via a random matrix, we can compress any vector from n to

~ log(1/8)/€? dimensions, and approximately preserve its norm. A bit
surprising maybe that m does not depend on n at all.

Expectation:
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Step 1: Distributional JL Lemma

Theorem (Distributional JL)

Let S € R™*9 be a random matrix with i.i.d. +1/+/m entries. Then if
m = O(log(1/5)/€?), for any fixed y € R", with probability > 1— 6,
(T=elvllz < ISyl < (1 + e)llyll2-

l.e,, via a random matrix, we can compress any vector from n to
~ log(1/8)/€? dimensions, and approximately preserve its norm. A bit
surprising maybe that m does not depend on n at all.

Expectation:

E[IISVIIQ]—ZE[ oY) ]—ZE (Zsu-yj)
j=1
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Step 1: Distributional JL Lemma

Theorem (Distributional JL)

Let S € R™*9 be a random matrix with i.i.d. £1/v/m entries. Then if
m = O(log(1/5)/€?), for any fixed y € R", with probability > 1— 6,
(T=elvllz < ISyl < (1 + e)llyll2-

l.e., via a random matrix, we can compress any vector from n to

~ log(1/8)/€? dimensions, and approximately preserve its norm. A bit
surprising maybe that m does not depend on n at all.

Expectation:
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Step 1: Distributional JL Lemma

Theorem (Distributional JL)

Let S € R™*9 be a random matrix with i.i.d. £1/v/m entries. Then if
m = O(log(1/5)/€?), for any fixed y € R", with probability > 1— 6,
(T=elvllz < ISyl < (1 + e)llyll2-

l.e., via a random matrix, we can compress any vector from n to

~ log(1/8)/€? dimensions, and approximately preserve its norm. A bit
surprising maybe that m does not depend on n at all.

Expectation: m . . 2
E[ISy3) =Y E[(Si 1) 1=)_E (Z Sjj ')/j)
i=1 i=1 j=1
m n
= Z Z Var(S,-,- : y,-)

=1 j=1

m n 1
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Restriction to Unit Ball

Want to show that with high probability, ||Sy]|> = ||y||. for all
y € {Ax:x € R} le, forally € V, where V is A’s column span.

C @ (ﬁ)
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Restriction to Unit Ball

Want to show that with high probability, ||Sy||> = |ly||. for all
y € {Ax:x € R} le, forally € V, where V is A’s column span.

Observation: Suffices to prove ||Sy||> =, |yl = 1for ally € Sy, where

Sy={y:yeVandly|,="1}

y=y
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Restriction to Unit Ball

Want to show that with high probability, ||Sy]|> = ||y||. for all
y € {Ax:x € R} le, forally € V, where V is A’s column span.

Observation: Suffices to prove ||Sy||> =, |yl = 1for ally € Sy, where

Sy={y:yeVandly|,="1}

y=y

I3}
(1—¢) < |\5)/||2 (1+¢)

(=) vl < IS¥llz - ylle < O+ €) - VIl =
(1 =alyllz < ISyl < (1 + €)lyll2- 15

Proof: Forany y € V, can write y = Hy\b ywhere y = 4 lyll> € Sy.



Discretization of Unit Ball

Theorem
For any e < 1, there exists a set of points N. C Sy with
V.| = (£) such that, for all y € Sy,
i —wl <e.
Jmin [ly —wllz2 <

Sy

16



Discretization of Unit Ball

Theorem
For any e < 1, there exists a set of points N. C Sy with
d
Ve = (%) such that, for ally € Sy, A
I ¢ ]\]Q%

i — Wl < e.
Wﬂ;l&\\y 2 <e

[N

SV “3
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Discretization of Unit Ball

Theorem
For any e < 1, there exists a set of points N. C Sy with
V.| = (£) such that, for all y € Sy,
i —wl <e.
Jmin [ly —wllz2 <

By the distributional JL lemma, if we set ¢’ = - (2)d then, via a
union bound, with probability at least1—¢" - [Ne| =14, for

all w e N,
(1=alwlz < ISwll2 < (1 + €)|wl]2.
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Discretization of Unit Ball

Theorem
For any e < 1, there exists a set of points N. C Sy with
V.| = (£) such that, for all y € Sy,
i —wl <e.
Jmin [ly —wllz2 <

By the distributional JL lemma, if we set ¢’ = - (2)d then, via a
union bound, with probability at least1—¢" - [Ne| =14, for
all w e N,

(1=e)lwll2 < [ISwll2 < (T + €)[[wl]2.

Requires S € R™*" where
!
- <|og(1/6)>

€2
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Discretization of Unit Ball

Theorem
For any e < 1, there exists a set of points N. C Sy with
V.| = (£) such that, for all y € Sy,
i —wl <e.
Jmin [ly —wllz2 <

By the distributional JL lemma, if we set ¢’ = - (2)d then, via a
union bound, with probability at least1—¢" - [Ne| =14, for
all w e N,

(1=e)lwll2 < [ISwll2 < (T + €)[[wl]2.

Requires S € R™*" where

m:O<|og(12/(5’)> :O(dlog(4/e)+log(1/(5)> :é<d>.

€ €? €?
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Proof Via e-net

So Far: If we set m = O(d/¢?) and pick random S € R™*", then with
probability > 1— 4, [|Swl|, ~. ||w||, for all w € A..
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Proof Via e-net

So Far: If we set m = O(d/¢?) and pick random S € R™*", then with
probability > 1— 4, ||Sw]||> = ||w|, for allw € A.

Expansion via net vectors: For any y € Sy, we can write:

y=wo+ (y—Wwp) for wy € N,

y Wo



Proof Via e-net

So Far: If we set m = O(d/¢?) and pick random S € R™*", then with
probability > 1— 4, ||Sw]||> = ||w|, for allw € A.

Expansion via net vectors: For any y € Sy, we can write:
y=w+ (y — wp) for wg € NV,

Yy —Wop
=Wy +C1-e forc1:||y—wo||2ande1:WeS
— Wol|2

€161 Wo

Y,
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Proof Via e-net

So Far: If we set m = O(d/¢?) and pick random S € R™*", then with
probability > 1— 4, ||Sw]||> = ||w|, for allw € A.

Expansion via net vectors: For any y € Sy, we can write:

y=w+ (y — wp) for wg € N,

—w
=Wo+Cr- e for ¢c; = |y — wo||, and e1:uesv
lly — woll2
=Wo+Ci-Wq+Cr- (e —w) for wy € NV¢
Wy

€1
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Proof Via e-net

So Far: If we set m = O(d/¢?) and pick random S € R™*", then with
probability > 1 -6, [|Sw||, ~. ||w]|; for all w € N

Expansion via net vectors: For any y € Sy, we can write:

y=w+ (y—Wwp) for wy € N,

Y — W
=W+ - e forc1:||y—wo||2ande1:meSV
— Wol2
=Wo+Cr-wWy+Cr-(er—w) for wy € NV,
e — w
=Wo+CG -Wwi+CG-e Tforca=c¢-]lej—wl;and e; = ! !

ller — will2

€Sy
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Proof Via e-net

So Far: If we set m = O(d/¢?) and pick random S € R™*", then with
probability > 1 -6, [|Sw||, ~. ||w]|; for all w € N

Expansion via net vectors: For any y € Sy, we can write:

y=w+ (y—Wwp) for wy € N,

V=W
=Wy + - e for ¢y = [ly — woll2 and e1:mesv
— Wol2
=Wo+C - Wi+ (er—w) for wy € N
e —w
=Wo+C-Wi+C-e forc=ci|ler—wland eZIWEsV
17— Walj2

=Wo+C-Wi+C-Wy+C3-W3+...

17



Proof Via e-net

So Far: If we set m = O(d/¢?) and pick random S € R™*", then with
probability > 1 -6, [|Sw||, ~. ||w]|; for all w € N

Expansion via net vectors: For any y € Sy, we can write:

y=w+ (y—Wwp) for wy € N,

V=W
=Wy + - e for ¢y = [ly — woll2 and e1:mesv
— Wol2
=Wo+C - Wi+ (er—w) for wy € N
e —w
=Wo+C-Wi+C-e forc=ci|ler—wland eZIWEsV
17— Walj2

=Wo+C-Wi+C-Wy+C3-W3+...

For all i, have ¢; < €.
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Proof Via e-net

Have written y € Sy, as y = Wg + Ciwq + GoWs + ... where
Wo, W1, ... EM, and ¢ < Ei.

18



Proof Via e-net

Have written y € Sy, as y = Wg + Ciwq + GoWs + ... where
Wo, Wy, ... € N, and ¢; < €. By triangle inequality:

ISyll2 = ISwo + c1Swy + CoSwy + ... [|2
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ISyll2 = ISwo + c1Swy + CoSwy + ... [|2

< ||SW0H2 + C1||SW1||2 + CzHSWsz + ...

<O+ +e(l+e)+(1+€)+...

(since via the union bound, ||Sw|; = ||w]|; for allw € N)
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Proof Via e-net

Have written y € Sy, as y = Wg + Ciwq + GoWs + ... where
Wo, W1, ... € N, and ¢; < €. By triangle inequality:
ISyll2 = ISwo + c1Swy + CoSwy + ... [|2

< ||Swo||2 + c1|[Swall2 + c2f|Swall2 + . ..

<O+ +e(l+e)+(1+€)+...

(since via the union bound,

<1+e
—1—c¢

Swl, ~ [|w]|; for all w € )

~ 14 2¢
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Proof Via e-net

Have written y € Sy, as y = Wg + Ciwq + GoWs + ... where
Wo, W1, ... € N, and ¢; < €. By triangle inequality:
ISyll2 = ISwo + c1Swy + CoSwy + ... [|2

< ||SW0H2 + C1||SW1||2 + CzHSWsz +...

< (1+6)+e(1—|—e)+62(1+6)—|—...

(since via the union bound,

T+ €

= 1J—re
Similarly, can prove that ||Sy||, > 1 — 2¢, giving, for ally € Sy,
(and hence ally € V):

(1 =2e)lyll2 < [ISyll2 < (14 2€)Iy]l2-

Swl, ~ [|w]|; for all w € )

~ 14 2¢
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Full Argument

- There exists an e-net NV, over the unit ball in A’s column
span, Sy with |NV;| < (g)d.

19



Full Argument

- There exists an e-net NV, over the unit ball in A’s column
span, Sy with |NV;| < (g)d.

- By distributional JL, form =0 w . with
probability > 1— 6, for all w e A, ||Swl|> ~c ||w]>.
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1Syll2 = [Iyll2-
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Full Argument

- There exists an e-net NV, over the unit ball in A’s column
span, Sy with |NV;| < (g)d.

- By distributional JL, form =0 w), with
probability > 1— 6, for all w e A, ||Swl|> ~c ||w]>.
= forally € Sy, ||Syll2 = ||V]]2-

— forally e V, ie, forall y = Ax for x € RY,
1Syll2 = [Iyll2-

= S e R is an e-subspace embedding for A.
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Net Construction

Theorem (e-net over ¢, ball)

For any e < 1, there exists a set of points N, C Sy, with |N| = (g)d
such that, for all y € Sy,
i —wl, <e.
min [ly —w|z <e
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Net Construction

Theorem (e-net over ¢, ball)

For any e < 1, there exists a set of points N, C Sy, with |N| = (g)d
such that, for all y € Sy,
i —wl, <e.
Jmin [y —wllz < e

Theoretical algorithm for constructing N.:

- Initialize N, = {}.

- While there exists v € Sy, where minyen. ||V — w|2 > ¢, pick an
arbitrary such vand let N, := N U {v}.
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Net Construction

Theorem (e-net over ¢, ball)

For any e < 1, there exists a set of points N, C Sy, with |N| = (g)d
such that, for all y € Sy,
i —wl, <e.
Jmin [y —wllz < e

Theoretical algorithm for constructing N.:

- Initialize N, = {}.

- While there exists v € Sy, where minyen. ||V — w|2 > ¢, pick an
arbitrary such vand let N, := N U {v}.

If the algorithm terminates in T steps, we have [N < Tand A, isa
valid e-net.

20



Net Construction

How large is the net constructed by our theoretical algorithm?
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Net Construction

How large is the net constructed by our theoretical algorithm?

Consider w,w' € N.. We must have [[w — w'[|; > ¢ or we would have
not added both to the net.
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Net Construction

How large is the net constructed by our theoretical algorithm?

Consider w,w’ € M. We must have |jw — w'[|; > ¢, or we would have
not added both to the net.

Thus, we can place an ¢/2 radius ball around each w € A, and none
of these balls will intersect.

Sy

€ diameter
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Net Construction

How large is the net constructed by our theoretical algorithm?

Consider w,w’ € M. We must have |jw — w'[|; > ¢, or we would have
not added both to the net.

Thus, we can place an ¢/2 radius ball around each w € A, and none

of these balls will intersect. C\L\B
+(/ o
S, Stk of e p-

€ diameter

Note that all these balls lie within the ball of radius (1+ ¢/2). 21



Volume Argument

We have |N¢| disjoint balls with radius €/2, lying within a ball of
radius (14 €/2).
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Volume Argument

We have |N¢| disjoint balls with radius €/2, lying within a ball of
radius (14 €/2).

In d dimensions, the radius r ball has volume ¢4 - r4, where ¢4
is a constant that depends on d but not r.
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Volume Argument

We have |N¢| disjoint balls with radius €/2, lying within a ball of
radius (14 €/2).

In d dimensions, the radius r ball has volume ¢4 - r4, where ¢4
is a constant that depends on d but not r.

Thus, the total number of balls is upper bounded by:
<

wp< 02 (5
T (e T \e)
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Volume Argument

We have |N¢| disjoint balls with radius €/2, lying within a ball of
radius (1+ €/2).

In d dimensions, the radius r ball has volume ¢4 - r4, where ¢4
is a constant that depends on d but not r.

Thus, the total number of balls is upper bounded by:
d d

‘/\/‘E| < M < ﬁ .

(e/2)¢ €

Remark: We never actually construct an e-net. We just use the
fact that one exists (the output of this theoretical algorithm) in
our subspace embedding proof.
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